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Abstract

The large-scale features of the solar wind are examined in order to predict small-scale features of turbulence in
unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number
Re, varies, and then how this quantity influences observable statistical properties, including intermittency
properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings is that the kurtosis,
of the small-scale magnetic field increments, will increase with increasing Re. Simple theoretical arguments as well
as Voyager observations indicate that effective interplanetary turbulence Re decreases with increasing heliocentric
distance. The decrease of scale-dependent magnetic increment kurtosis with increasing heliocentric distance is
verified using a newly refined Voyager magnetic field data set. We argue that these scalings continue to much
smaller heliocentric distances approaching the Alfvén critical region, motivating a prediction that the Parker Solar
Probe spacecraft will observe increased magnetic field intermittency, stronger current sheets, and more localized
dissipation, as its perihelion approaches the critical regions. Similar arguments should be applicable to turbulence
in other expanding astrophysical plasmas.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Heliosphere (711); Space plasmas (1544);
Solar wind (1534); Plasma astrophysics (1261)

1. Introduction

Theories of turbulence, in particular Kolmogorov theory
(Kolmogorov 1941a, 1941b, 1962; Frisch 1996) and its many
variations, are frequently applied to understanding spacecraft
observations in the interplanetary plasma (Horbury et al. 2008;
Bruno & Carbone 2013; Chen 2016). In most instances these
theories are invoked, either explicitly or implicitly, in a form
appropriate to the regime of universality conjectured to apply in
the limit of infinite Re (Kolmogorov 1941a, 1941b, 1962).
However, it is well known based on experimental data,
especially in hydrodynamics (Pope 2000), that the dimension-
less Re, at attainable finite values, controls scaling of numerous
statistical quantities, including the approach to an asymptotic
dissipation rate and the scaling of higher-order moments or
increments. There is substantial evidence mainly based on
simulations that magnetohydrodynamics (MHD) and other
plasma models exhibit analogous systematic variations with
Reynolds-like numbers (Linkmann et al. 2015; Bandyopad-
hyay et al. 2018). The above studies were focused on the
scaling of dissipation with Reynolds number. Here we are
interested in a related but distinct quantity, the kurtosis of
magnetic field at very small increments. Although it has been
shown that the dissipation saturates with Re, it is not clear if
kurtosis also saturates. For the hydrodynamic case, see Van
Atta & Antonia (1980). No such study exists for plasmas at
large Reas far as we are aware. Here we examine turbulence in
the solar wind, quantifying variation of a specific intermittency
parameter, the kurtosis of magnetic field increments, as the
effective Reis varied. This is made possible by the wide range
of effective Reencountered by Voyager as we show below.

In particular we are interested in the following question: how
can scaling of Voyager observations of interplanetary turbu-
lence with Re inform predictions about plasma turbulence in a
broader context? The answer to this question is important not
only to anticipate what will be observed by spacecraft such as

Parker Solar Probe as well as Solar Orbiter, but also for
observation of expanding plasmas in diverse astrophysical
situations. We explore this possibility here, with specific
predictions for Parker Solar Probe (Fox et al. 2016), by
employing Voyager magnetic field observations (Matthaeus &
Goldstein 1982; Ness & Burlaga 2001). The data allow
examination of the behavior of effective turbulence Reynolds
number and its possible effect on magnetic field fluctuations
over a wide range of heliocentric distances. In a novel
examination of this putative connection, we find that the
Redecreases, and the kurtosis at a fixed physical scale
decreases with increasing distance, with associated expecta-
tions concerning the roughness of the magnetic field. Extra-
polating the observed scaling to lower heliocentric distances
motivates the prediction that the spatial concentration of
coherent structures increases approaching the Alfvén critical
region from outside, an effect that Parker Solar Probe should
soon measure. This Letter provides theoretical and observation
details that motivate this prediction, and discusses further
applications. In particular, the notion of Reneeds to be
considered with care, as kinetic plasmas such as the solar
wind do not have a well-defined viscosity or resistivity that can
be used to define Re. Instead one needs to consider an alternate
interpretation of Re, related to the bandwidth available, for the
cascade to proceed. We now discuss these definitions of Re.

2. Effective Reynolds Number

In hydrodynamics the value of kinematic viscosity ν enters
into the definition of (large-scale) Reynolds number Re=uL/
ν, for turbulence speed u, and energy containing (outer) scale L.
For the weakly collisional plasma found in the solar wind, ν is
meaningless, and an extension of the notion of Rerequires a
focus on its intended physical implications (Matthaeus et al.
2008). In (magneto)hydrodynamics the Reynolds number
encompasses two related but distinct elements: dissipation (in
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the form of ν or η), and the bandwidth available for turbulence
to populate various scales. The first one is the notion of the
relative importance of dissipative and convective processes.
High Reat the outer scale L implies absence of dissipation,
while at the Kolmogorov dissipation scale η the Rebecomes
unity. In fact, Rerelates the outer (correlation) scale L and
inner (Kolmogorov dissipation) scale η as ( )h= LRe 4 3. In
this second meaning, high Re implies a large bandwidth,
perhaps many decades of scale, over which the cascade
proceeds. The latter definition is more relevant for kinetic
plasmas, e.g., the solar wind, where the notion of ν or η can not
be defined. However, an inner scale, marking the end of the
inertial range, is well defined and is typically ∼di.

Of course in hydrodynamics, large turbulence amplitudes at
scale L act to push the Kolmogorov scale η to smaller values.
This connection between the first and second meaning of Re
will not be available for weakly collisional plasmas. However,
the effective Reynolds number as a measure of the available
bandwidth is of central relevance to the emergence of
intermittency, as the production of phase coherence and
structures depends on progressive effects of the cascade acting
over a wide range of scales (Frisch et al. 1983; Wan et al.
2009). This is the underlying reason that kurtosis is expected to
increase with Reynolds number (Sreenivasan & Antonia 1997).
Hence, for a weakly collisional plasma, the Kolmogorov
dissipation scale η may be reasonably replaced by the ion
inertial scale di (or the thermal gyroradius if plasma beta
becomes large), given that the observed inertial range at MHD
scales terminates at the largest proton kinetic scale encountered
by the direct energy cascade (Leamon et al. 1998; Chen et al.
2014). Accordingly, we adopt a definition of effective
Reynolds number in terms of the system size L/di, or size of
the inertial range, as Re=(L/di)

4/3. In this study we intend to
investigate whether this definition of Rehas implications for
plasma intermittency that are analogous to what is observed in
hydrodynamic turbulence (Pope 2000). This connection has not
been previously examined as far as we are aware.

Below we will employ this definition of effective Reand
examine its behavior between 1 and 10 au in Voyager magnetic
field data. The observational finding, backed by an elementary
theoretical assessment, is that Re decreases with increasing
heliocentric distance in the solar wind. Thus, even as the wind
expands to fill the available volume, and in this sense becomes
larger, the “system size” from the perspective of turbulence is
decreasing.

Based on the determination of the radial behavior of Re, the
next step will be an assessment of the behavior of a normalized
fourth-order moment of the magnetic fluctuations, and its
scaling with the Reynolds number. Kurtosis, the normalized
fourth moment, measures the roughness of the magnetic field
and appearance of coherent structures. The kurtosis of
increments of a magnetic field Cartesian component time
series b(t) with time lag τ is defined as

( ) ( ) ( )k t t t= áD ñ áD ñb b4 2 2 where
( ) ( ) ( )t tD = + -b b t b t is the increment at a scale τ.

Following typical practice in solar wind studies, we will
exploit the highly supersonic and super-Alfvénic flow at speed
Vsw to interpret statistical properties at time lags τ with spatial
lags r=−Vswτ, the so-called Taylor hypothesis. The use of
Taylor’s hypothesis has been shown to work well for first- and
second-order statistics down to the ion inertial scale and
smaller (Chhiber et al. 2018).

3. Theoretical and Observational Expectations

The expected variation of Rewith heliocentric distance may
be anticipated using simple arguments as follows: a von
Karman–Howarth phenomenology has been shown to work
well for explaining radial variations of turbulence and plasma
properties of the solar wind, including correlation length and
proton temperature (Zank et al. 1996; Breech et al. 2008).
Temporarily ignoring expansion, a relevant pair of equations
(Matthaeus et al. 1996) is = -dZ

dt

Z

L

1

2

2 3

and = ZdL

dt
, where Z is

turbulence amplitude and L the correlation scale. However,
under a reasonable set of assumptions (Breech et al. 2008) the
expansion effects drop out of the evolution equation for the
correlation scale L. The solution behaves as ( ) ~L t t , which
when employing the Taylor hypothesis becomes L(R)∼R1/2,
where here R is heliocentric distance. Meanwhile, to a
reasonable approximation the proton number density in the
solar wind falls off as n(R)∼R−2, and by definition the proton
inertial scale in the expanding solar wind behaves as

( ) ~ ~-d n n Ri
1 2 . Therefore, the Remay behave approxi-

mately as Re=(L/di)
4/3∼(R1/2/R)4/3∼R−2/3.

On the observational side, it is well established that the
correlation scale varies with heliocentric distance (Klein et al.
1992; Zank et al. 1996). This variation is found (Ruiz et al.
2014) to be approximately ∼R0.44 in a mixed latitude ensemble,
although the results did not have a strong dependence on
plasma beta.
Turning to the kurtosis at small spatial lags, we find very

little in the MHD or plasma literature concerning expectations
for its behavior as Reis varied. There are studies at fixed (or,
uncontrolled) Re, of the scale-dependent kurtosis of primitive
variables in simulations, and in solar wind and magnetosheath
observations (Sorriso-Valvo et al. 1999; Macek et al. 2017;
Chhiber et al. 2018). Some insight into scaling of kurtosis at
kinetic scales has been obtained in relatively low Rekinetic
simulations (Parashar et al. 2015). There are also studies of
multifractal scalings, but again, as far as we are aware, always
without regard for Reor its variation. In hydrodynamics the
situation is more advanced both in experiments and in theory.
The small-scale kurtosis of longitudinal increments should at
zero separation approach the kurtosis of longitudinal spatial
derivatives. A well-studied set of hydrodynamic experiments
examined the dependence of these velocity derivative kurtoses
on Re (Van Atta & Antonia 1980). The best fits of these data to
the variation of κ∼Reγ are γ≈0.16–0.2. This nicely
brackets an analytical estimate, based on phenomenological
estimates as well as extensions of Kolmogorov–Obukhov
treatments based on log-normal distributions of increments
(Oboukhov 1962). These theoretical estimates are discussed in
the same reference (Van Atta & Antonia 1980) and lead to, for
example, γ=3μ/4=3/16 when the log-normal intermit-
tency parameter μ takes the value 0.25. Here we intend to
leverage on the variability of solar wind conditions in the
Voyager data set to study such dependences on Rein kinetic
plasmas such as the solar wind. The abovementioned
hydrodynamic expectations anticipate the similar behavior we
find below for solar wind turbulence.

4. Voyager Data and Analysis

The Voyager magnetic field data sets are an excellent choice
for the present study due the wide range of distances,
conditions, and parameters spanned. This extreme variation
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allows for wide variations in Re and hence allows us to study
the variation of average behavior of Re in this system.
Therefore, we use 1.92 s cadence magnetic field vector data
from the Voyager 1 spacecraft. For the present study, we use a
refined data set, explained below, covering the range from 1 au
up to ∼10au.

The publicly available Voyager magnetic field data set, at the
time of this writing, requires additional work to make it useful
for a statistical study. We choose not to remove any transients,
such as shocks and field reversals, as the turbulence parameter
variation provided by these transients is desirable for our
purpose. After the cleanup procedure we employed this
improved subset of Voyager 1MAG data, which will be made
available for other purposes.

One problem with the previously available data is due to the
large data gaps associated with regular lack of telemetry. The
first task we perform is to make the time series uniform by
filling in the missing data points with not-a-numbers (NaNs).
The final time series has ∼60 million data points.

The data available from the NASA–NSSDC also have many
intervals containing “calibration rolls” as well as unexplained
“noise” that need to be removed before any reliable turbulence
statistics can be computed. We clean the data using a series of
techniques. These include application of obvious cutoffs
(−50nT, 50nT), a Hampel filter where the outliers are replaced
with NaNs instead of a median value, and, finally, visual
inspection of high kurtosis regions to identify and filter out
remaining bad data. We describe the technique in detail in a
longer paper (M. Cuesta et al. 2019, in preparation). The final
clean time series has ∼23.27 million data points and ∼37.74
million NaNs representing missing data or discarded bad data.

After the cleaning procedure, we bin the data into 450 bins,
each approximately of 0.02 au. A significant number of these
bins have no physical data points, and some have very few
physical data points. For statistical significance, we exclude
bins with less than 10,000 physical data points from our
analysis. The remaining useful data set comprises 328 bins,
each having >10,000 points. For data quality purposes, we
then compute the kurtosis at a small lag for the data in each bin.
This helps further identify bins with potential bad data points as
κ would be anomalously high for large unphysical disconti-
nuities. Some retained bins contain what appears to be
upstream waves (Smith et al. 1983) or similar plasma activity
that cause κ to attain anomalously small values. We recall that
using single-spacecraft data, we employ increments at very
small time lags, and the Taylor hypothesis, to estimate radial
magnetic field derivatives.

The two-time vector autocorrelation function of magnetic
field is defined as

( ) ( ) · ( )
∣ ( )∣

( )t
t

=
á + ñ

á ñ
b b

b
C

t t

t
, 1R 2

where = - á ñb B B . The outer scale is computed, using the
Taylor frozen-in flow hypothesis, as the scale where the
autocorrelation drops to 1/e. In particular, we estimate the
correlation scale as L=Vswτo where τo is the lag at which the
two-time correlation of the magnetic field decreases to 1/e.
With these definitions, the effective Reynolds number can be

computed as ( )=Re L

d

4 3

i
where di is the ion inertial length

/wc pi , chosen to represent the scale at which the inertial range
terminates. The ion (proton) inertial length is computed in each

bin by appropriate averages of the number density recorded by
the Voyager plasma (PLS) plasma instrument. Note that
choosing the electron inertial length as the inner scale would
simply shift the Reby a constant value.
To approximate the kurtosis of magnetic field derivatives,

we compute increments at the smallest possible physical scale
covered by Voyager. To this effect, we choose Δ∼10di, a
small scale covered by the instrument resolution at 1 au and
beyond. Interestingly, 10di is not too far from the expected
Taylor scale in the solar wind (∼10–30di; Matthaeus et al.
2008).

5. Results

Figure 1 shows the effective Recomputed from the magnetic
field, as a function of heliocentric distance in the 1–10 au
Voyager 1 data set. Blue stars represent the local value of Rein
each of the 328 bins, each approximately 0.02 au wide in
heliocentric distance. Significant variability is present in the Re,
consistent with variable turbulence conditions (Tu &
Marsch 1995), such as stream structure, coronal mass ejections,
etc. There are some bins in which wave activity may modify
the results. To get a better view of the average behavior of Re,
we plot a 15 point running average of the blue stars. A clear
trend for Re to drop with heliocentric distance can be seen. The
elementary estimate of Re∼R−2/3, based on ~L R and
di∼R, is overplotted as a thick red line. We emphasize the
point that this is not a fit of any kind: the average Re follows a
trend similar to the simple theoretical prediction. The
turbulence “system size” or effective Rein the expanding
solar wind in fact decreases with increasing radial distance.
According to the hydrodynamic analogy, a systematic

decrease in Re should be reflected in a decrease in the kurtosis
of increments computed at very small lags. This expectation
would be obtained whenever the turbulence is fully developed,
i.e., it is not too close to its injection or initiation. Having
observed a systematic decrease in Re, we now examine the
small-scale magnetic kurtosis in the same data set as a
surrogate for the kurtosis of the longitudinal magnetic
derivative. We compute the kurtosis at a lag of 10di, where
the distance is computed from time lag, using Taylor’s
hypothesis, using the average radial plasma velocity for the
conversion.

Figure 1. Effective Reynolds number as a function of heliocentric distance.
Blue stars represent the value within a local bin. Black curve is a 15 point
running average of these values. The red line indicates the anticipated decrease
based on the elementary estimate presented in the text.
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Figure 2 shows the kurtosis of the increment of the radial
magnetic field component at the scale 10di as a function of
heliocentric distance. Blue stars show value of kurtosis in each
of the 328 bins, the black curve shows a 15 point running
average, and the red line shows a power-law fit to the data with
an approximate dependence κ∼R−0.86. As expected, the
kurtosis drops for a larger heliocentric distance, along with the
decrease of effective Reynolds number with increasing
distance. Points that have lower kurtosis appear in the same
regions where Re drops. However, these anomalously low
points do not significantly affect the overall conclusion that
both Re and κ decrease systematically with increasing
heliocentric distance.

6. Conclusions

The above study, based on analysis of Voyager 1 magnetic
field data, shows two main results that are established firmly by
the observations. First, (I) the effective Reynolds number, as
defined based on the extent of the inertial range, decreases
systematically in the interplanetary medium between 1 and
10 au. Second (II) the kurtosis of magnetic component
increments computed at the tail end of the inertial rage is also
found to decrease with increasing heliocentric distances.

Potentially interesting physics comes in examining the
relationship between these results. In fact, the reasoning that
connects these two findings may be cast in more than one
framework:

First, one might simply assume that the effective Reis fully
equivalent to the ordinary Re, and then further assert that a
relationship such as the hydrodynamic relation
k ~ ~g mRe Re2 4 also is obtained for a weakly collisional
plasma. As we pointed out earlier, such a scaling can be
obtained on purely empirical grounds. Or, it can be deduced
from Refined Similarity (Kolmogorov 1962), augmented by
Obukhov’s scaling hypothesis (Oboukhov 1962) that para-
meterizes anomalous scaling of increments with L/η (which
here becomes L/di by a separate argument). While this
reasoning may appeal more strongly to formal turbulence
theory, we recall that a Refined Similarity hypothesis has not
been firmly established for a collisionless plasma (although

there have been preliminary discussions of this; Merrifield et al.
2005; Chandran et al. 2015).
A second argument for the relationship of results I and II

rests on understanding how the nonlinearities in turbulence, the
most essential of which are quadratic, give rise dynamically to
the formation of coherent structures. Nonlinear spectral transfer
forms coherent structures, without direct involvement of
dissipation, and progressively at a smaller scale (Frisch et al.
1983; Wan et al. 2009, 2012). This is evidenced, in both ideal
and dissipative MHD, by the monotonic increase in filtered
kurtosis (high pass filtered) at scale ℓ, as the bandpass scale
decreases. Given that transfer is mainly local in scale (Verma
et al. 2005), it follows that an inertial range with greater
bandwidth will incorporate a greater number of octaves of
transfer over which the coherent structures may form and
intensify. Thus, larger systems, i.e., larger L/η or L/di, will
have stronger coherent structures and higher small-scale
kurtosis. But this implies immediately that κ(10di) will
decrease with effective Reas we have defined it. It is
noteworthy that this second line of reasoning takes no explicit
position on the relationship between coherent structures and
dissipation, nor does it assume a refined similarity hypothesis,
in contrast to the first line of reasoning. For this reason we
prefer, at this time, the second track for connecting results I and
II, although we do not doubt that the more formal relationships
may be established more firmly in the future.
Having completed this excursion into the turbulence

theoretic basis for relating I and II, we now may view the
behavior of the kurtosis at 10di as a consequence of the
decrease in effective Re at larger heliocentric radial distance.
Such a connection has interesting implications beyond the
magnetic field observed by Voyager in the outer heliosphere.
One major implication is the potential for extrapolating these

results to other expanding astrophysical plasmas. We would
expect, based on the arguments above, that other systems
engaged in an approximate spherical expansion, with evolving
von Karman turbulence, will also admit a baseline estimate of
effective Rescaling as ~ -Re R 2 3. Turbulence properties that
scale with Re will systematically respond to this scaling,
enabling, in principle, a variety of predictions for expanding
systems such as galactic winds, supernova remnants, etc. The
decrease in kurtosis, or inverse filling factor, of coherent
current structures is only one such prediction.
Closer to home, we are tempted to extrapolate the present

results inward, toward the corona, but outside the Alfvén
critical region. Such an extrapolation finds some partial support
in correlation length scalings in radius from Helios and Ulysses
(Ruiz et al. 2014) that behave as L∼R0.43 and density scalings
(McComas et al. 2000) that remain close to n∼R−2 every-
where in the heliosphere on average. Encouraged by this, one
may extrapolate that effective Re increases moving toward the
inner interplanetary region where the magnetic control imposed
by the corona gives way to the turbulent solar wind (DeForest
et al. 2016). Approaching this region from outside, we expect
that as Re increases, the kurtosis at small scales (multiples of
di) will increase. This becomes, in effect a prediction for the
recently launched Parker Solar Probe and the upcoming Solar
Orbiter spacecraft: as these missions explore the heliosphere
approaching the Alfvén critical region, we expect an increase in
the frequency and intensity of magnetic discontinuities and
current sheets. This should be indicted by higher-order statistics
such as the kurtosis at small scales. There may be associated

Figure 2. Kurtosis of ΔBR at a lag of 10di. Blue stars represent the value inside
a local bin; black curve is a 15 point running average of these values.
Horizontal blue line represents the kurtosis for Gaussian noise. Red line is a
power-law fit to the points as there is yet no theory for how kurtosis should
vary with Rein a plasma.
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implications such as stronger concentrations of dissipation and
heating (Osman et al. 2012), a possibility we have not pursued
here. There are reasons to believe that the turbulence is
sustained well below the the Alfvén critical surface (Adhikari
et al. 2019), but the nature of turbulence and its driving differs
in that region (the corona). We do not attempt to extend our
prediction beyond this point at present. As a step toward
supporting the present prediction, we are currently processing
Helios data to confirm this effect down to 0.3 au. Helios data
have a time cadence much longer than the expected di, and
hence the predictions for very small-scale increments can not
be computed using Helios. Hence, these results will be limited
to the middle of inertial range kurtoses. Our Helios results will
be presented in a separate publication, as we anxiously await
the relevant Parker Solar Probe analyses. We may anticipate
that there will be further interesting consequences of the
systematic variation of interplanetary effective Rethat will be
examined in future study.

The authors are thankful to Chuck Smith for useful
discussions. This research is supported in part by the NASA
Heliophysics Guest Investigator Program (80NSSC19K0284,
NNX17AB79G) and Supporting Research (80NSSC18K1648)
and by the ISOIS Parker Solar Probe Project though Princeton
subcontract SUB0000165.
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