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Abstract

In this study, we applied the approach of collocation and interpolation to develop a new fourth
order continuous one-third hybrid block method for the solutions of general second order initial
value problems of ordinary differential equations. Three discrete schemes were derived from
the continuous schemes. The discrete method was analyzed based on the properties of linear
multistep methods and the method is found to be zero-stable, consistent and convergent.
We reported an improved performance of the new method over the existing methods in the
literature by solving four numerical examples and the approximate solutions obtained confirmed
the superiority of our new developed scheme when compared with some latest existing approaches.
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1 Introduction

The general second order initial value problems of ordinary differential equations is given as follow:

y′′ = f(x, y, y′), xϵ[a, b], y(x0) = y0, y′(x0) = z0, (1.1)

where x0, is the initial point, y0 is the solution at x0, f is continuous function within the close
interval ([a, b]).

Many researchers have solved equation (1.1) conventionally by reducing it to a system of first order
ordinary differential equations before they could be able to give solution to the problem. The
disadvantages of this techniques had been presented by many scholars among them are [1], [2], [3]
and [4].

Several approaches were also reported in the literature for solving equation (1.1) directly without
changing it to a system of first order differential equations. For example, [5], [6], [7], [8], [9], [10]
and [11] applied linear multistep methods, particularly an implicit methods to solve equation (1.1)
directly but with the rigor of developing separate predictors are needed which reduced the accuracy
of this method.

Different authors such as [12], [13] [14], [15], [16], [17] and [18] have applied hybrid methods to solve
equation (1.1) but their solutions have lower order of accuracy.

The main aim of this paper is to develop block method that gives solution to second order Initial
Value Problems (IVP) directly without reducing to systems of first order ordinary differential
equation and the objectives are stated below:

1. To develop a continuous implicit scheme that give solutions to second order differential
equation.

2. To derive discrete scheme from the continuous implicit scheme.

3. To develop a block that solves second order differential equations.

4. To analyze the basic properties of the develop block which include consistency, zero stability,
convergence, order and error constant.

In order to achieve the aim and objectives stated above, we shall interpolate, collocate and evaluate
a power series approximate solution at some chosen grid and off grid points to generate an implicit
continuous hybrid multistep method and we will use the new proposed method to give solutions to
any problems in form of equation (1.1).

2 The Derivation of a New One-Third Step Method

In this section, we use the simple power series as an approximate solution to be of the form:

Y (x) =

i+c−1∑
j=0

ajx
j , (2.1)

where c represents collocation point and c is the interpolation point.

The second derivative of equation (2.1) gives

Y ′′(x) =

i+c−1∑
j=0

ajj(j − 1)xj−2 = f(x, y, y′). (2.2)
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Equations (2.1) and (2.2) are interpolated and collocated at the points xn+i, i = 0, 2
9
and xn+c, c =

0, 1
9
, 2
9
, and 1

3
to get a system of equation of the form

AX = B, (2.3)

where A = [a0, a1, a2, a3, a4, a5]
T , B =

[
yn, yn+ 2

9
, fn, fn+ 1

9
, fn+ 2

9
, fn+ 1

3

]T
and

X =



1 xn x2
n x3

n x4
n x5

n

1 xn+ 2
9

x2
n+ 2

9

x3
n+ 2

9

x4
n+ 2

9

x5
n+ 2

9

0 0 2 6xn 12x2
n 20x3

n

0 0 2 6xn+ 1
9

12x2
n+ 1

9

20x3
n+ 1

9

0 0 2 6xn+ 2
9

12x2
n+ 2

9

20x3
n+ 2

9

0 0 2 6xn+ 1
3

12x2
n+ 1

3

20x3
n+ 1

3


By Simplifying some notation in equation (2.3) and solve for a′

js, j = 0, 1, 2, 3, 4 and 5 and
substituting the value of a′

js into the equation (2.1) gives a continuous implicit hybrid multistep
method of the form :

Y (x) = α0(x)yn + α 2
9
(x)yn+ 2

9
+ h2

 1
3∑

j=0

βj(x)fn+j

 , (2.4)

where j = 0, 1
9
, 2
9
, and 1

3
, αj and βj represent continuous coefficients, yn+j = y (xn + jh) represents

numerical solution of the analytical solution at the point xn+j and fn+j = f
(
xn+j , yn+j , y

′
n+j

)
.

Using the transformation

p =
(x− xn)

h
. (2.5)

The coefficients αj and βj are given as :

α0(p) = 1− 9

2
p

α 2
9
(p) =

9

2
p

β0(p) = − 1

3240
h2p

(
19 683p4 − 21 870p3 + 8910p2 − 1620p+ 112

)
β 1

9
(p) =

1

1080
h2p

(
19 683p4 − 18 225p3 + 4860p2 − 88

)
β 2

9
(p) = − 1

1080
h2p

(
19 683p4 − 14 580p3 + 2430p2 − 8

)
β 1

3
(p) =

1

3240
h2p

(
19 683p4 − 10 935p3 + 1620p2 − 8

)
.

(2.6)

Evaluating equation (2.6) at p = 1
9
and p = 1

3
, we get

yn+ 1
9
− 1

2
yn+ 2

9
− 1

2
yn =

−1

1944
h2

(
fn + 10fn+ 1

9
+ fn+ 2

9

)
, (2.7)

yn+ 1
3
− 3

2
yn+ 2

9
+

1

2
yn =

1

1944
h2

(
fn + 2fn+ 1

3
+ 12fn+ 1

9
+ 21fn+ 2

9

)
. (2.8)
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The first derivative of the equation (2.6) gives

α′
0(p) = − 9

2h

α′
2
9
(p) =

9

2h

β′
0(p) = − 1

3240
h
(
−3240p+ 26730p2 − 87480p3 + 98415p4 + 112

)
β′

1
9
(p) =

1

1080
h
(
14580p2 − 72900p3 + 98 415p4 − 88

)
β′

2
9
(p) = − 1

1080
h
(
7290p2 − 58320p3 + 98415p4 − 8

)
β′

1
3
(p) =

1

3240
h
(
4860p2 − 43740p3 + 98415p4 − 8

)
.

(2.9)

By evaluating equation (2.9) at points p = 0, 1
9
, 2
9
and 1

3
, we obtain

hy
′
n =− 9

2
yn +

9

2
yn+ 2

9
− 1

405
h2

(
14fn + fn+ 1

3
+ 33fn+ 1

9
− 3fn+ 2

9

)
, (2.10)

hy
′

n+ 1
9
=− 9

2
yn +

9

2
yn+ 2

9
+

1

3240
h2

(
23fn + 7fn+ 1

3
+ 21fn+ 1

9
− 51fn+ 2

9

)
, (2.11)

hy
′

n+ 2
9
=− 9

2
yn +

9

2
yn+ 2

9
+

1

405
h2

(
fn − fn+ 1

3
+ 27fn+ 1

9
+ 18fn+ 2

9

)
, (2.12)

hy
′

n+ 1
3
=− 9

2
yn +

9

2
yn+ 2

9
+

1

3240
h2

(
23fn + 127fn+ 1

3
+ 141fn+ 1

9
+ 429fn+ 2

9

)
. (2.13)

3 Derivation of Block for a New One-Third Step Hybrid
Method

In order to get block methods, the derivatives of the block method and to test for zero stability,
we combine equations (2.7), (2.8) and (2.10) and we use their coefficients to form a block of the form

0 − 3
2

1

1 − 1
2

0

0 − 9
2

0




yn+ 1
9

yn+ 2
9

yn+ 1
3

 =


0 0 − 1

2

0 0 1
2

0 0 − 9
2




yn− 1
9

yn− 2
9

yn

+ h


0 0 0

0 0 0

0 0 −1




y′
n− 1

9

y′
n− 2

9

y′
n



+h2


0 0 1

1944

0 0 − 1
1944

0 0 − 14
405


 fn− 1

9

fn− 2
9

fn

+ h2


12

1944
21

1944
2

1944

− 10
1944

− 1
1944

0

− 33
405

3
405

− 1
405




fn+ 1
9

fn+ 2
9

fn+ 1
3


(3.1)

After normalizing the equation (3.1), we obtain

 1 0 0
0 1 0
0 0 1




yn+ 1
9

yn+ 2
9

yn+ 1
3

 =

 0 0 1
0 0 1
0 0 1




yn− 1
9

yn− 2
9

yn

+ h


0 0 1

9

0 0 2
9

0 0 1
3




y′
n− 1

9

y′
n− 2

9

y′
n



+h2


0 0 97

29 160

0 0 28
3645

0 0 13
1080




fn− 1
9

fn− 2
9

fn

+ h2


19

4860
− 13

9720
1

3645

22
1215

− 2
1215

2
3645

1
30

1
120

1
540




fn+ 1
9

fn+ 2
9

fn+ 1
3

 .

(3.2)
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By rewriting equation (3.2) explicitly, we get:

yn+ 1
9
=yn +

1

9
hy

′
n +

1

29 160
h2

(
97fn + 8fn+ 1

3
+ 114fn+ 1

9
− 39fn+ 2

9

)
, (3.3)

yn+ 2
9
=yn +

2

9
hy

′
n +

2

3645
h2

(
14fn + fn+ 1

3
+ 33fn+ 1

9
− 3fn+ 2

9

)
, (3.4)

yn+ 1
3
=yn +

1

9
hy

′
n +

1

1080
h2

(
13fn + 2fn+ 1

3
+ 36fn+ 1

9
+ 9fn+ 2

9

)
. (3.5)

Substituting yn+ 2
9
of equation (3.4) into the equations (2.11), (2.12) and (2.13) gives

y
′

n+ 1
9
=y

′
n +

1

216
h
(
9fn + fn+ 1

3
+ 19fn+ 1

9
− 5fn+ 2

9

)
, (3.6)

y
′

n+ 2
9
=y

′
n +

1

27
h
(
fn + 4fn+ 1

9
+ fn+ 2

9

)
, (3.7)

y
′

n+ 1
3
=y

′
n +

1

24
h
(
fn + fn+ 1

3
+ 3fn+ 1

9
+ 3fn+ 2

9

)
. (3.8)

4 Analysis of the Properties of a New One-Third Step
Method

In this section, we consider the analysis of the basic properties of a new one-third step method
which includes: zero stability, region of absolute stability, order, error constants, consistency and
convergence of the method.

4.1 Order and error constant of the block method

Following the method presented by [19], we define the linear difference operator as follow:

L[y(x);h] =
k∑

j=0

[
αjy (x+ jh)− h2βjy

′′ (x+ jh)
]
. (4.1)

If we assume that y(x) has higher derivatives, we can expand the term in equation (3.4) as a Taylor
series about the point x to get the expansion:

L[y(x);h] = C0y(x) + C1hy
′(x) + C1h

2y′′(x)...+ Cqh
qyq(x), (4.2)

where

Cq =
1

q!

[
k∑

j=1

jqαj − q(q − 1)

k∑
j=1

jq−2βj

]
, where q = 0, 1, 2, ...n. (4.3)

Definition: The linear difference operator and the associated block method are said to be of
order p if C0 = C1 = ... = Cp = Cp+1 = 0, Cp+2 ̸= 0 . Cp+2 is called the error constant.

By Carrying out Taylor series expansion on equations (3.3), (3.4), (3.5), (3.6), (3.7) and (3.8)
to get the order of our new proposed block methods as (4, 4, 4, 4, 4, 4) and error constants as(
− 7

255091680
,− 1

15943230
,− 1

9447840
,− 19

42515280
,− 19

5314410
,− 19

1574640

)
.

4.2 Zero stability of the block method

In order to test for zero stability of the block method, we consider the matrix difference equation
of the form:

P 0Ym+1 = P 1Ym + h2 [Q0Fm+1 +Q1Fm + hR1△m

]
, (4.4)

5
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where Ym+1 =
[
yn+ 1

9
, ..., yn+ 1

3

]T
, Ym =

[
yn− 1

9
, ..., yn

]T
, Fm+1 =

[
fn+ 1

9
, ..., fn+ 1

3

]T
, Fm =[

fn− 1
9
, ..., fn

]T
, △m =

[
kn− 1

9
, ..., kn

]T
, m = 0, 1, .... The matrices P 0, P 1, Q0, Q1 and R0 are

the coefficients of equation (3.2) which defined as follows:

P 0 =

 1 0 0
0 1 0
0 0 1


P 1 =

 0 0 1
0 0 1
0 0 1



Q0 =


19

4860
− 13

9720
1

3645

22
1215

− 2
1215

2
3645

1
30

1
120

1
540



Q1 =


0 0 97

3240

0 0 28
405

0 0 13
120



R1 =


0 0 1

9

0 0 2
9

0 0 1
3

 .

A block method is said to be zero stable if the roots
∣∣∣[λP (0) − P (1)

]∣∣∣ = 0

To show that
∣∣∣[λP (0) − P (1)

]∣∣∣ = 0 , we have:

∣∣∣[λP (0) − P (1)
]∣∣∣ =

∣∣∣∣∣∣∣∣
λ


1 0 0

0 1 0

0 0 1

−


0 0 1

0 0 1

0 0 1



∣∣∣∣∣∣∣∣ = 0

This implies that λ3 − λ2 = 0, λ = 0, 0, 1

Following Jator [3], the new developed one-step block method is zero-stable, since root (λ) has
modulus less than or equal to one and |λ| = 1 is simple.

4.3 Region of absolute stability of the block method

By following Ibijola et al. [20], we formulate the stability matrix as follow:

M(z) = V + zB(M − zA)−1U, (4.5)

and the stability function
p(η, z) = det(ηI −M(z)). (4.6)

Hence, we represent the block method of the equation (3.2) in form of
Y

−−−

Yi+1

 =


A U

−−− −−− −−−

B V




h2 f (y)

−−−

Yi−1

 . (4.7)

6
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A =


0 0 0 0

97
29160

19
4860

− 13
9720

1
3645

28
3645

22
1215

− 2
1215

2
3645

13
1080

1
30

1
20

1
540



B =

[
97

29160
19

4860
− 13

9720
1

3645

28
3645

22
1215

− 2
1215

2
3645

]
V =

[
0 1

0 1

]
U =


0 1

0 1

0 1

0 1

 .

Y =



yn

yn+ 1
9

yn+ 2
9

yn+ 1
3

 f(y) =



fn

fn+ 1
9

fn+ 2
9

fn+ 1
3

 Yi−1 =

[
yn+ 1

9

yn

]
Yi+1 =

 yn+ 1
9

yn+ 1
3



(4.8)

M =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 I =

[
1 0

0 1

]
. (4.9)

The entries of the matrices A, B, U , V , M and I are substituted into the equations (4.5) and (4.6)
to get stability polynomial of the one-third step method which is then plotted in Matlab (R2012a)
environment to generate the needed absolute stability region of our new methods as we can see in
the figure below.

Fig. 1. Region of absolute stability of our new methods

7
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From the figure above, it can be seen very clearly that our new method is A-Stable and the plot
covers much region of the complex plane zϵCn.

4.4 Consistency of the new method

According to Areo and Omojola [21], the linear hybrid multistep method is said to be consistent if
all the following four conditions are satisfied

i the order of the method must be greater than or equal to one i.e. (p ≥ 1).

ii
∑k

j=0 αj = 0, where α′
js are the coefficients of the first characteristics polynomials ρ(r)

iii ρ(r) = ρ′(r) = 0 for r = 1

iv ρ′′(r) = 2!σ(r) for r = 1

where, ρ(r) and σ(r) are the first and second characteristics polynomials of our method. Following
Lambert [22], the first condition is a sufficient condition for the associated block method to be
consistent. Our method is order p = 4 ≥ 1. Therefore the block is consistent.

4.5 Convergence of the new method

According to Jator [3], the two sufficient conditions for a linear hybrid multistep methods to be
convergent are to be zero-stable and consistent. Since the two conditions are satisfied, we conclude
that the new developed method converges.

5 Numerical Examples

In this section, we deal with the implementation of the block method in solving initial value problems
(IVP) of second order ordinary differential equations. The method is coded in Matlab (R2012a)
version environment using window 8.1 as an operating system. The new developed method is tested
on some problems to determine the performance of the new proposed schemes and our solutions are
compared with the results of other scholars in the literature. The following problems are chosen as
a test problems.

Problem 1: We consider a test problem which also answered by Badmus [23].

y′′ = 3y′ + 8e2x with initial condition y′(0) = 1, y(0) = 1, h = 0.005

Exact solution:

y(x) = −4e2x + 3e3x + 2

Table 1. This table shows the results and comparison of test problem 1

X-value Exact Result Computed Result Error in our Method Error in [23] (k = 3)] Time
0.0050 1.00513852551049 1.00513852427561 1.2349e-09 1.5800E-07 0.0230
0.0100 1.01055824175353 1.01055823906303 2.6905e-09 3.1760E-06 0.0306
0.0150 1.01626544391208 1.01626543953824 4.3738e-09 1.2941E-05 0.0389
0.0200 1.02226654286653 1.02226653657447 6.2921e-09 1.9323E-05 0.0743
0.0250 1.02856806714980 1.02856805818008 8.9697e-09 4.0181E-05 0.0822
0.0300 1.03517666493419 1.03517665407164 1.0863e-08 2.2075E-05 0.0923
0.0400 1.04934228403829 1.04934226757564 1.6463e-08 8.9916E-05 0.1206

8
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Problem 2: We also consider test problem which was also solved by Badmus [23].

y′′ = −6y′

x
− 4y

x2
with initial condition y′(1) = 1, y(1) = 1, h =

0.1

32
, x > 0

Exact solution:
5

3x
− 2

3x4
, x > 0.

Table 2. This table shows the results and comparison of test problem 2

X-value Exact Result Computed Result Error in our Method Error in [23] (k = 3) Time
1.003125 1.00307652585770 1.00307652589082 3.3125e-11 8.3000E-08 0.0254
1.006250 1.00605750308352 1.00605750323188 1.4837e-10 1.6000E-06 0.0346
1.009375 1.00894499508884 1.00894499542795 3.3911e-10 6.6380E-06 0.0437
1.012500 1.01174101816799 1.01174101876995 6.0196e-10 9.4910E-06 0.0532
1.015625 1.01444754268642 1.01444754362007 9.3365e-10 1.9535E-06 0.0617
1.018750 1.01706649423567 1.01706649556671 1.3310e-09 9.4160E-06 0.0712
1.021875 1.01959975475629 1.01959975654736 1.7911e-09 4.6505E-05 0.0812
1.025000 1.02204916362943 1.02204916594028 2.3108e-09 4.7122E-05 0.0908
1.028125 1.02441651873841 1.02441652162594 2.8875e-09 1.86926E-04 0.1011
1.031250 1.02670357750081 1.02670358101925 3.5184e-09 4.43321E-04 0.1103

Problem 3: We consider a specially oscillatory test problem which was also solved by Awoyemi
et al. [24].

y′′ = −λy we take , λ = 2, with initial condition y′(0) = 2, y(0) = 1, h = 0.01

Exact solution:
y(x) = cos2x+ sin2x.

Table 3. This table shows the results and comparison of test problem 3

X-value Exact Result Computed Result Error in our Method Error in [24] Time
0.0100 1.01979867335991 1.01979867335983 8.4599e-14 2.6577E-11 0.0275
0.0200 1.03918944084761 1.03918944084726 3.4861e-13 8.4761E-10 0.0368
0.0300 1.05816454641465 1.05816454641386 7.8870e-13 6.4146E-09 0.0460
0.0400 1.07671640027179 1.07671640027039 1.4004e-12 6.7071E-09 0.0561
0.0500 1.09483758192485 1.09483758192267 2.1791e-12 7.1209E-09 0.0658
0.0600 1.11252084314279 1.11252084313966 3.1208e-12 7.6530E-09 0.0758
0.0700 1.12975911085687 1.12975911085265 4.2211e-12 8.3601E-09 0.0864
0.0800 1.14654548998987 1.14654548998440 5.4761e-12 9.0592E-09 0.0959
0.0900 1.16287326621395 1.16287326620707 6.8801e-12 9.9268E-09 0.1059
0.1000 1.17873590863630 1.17873590862787 8.4293e-12 1.0899E-08 0.1161

Problem 4: We consider a test problem which also answered by Anake et al. [12].

y′′ =
2y′

x
+xex−y

(
1 +

2

x2

)
with initial condition y′

(π
2

)
=

π

4

(
8 + e

π
2

)
, y

(π
2

)
= 4−π+

1

4

(
e

π
2

)
(π + 2) ,

h = 0.003125

Exact solution:

y(x) = 2xcosx+ 4xsinx+
1

2
xex.
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Table 4. This table shows the results and comparison of test problem 4

X-value Exact Result Computed Result Error in our Method Error in [12] Time
1.7000 10.95785118097658 10.95785118024888 7.2770e-10 0.67798365E-06 0.3782
1.8000 11.63820762976944 11.63820762677736 2.9921e-09 0.77776457E-06 0.6323
1.9000 12.31472912025427 12.31472911259183 7.6624e-09 0.83164688E-06 0.9318
2.0000 12.99859200531184 12.99859198969727 1.5615e-08 0.81943241E-06 1.3239
2.1000 13.70481572693061 13.70481569919164 2.7739e-08 0.72051040E-06 1.6102
2.2000 14.45259109075712 14.45259104583181 4.4925e-08 0.51423437E-06 1.9050
2.3000 15.26561176327884 15.26561169523377 6.8045e-08 0.18028640E-06 2.3457
2.4000 16.17241142639471 16.17241132845798 9.7937e-08 0.30097603E-06 2.6602
2.5000 17.20670978769539 17.20670965230368 1.3539e-07 0.94819480E-06 3.0036
2.6000 18.40777146833077 18.40777128718930 1.8114e-07 0.17787125E-06 3.3458

6 Discussion of the Results

In this paper, we have used the procedure of collocation and interpolation to develop a uniform
fourth order continuous one-third hybrid block method for the direct solutions of second order initial
value problems of ordinary differential equations. In the Table 3 and Table 4, it is shown that our
new method is more accurate than the methods proposed by Awoyemi, et al. [24] and Anake, et
al. [12] which are of the same order four. It has been seen from Table 1 and Table 2 that our new
method yield better results than the results presented by Badmus [23], despite the high order of
his method, our new block method of order four are more efficient and accurate than his method
of order eight.

7 Conclusion

We have proposed a new block method that give solutions to second order initial value problems
directly without reducing to a system of first order ordinary differential equation. We used our new
developed method to solve some numerical problems and the results obtained were significantly
better when compared with those in the tables 1, 2, 3 and 4. Also, by implementing and running
code for our new developed block method in Matlab environment verified that our method work
very fast, since the running times for the solved problems are less than four seconds. We conclude
that the new method gives better approximate solutions than some existing methods.
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