Assessment of Lead Exposures during Abrasive Blasting and Vacuuming in Ventilated Field Containments: A Case Study

Guth, Kevin and Bourgeois, Marie and Harbison, Raymond (2022) Assessment of Lead Exposures during Abrasive Blasting and Vacuuming in Ventilated Field Containments: A Case Study. Occupational Diseases and Environmental Medicine, 10 (02). pp. 116-131. ISSN 2333-3561

[thumbnail of odem_2022052614595481.pdf] Text
odem_2022052614595481.pdf - Published Version

Download (399kB)

Abstract

Painting contractors have struggled with implementation and assessment of lead exposure controls leading to persistently elevated blood lead levels in this high-risk group of workers. The objective of this study was to assess the intensity of lead exposures based on commonly used air velocities inside field containment structures during abrasive blasting and vacuuming. Exposures were assessed over 14 days from April to July 2021 at a tainter gate and bridge lead paint removal project. Personal air samples, skin wipes, air velocity readings, and blood lead samples were collected. The geometric mean (GM) lead exposure for abrasive blasters and vacuumers was ≥4 × the OSHA Lead Permissible Exposure Limit (PEL) of 50 μg/m3. There was high variability in the personal lead exposures (Geometric standard deviation (GSD) 4.0 - 5.0). The GM hand wipe exposures exceeded a Dermal PEL of 500 μg/wipe (abrasive blaster 564 μg/wipe and vacuumer 754 μg/wipe). Residual lead was measured on workers’ hands in 67% of the post hand washing samples. Air velocities measured inside of the field containments ranged from 107 feet per minute to 229 feet per minute. The effect of air velocity on the concentration of lead on workers’ hands after work (F = 0.58, p = 0.35) and airborne lead concentration was not significant (F = 0.36, p = 0.48). Six of the eight workers’ blood lead levels increased after exposure to lead. There was a non-statistically significant relationship between lead remaining on workers’ hands after handwashing and an increase in blood lead level. This is the first study that assessed both ventilation flow rates used in the industrial painting industry and measurements of airborne and dermal (hands) lead exposures. For the projects evaluated, the collected exposure data indicate that air velocities frequently used in the industrial painting industry to ventilate field containment structures did not tend to prevent an increase in worker blood lead and were ineffective for adequately controlling elevated concentrations of airborne lead and preventing contact with workers’ hands.

Item Type: Article
Subjects: STM Digital Press > Medical Science
Depositing User: Unnamed user with email support@stmdigipress.com
Date Deposited: 24 Mar 2023 09:19
Last Modified: 31 Jul 2024 13:30
URI: http://publications.articalerewriter.com/id/eprint/290

Actions (login required)

View Item
View Item