
*Corresponding author: E-mail: ali.naqvi1989@gmail.com, mamoona@uaar.edu.pk;

British Journal of Applied Science & Technology
15(3): 1-12, 2016, Article no.BJAST.24860

ISSN: 2231-0843, NLM ID: 101664541

SCIENCEDOMAIN international

 www.sciencedomain.org

Automated Test Case Generation Using UML Class
& Sequence Diagram

Syed Asad Ali Shah1, Raja Khaim Shahzad1, Syed Shafique Ali Bukhari1

and Mamoona Humayun1*

1
University Institute of Information Technology, PMAS Arid Agriculture University, Rawalpindi,

Pakistan.

Authors’ contributions

Author SAAS worked on complete UML diagrams, XML, implementation of code in C#, designed
framework for the proposed approach and wrote the first draft of the manuscript. Authors RKS and

SSAB performed the statistical analysis, wrote the protocol, managed the analyses of the study and
literature searches. Author MH supervised the complete study. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/BJAST/2016/24860
Editor(s):

(1) Wei Wu, Applied Mathematics Department, Dalian University of Technology, China.
Reviewers:

(1) M. Bhanu Sridhar, GVP College of Engg. for Women, Vizag, India.
(2) S. K. Srivatsa, Prithyusha Engineering College, Chennai, India.

(3) Anonymous, Rzeszow University of Technology, Poland.
Complete Peer review History: http://sciencedomain.org/review-history/13897

Received 4th February 2016
Accepted 10

th
 March 2016

Published 28
th

 March 2016

ABSTRACT

It is identically significant in today's vastly dynamic background with fluctuating requirements to
improve test plans at each phase of the Software Development Life Cycle. Testing helps to make
sure that the final software product works according to user needs and requirements. Various
testing techniques are being used in order to test software according to its nature and complexity.
Research demonstrations that the numeral software fails on account of such variations because
appropriate testing is not possible on outmoded requirements. Some researchers have tried to
figure out the ways to make automatic tools that generates test cases but there is small amount of
studies done in achievement of this approach through UML Class diagram. Further, the growing
complication of the projects mark manual testing infeasible. It demands for automatic testing of
requirements to keep check on the variations. Many of the former approaches use intermediate
forms for testing software that makes automation difficult. In this paper, we have highlighted the
gaps and flaws in previous work. Based on identified gaps, a simple and optimal approach to

Original Research Article

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

2

generate test cases by extracting class diagram along with sequence diagram is proposed. In this
approach, a simple and easily understandable framework is developed that uses UML class and
sequence diagrams to generate test cases precisely.

Keywords: Unified Modeling Language (UML); Model Based Testing (MBT); Software Development

Life Cycle (SDLC); Class Diagram; Object Oriented Language (OCL).

1. INTRODUCTION

Testing is considered as the most important
phase in software development life cycle [1]. It
plays an important part in guaranteeing the
worthiness and consistency of software. The
testing spell depends upon the scope and
intricacy of the software. It has been observed
that half of the time during software development
is expended by testing [2]. Testing actions
include designing test cases that are orders of
particular inputs, executing the program code
through test cases, and then observing the
results created by the execution. Test case
formation is one of the toughest steps in testing
[3]. Therefore, automated generation of test
cases is one of the significant challenges in
software testing, as manual testing is laborious
and error-prone [4]. Test case generation in
exercise is mostly commenced manually since
automated test case generation techniques need
formal or semi-formal requirement to select test
case to distinguish faults in the code enactment.
So designing a huge figure of test cases and
testing is highly labor intensive and time-
consuming task. Test case generation
automatically can diminish the progress cost by
eradicating manual test case design struggle and
support reliability through augmented test
coverage [5]. Test case generation from design
has much more importance because it helps in
figuring out the errors in design due to which
reliability of software increases. Model Based
Testing (MBT) is considered as extra effectual
and operative than code-based methodology as
it is the miscellaneous approach of specification
requirements and source code in order to test the
software [6].

UML (Unified Modeling Language) is the
modeling language, seeking great attention as
the engineering de-facto standard for modeling
object-oriented software systems in the field of
testing. UML is a design language for imagining,
stipulating, creating, and detailing the relics of a
software-intensive system. The three significant
aims for using design model in object oriented
program testing are: (1) outmoded testing of
software techniques are the only static
interpretation of the code that is insufficient to

test dynamic aspects of the object-oriented
system; (2) Usage of code/program in order to
test an object-oriented system is difficult and
time-consuming assignment. In distinction,
models aid software testers to recognize systems
in a better way and to find out test data by
performing simple processing as related to code
(3) Generating test cases using model-based
approach is intended at the primary phase of the
SDLC, permitting to carry out coding and testing
in parallel [7].

Among UML diagrams, one of the very common
diagrams is a Class diagram. It can be used for
various purposes and at different times in the
development phases. Class diagrams are
frequently applied to analyze the
application domain and to pin down the
terminology to be used. They are usually taken
as a basis for discussing things with
the domain experts, who cannot be anticipated
either no programming or computer background
at all; therefore, they remain relatively simple. A
class diagram being a part of UML structural
diagrams is a static model providing a platform
for the dynamic model also comprises of
interface information with properties. Every class
contains three portions that are name,
characteristics and methods [8]. Classes signify
the association’s model and semantic
relationships among problematic concepts.
Generalization/Specialization in the class
diagram defines a classification from the bottom
up approach. The class defining mutual concepts
will be known as the generalization of
subclasses. The aggregation in class diagram is
also a type of association [9]. The vital unit of
testing an object-oriented application consists of
a class and class-testing efforts are centered on
functional testing [10]. In the diagram, classes
are represented with boxes, which contain three
parts:

1. The top part contains the name of the

class. It is printed in bold and centered,
and the first letter is capitalized.

2. The middle part contains the attributes of
the class. They are left aligned and the first
letter is lowercase.

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

3

3. The bottom part contains the methods the
class can execute. They are also left
aligned and the first letter is lowercase.

Below is the example of a class diagram as
shown in (Fig. 1), TRAIN JOURNEY class with
its attributes and methods:

The UML sequence diagram is a behavioral
diagram used for modeling the behavior of an
object through its sequence of order [11]. The
Sequence Diagram represents the association of
objects based upon messages and time
sequence. It demonstrates how the objects
interrelate with others in a specific situation of a
use case. The diagrams are mainly well
appropriate for object-oriented software, where
they signify the movement of control while
interaction between object [12]. The diagram
may also cover extra info about the flow of
control throughout the interactions, such as
conditions (e.g. “if condition is equal to c then
sends particular message m else send message
n”) and iteration (e.g. “send message m several
times”) or state-dependent conduct [13].

A sequence diagram demonstrations parallel
vertical lines (lifelines), various processes or
objects that live concurrently and horizontal
arrows, the messages switched between them, in

the order in which they occur. This permits the
description of simple runtime scenarios in a
graphical mode. Below is the example of simple
sequence diagram as shown in (Fig. 2).

Fig. 1. Example of single class

Above a structural diagram, class diagram can
be used to extract the static elements of like
methods and objects, similarly sequence
diagram being a behavioral diagram will provide
us with sequence of message. Therefore, our
focus is on UML class and sequence diagram for
generation of test cases.

Fig. 2. Example of sequence diagram

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

4

2. LITERATURE REVIEW

The studied literature shows that there are
various integrated methods described by
numerous researchers for automated test case
generation from UML class diagram.

Wang and Zheng [9] presented a methodology to
produce the test cases from a design level class
diagram with interaction diagram. It is considered
to be in the category of model-based testing. It is
supposed that the given model was accurate and
the objective of the testing was to check whether
the implementation imitates to the given model.
They used a car rental example to demonstrate
test case generation. The test competence
criteria used in this paper was the coverage for
the model elements that are also called the
building blocks in the class and interaction
diagrams. That criteria was based on the similar
principle for the primary code testing criteria to
aid defined testing objectives. Their method
cannot check the correctness of the model.

Prasanna, Chandran and Suberi [10] presented
the class diagram by using data flow approach.
In their approach, data variables and member
methods were extracted from UML class diagram
and they also used data flow technique to
generate test cases. They discussed that
applying this approach may leads to intra-class
data flow inconsistencies; they had removed
those anomalies which leads to feasible test
cases for testing. They created a directed flow
graph which helps to express use pair approach
and to detect the anomalies. After that, infeasible
sequences were erased from the data flow
sequences and specific valid test cased were
created. Their approach cannot work for Nested
State Charts and in result, couldn’t achieve
maximum coverage.

Anbunathan and Basu [14] proposed a novel
approach for making structural test cases
through UML Class diagram and corresponding
UML State diagram. Traditional testing practices
like DD path, basis path and DU path testing
procedures were considered in order to generate
test cases. Their technique is not compatible with
complex class diagram.

Alhroob, Dahal, and Hossain [15] proposed an
approach using class diagram and Object
Constraint Language (OCL). In their approach,
class diagram and Object Constraint Language
(OCL) were used to signify specification for each
classification and connected classes in the

software specification is represented by names
and their attributes in the class diagram. To
ensure that associations are reliable, an
automatic methodology was proposed to capture
and hold the class relationships in an organized
way.

Weißleder and Sokenou [16] presented an
approach in which they used Class diagram,
state machines and OCL expressions and for
producing test cases. OCL pre-conditions and
post-conditions of actions and guard
circumstances of state machines were taken to
automatically find out the test data input panels.
At the end, their results obtained from the
judgements to commercial tools using mutual
analysis, solitary holds for examples with some
loops and a few conditions relied upon the
repetition of executing those loops.

Li and Maibaum [17] presented their technique in
which they used integration testing against
object-oriented codes. They projected a
methodical approach in order to test object-
oriented codes at the integration level. In their
approach, they produced test cases through
UML class and sequence diagrams and
executed the test cases with the aid of
coordination contracts that is considered as a
source of automated test execution.

Verma [18] projected a technique for generating
test cases by taking four diagrams that are Class
Diagram, Sequence diagram, State chart
Diagram and Use case Diagram. According to
the authors, test case generation based upon the
behaviour is uncommon. In this approach, Petal
files were formed for Sequence diagram, Class
Diagram, Use case Diagram and State chart
Diagram independently. Temporary buffers were
produced in which information was stored that
was extracted for the diagram for example, there
was a distinct buffer for class name buffer, class
attribute buffer etc and is same for other
diagrams as well. For every diagram, there
created a file to store the information extracted
out from buffers. Then those files were stored in
the database in the tuples and test cases were
generated from this table with the help of
matching strings.

Albert et al. [19] proposed a method (formalized
as a M2M transformation using ATL) which
makes a set of simple procedures for initial
clearly static conceptual schema. Procedures
created by their scheme served to fulfil all basic
alteration progressions (inserting/updating/

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

5

deleting) towards the method under progress.
The total quantity and behaviour of the actions
were presumed from the features of the
structural components (classes, relations and so
forth) in the input plan. Their building procedure
assures that none of the immaterial operations
were defined and all created processes were
powerfully executable with respect to the utmost
mutual structural possessions in CSs (like
multiplicity property). With regard to future work,
they considered prolonging their technique to
deal with extra possessions and limitations that
were not addressed in their work, for example
association between classes. So, their work
cannot deal with the relationship between
classes that is association.

Sawant and Shah [20] presented the paper
related to a novel technique that creates test
cases from UML models. In their technique, the
UML diagrams such as Use Case Diagram,
Sequence Diagram & Class Diagram of some
application were considered for making the test
cases. A graph was generated to accumulation
the essential information that could be extracted
from mentioned diagrams & data dictionary
stated in OCL for the similar application. The
graph was lastly scanned to produce the test
cases that were suitable for system testing.

Sharma and Singh [21] proposed an approach
for generating test cases and their approach also
determines server hitting cost using UML
modelling diagram. Initially, they drew a UML
sequence diagram and then converted it into the
particular control flow graph (CFG) for each test
case. CFG nodes amplified with various
information that was necessary to constitute test
vectors. It is individuality of their research that it
can easily distinguish the testing cost by attaining
the server hit cost. This indicates that their
approach can work with large design i.e. scalable,
suitable and well-organized.

2.1 Critical Review of Some Approaches

Existing approaches for test case generation are
compared on the basis of parameters there are
given below which are considered as developer’s
viewpoint while scripting algorithm for system:

(P1) Testing level provide by the technique.
(P2) Number of diagrams used for test case

generation.
(P3) Use of Intermediate forms during test

case generation.
(P4) Number of steps used by particular

technique for test case generation.

It has been seen that approaches that used only
class diagram need some kind of intermediate
forms for test adequacy. Intermediate form
makes test case automation difficult. Number of
steps while generating test cases also affects the
level of automation; small number of steps
increases the level of automation whereas large
number of steps decreases automation level. By
analyzing the existing approaches, we have
originated some desired parameters which need
be consider while developing test case
generation tool. Those are:

1) Suitable footsteps need be taken in order
to make automation easier.

2) Accurate reading of diagrams should be
available.

3) Need to use less complex intermediate
form or no intermediate form.

4) Less steps in order to generate test cases.

While presenting our approach we have taken
care of all these points. Our technique uses
Class diagram then from class diagram fully
loaded sequence diagram which does not use
any intermediate form .This marks our technique
totally distinct from the previous approaches as
explained in Table 1.

Table 1. Review of techniques

Ref# P1 P2 P3 P4

[9] Integration testing Class diagram, interaction diagram No 3

[10] System testing Class diagram Directed flow graph 4

[14] Integration testing Class diagram, state diagram DD graph 5

[16] Integration testing Class diagram, state machine Control flow graph 6

[18] Regression testing Class diagram, sequence diagram
and state chart diagram and use case
diagram

Petal file 5

[20] Integration testing Class diagram, sequence diagram
and use case diagram

Sequence

diagram graph

6

[23] Integration testing Class diagram, object diagram No 6

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

6

3. PROPOSED APPROACH

After analysis and studying research papers, we
have conducted a small case study. The
proposed approach has been introduced to
generate automated test cases. To make the
approach easily understandable, we are using
step wise explanation. Below are number of
steps that describe complete procedure of our
approach in (Fig. 3).

3.1 Creating Class Diagram

Visual Paradigm (Community Edition) tool is
used to create class diagram as this tool
provides many features to make diagrams easily.
Class diagram will be constructed carefully
according to requirements as it is using as the
base diagram in the whole approach.

Fig. 3. Steps of proposed approach

3.2 Creating Sequence Diagram

Again same tool will be used to create sequence
diagram. Methods and class name will be
extracted from Class diagram and then used in
sequence diagram while developing it. Through
this approach, we can obtain links between all
classes and static members of classes that will
be used in sequence diagram and helpful in
keeping a connection between both diagrams.

3.3 Exporting Diagram into XML Format

The developed diagrams will then be exported
into XML format. XML files are widely used in IT
for storing information and some programming
code is needed to read those files. XML file
saves information in the form to tags. In our
approach, it stores information related to
complete Sequence diagram. Visual Paradigm
provides export to XML feature and by using this
feature, we get XML file for sequence diagram.

3.4 Reading XML File

For reading required XML tags, we write code in
C# that can identify and extract required tags in
an order and stores it in a Data Table. Data table
in C# is used to store information in tabular form
on temporary basis. Code will be written with the
intent of covering all test paths and generating
minimum teat cases using different checks and
correct logics in code.

3.5 Saving Test Cases in Text File

After getting all required information in Data
Tables, we again use C# code to write test cases
in some text file to keep record permanently. In
the end, we get text file containing test cases for
specific diagram.

To elaborate the concept of proposed approach,
we design two diagrams. First, we draw a class
diagram of simple standard registration system
(see Fig. 4). Both diagrams are designed in
Visual Paradigm. Visual Paradigm is a design
tool that provides XML exporting feature as well.
As we need XML file of desired diagram to
generate test cases, we use this tool. Below is
the class diagram explaining the system itself.

3.5.1 Class diagram

There are three classes in above diagram having
different links between them. RegistrationUI

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

7

class has simple association with
RegistrationController class and then
RegistrationController is depending on User
class. RegistrationUI is a class that shows
interface through which user interacts with the
system. Now one can easily get the mappings or
interactions between the classes after having a
look on above example. Now let’s proceed
towards sequence diagram while keeping in mind
the above class diagram. What we get is (see
Fig. 5).

3.5.2 Sequence diagram

We can see that all the classes in class
diagram are transformed into objects denoting
each class individually. As RegistrationUI has

registrationUI object on first lifeline and other
class have same representation as shown in
(Fig. 5). We have a method CreateUser() having
some inputs between two objects that are
RegistrationUI and RegistrationController and
then between RegistrationController and
User objects, we have setName() and
setPassword(). We have noticed that one
can easily find the flow of sequence diagram
with the help of extracting links and attributes
from class diagram. Using static attributes
from class diagram can help us in identifying
mappings between static classes and those
classes act as objects to carry out the flow
of messages between them. Below is the
model of the proposed approach as shown in
(Fig. 6).

Fig. 4. Class diagram

Fig. 5. Sequence diagram

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

8

Fig. 6. Proposed model

4. IMPLEMENTATION

A class diagram first develops in Visual
Paradigm tool that is very easy to use and
provides extensive features. After completing
class diagram, we use ‘New Diagram’ option
from generated class diagram. Visual Paradigm
provides the feature to draw various diagram
from Class diagram to establish a link between
them. By using this feature, we get a complete
Sequence diagram containing link, attributes and
classes from class diagram. The purpose of

using this feature is to creep the test case
generation process towards automation. The
generated sequence diagram has complete data
of class diagram and we can proceed towards
next step that is converting Sequence diagram
into XML. XML is widely used in IT for various
purposes. In this case, it will store all the
information related to generated class diagram in
the form of tags. Next step is to read that XML
file with some coding language to extract
required tags/data. C# code has been used by us
to read XML file. As VP tool also exports a lot of

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

9

further information in XML file that is useless for
us in this scenario, we only find required set of
tags by filtering the XML file with the help of C#
code. All of the required tags will be store in the
form of data tables. The core information that is
required was Test Case No., Class Name,
Message from Class, and Message to Class,
Message and its Parameters. Mentioned
information was kept in an order as XML stores
classes in an order as per order found in the
diagram. Step by step implementation of tool is
described below.

Table 2. Class names with objects

Class Object
Login UI loginUI
Login Controller loginController
User user

Above Table 2 is showing extracted Class names
along with their objects. Login UI is the name of
class having object name loginUI which is in the
next column to class. Each Class are
represented with their objects respectively.

Table 3. Class names with methods

ClassName Method
Login Controller LoginUser
User VerifyUser

Above Table.3 represents Class name with its
method. It can be seen that Login Controller is
the class with the method Login User and same
is the case with next class.

Table 4. Method names with parameters

Method Parameter
LoginUser Name
LoginUser Password
VerifyUser Name
VerifyUser Password

Above mentioned Table 4 now shows methods
with their respective parameters. In above case,
there are two parameter of each method for e.g.
LoginUser is a method with two parameters
name and password. After getting information in
above three Tables (2, 3 and 4), we formalize
that extracted data into a sequence with the help
of C# code. After building sequence, we get
information in the form of test cases.

In generated test cases, we can see that for
every parameter, we have two test cases i-e
Valid or Invalid. Generated test cases can be
clearly seen in the Table 5. The last step is
storing the above tabular information in text file.

Below text file is showing generated test cases
that have been permanently stored (see Fig. 7).

Fig. 7. Screen shot of text file

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

10

Table 5. Generated test cases

Test case no. From class To class Methods Parameter Result
1 Login UI Login controller LoginUser name Valid
1 Login UI Login controller LoginUser name Invalid
2 Login UI Login controller LoginUser password Valid
2 Login UI Login controller LoginUser password Invalid
3 Login controller User VerifyUser name Valid
3 Login controller User VerifyUser name Invalid
4 Login controller User VerifyUser password Valid
4 Login controller User VerifyUser password Invalid

5. RESULTS

While comparing proposed approach with other
approaches, it has been observed that most of
the approaches used class diagram in
cooperation with sequence and other UML
diagrams. Data from class, sequence and other
diagrams are extracted to generate test cases
and mentioned approaches have used some kind
of intermediate forms in order to generate test
cases. In our approach sequence diagram is
created from class diagram’s attributes and then
test cases are generated from that sequence
diagram. Secondly, our proposed approach does
not use any intermediate form. Similarly, some
approaches [10,22,24] also used a single
diagram (class diagram) but these approaches
also used intermediate forms. Thus it has been
observed from above comparison that our
approach uses only sequence diagram without
using intermediate in order to increase the level
of automation in test case generation domain.

Table 6. Comparison of approaches

References Using
only
class
diagram

Intermediate
form

Provision
of Tools

Our
approach

[10]
[16]
[17]
[18]
[20]
[21]
[22]
[24]
[25]
[26] .
[27]
[28]

6. DISCUSSION

From the literature, it can be seen that various
studies have been proposed to generate test

cases from UML behavioral diagram along with
class diagram. Most of the studies used
intermediate forms, huge number of steps,
various kinds of graphs or trees in order to
complete test case generation process. Rare
studies have been spotted which used XML
instead of XMI in order to retrieve required data.
Some studies proposed complex solutions that
are not easily understandable to everyone. The
theme of this study is to deliver a very simple and
easily understandable approach that follows few
steps to accomplish test case generation process
without using any intermediate form and some
database. This approach is a step forward
towards quick test case generation before the
coding phase begins. Keeping in mind the above
issues, this study aimed to minimize mentioned
drawback up to some extent by avoiding them.
Test cases have been clearly displayed for better
understanding of results of proposed technique.
All steps along with figures have been shown in
order to make it explainable at its best. Fig. 6 has
been presented to describe complete details of
proposed model in a comprehensible way.

7. CONCLUSION

In today's growing needs, change in
requirements needed with the change in
complexity of systems, it becomes mandatory for
software testing team to test the software before
the start of coding phase. Manually, it is not easy
to test the system and the only solution is
automated testing. This study presented a simple
tool that can generate automated test cases
using class and sequence diagram without any
intermediate form. Sequence diagram was
generated from class diagram's that includes
class name, methods, parameters and
connection between classes. Then exported to
XML file that has been read by C# code for test
case generation. Based upon the data extracted
from XML, test cases were generated.

In future, complex class and sequence diagrams
can be taken for huge systems. Furthermore,

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

11

maximum coverage and more optimal results
would be considered in order to improve results.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Mall R. Fundamentals of software

engineering. International Journal of
Computer Science and Informatics.
2013;3(2):14-21.

2. SWAIN, et al. Generation of test cases
using activity diagram. International
Journal of Computer Science and
Informatics. 2013;3(2):1-10.

3. Abdurazik A, Offutt J. Using UML
collaboration diagrams for static checking
and test generation. In Proceedings of the
3rd international Conference on the UML.
Lecture Notes in Computer Science,
Springer-Verlag GmbH. 2000;1939:383-
395.

4. Linzhang, et al. Generating test cases from
UML activity diagram based on gray-box
method. Proceedings of the 11th Asia-
Pacific Software Engineering Conference
(APSEC’04), IEEE. 2004;284-291.

5. Jena, et al. A novel approach for test case
generation from UML activity diagram.
International Conference on Issues and
Challenges in Intelligent Computing
Techniques (ICICT), IEEE. 2014;621-629.

6. Ali, et al. A state based approach to
integration testing based on UML models.
Journal of Information and Software
Technology. 2007;1087-1106.

7. Shukla SG, Chandel GS. a systematic
approach for generate test cases using
UML activity diagrams. IRACST-
International Journal of Research in
Management and Technology (IJRMT).
2012;2:469-475.

8. Shirole M, Kumar R. UML behavioral
model based test case generation: A
survey. ACM SIGSOFT Software
Engineering Notes. 2013;38:1-13.

9. Wang Y, Zheng M. Test case generation
from UML model. 45

th
 Annual Midwest

Instruction and Computing Symposium.
2012;1-8.

10. Prasanna M, Chandran KR, Suberi DB.
Automatic test case generation for UML
class diagram using data flow approach.
Academia Education. 2011;1-7.

11. Panthi V, Mohapatra DP. Automatic test
case generation using sequence diagram.
Proceedings of ICAdC, AISC 174, Springer
Berlin Heidelberg. 2013;277-284.

12. Panthi V, Mohapatra DP. Automatic test
case generation using sequence diagram.
International Journal of Applied Information
Systems (IJAIS), Foundation of Computer
Science FCS. 2012;2(4):22-29.

13. Fraikin F, Leonhardt T. SeDiTeC – Testing
based on sequence diagrams. ASE '02
Proceedings of the 17

th
 IEEE International

Conference on Automated Software
Engineering. 2000;261-266.

14. Anbunathan R, Basu A. Dataflow test case
generation from UML class diagrams.
Computational Intelligence and Computing
Research (ICCIC), IEEE International
Conference. 2013;1-9.

15. Alhroob A, Dahal K, Hossain A. Automatic
test cases generation from software
specifications modules. Journal of e-
Informatica Software Engineering. 2010;
4(1):109-121.

16. Weißleder S, Sokenou D. Automatic test
case generation from UML models and
OCL expressions. Conference on Software
Engineering in München; 2008.

Available:http://citeseerx.ist.psu.edu/viewd
oc/summary?

DOI: 10.1.1.541.485

17. Li Z, Maibaum T. An approach to
integration testing of object-oriented
programs. Seventh International Confer-
ence on Quality Software (QSIC ’07), IEEE.
2007;268-273.

18. Verma A. Automated Test case generation
using UML diagrams based on behavior.
International Journal of Innovations in
Engineering and Technology (IJIET).
2014;4(1):31-39.

19. Albert, et al. Generating operation
specifications from UML class diagrams: A
model transformation approach. Data and
Knowledge Engineering, ELSEVIER.
2011;70:365-389.

20. Sawant V, Shah K. Automatic generation
of test cases from UML models.
International Conference on Technology
Systems and Management (ICTSM),
Proceedings published by International
Journal of Computer Applications (IJCA)
IEEE society. 2011;7-10.

21. Sharma A, Singh M. Generation of
automated test cases using UML modeling.
International Journal of Engineering

Shah et al.; BJAST, 15(3): 1-12, 2016; Article no.BJAST.24860

12

Research and Technology. 2013;2(4):
1833-1835.

22. Shanthi AVK, Mohankumar DRG.
Automated test cases generation for object
oriented software. Indian Journal of
Computer Science and Engineering
(IJCSE); 2011.
Available:http://citeseerx.ist.psu.edu/viewd
oc/download?
DOI: 10.1.1.300.9789&rep=rep1&type=pdf

23. Name Withheld. Automatically generating
test cases using uml structure diagram.
University of Delaware, Newark, USA.
2009;1-7.
Available:http://citeseerx.ist.psu.edu/viewd
oc/summary?
DOI: 10.1.1.170.1937

24. Mondal SK, Tahbildar H. Automated test
data generation using fuzzy logic-genetic
algorithm hybridization system for class
testing of object oriented programming.
International Journal of Soft Computing
and Engineering (IJSCE). 2013;3(5).

25. Asthana S, Tripathi S, Singh SK. A novel
approach to generate test cases using
class and sequence diagrams. Springer-
Verlag Berlin Heidelberg Contemporary
Computing Communications in Computer
and Information Science. 2010;95:155-
167.

26. Kaur P, Kaur R. Approaches for generating
test cases automatically to test the
software. International Journal of
Engineering and Advanced Technology
(IJEAT). 2013;2(3):191-193.

27. Biswal BN, Nanda P, Mohapatra DP. A
novel approach for scenario-based test
case generation. International Conference
on Information Technology (ICIT), IEEE
Society. 2008;244-247.

28. Dinh-Trong TT, Ghosh S, France RB. A
systematic approach to generate inputs to
test UML design models. Software
Reliability Engineering, ISSRE '06. 17th
International Symposium, IEEE Society.
2006;95-104.

© 2016 Shah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/13897

