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Abstract

We examine the relationship between individual black hole (BH) masses in merging binary black hole (BBH)
systems. Analyzing the 10 BBH detections from LIGO/Virgo’s first two observing runs, we find that the masses of
the component BHs comprising each binary are unlikely to be randomly drawn from the same underlying
distribution. Instead, the two BHs of a given binary prefer to be of comparable mass. We show that it is ∼5 times
more likely that the component BHs in a given binary are always equal (to within 5%) than that they are randomly
paired. If we assume that the probability of a merger between two BHs scales with the mass ratio q as qβ, so that
β=0 corresponds to random pairings, we find β>0 is favored at credibility 0.987. By modeling the mass
distribution, we find that the median mass ratio is = -

+q 0.9150% 0.17
0.05 at 90% credibility. While the pairing between

BHs depends on their mass ratio, we find no evidence that it depends on the total mass of the system. We predict
that 99% of BBHs detected by LIGO/Virgo will have mass ratios q>0.5. We conclude that merging black holes
do not form random pairings; instead they are selective about their partners, preferring to mate with black holes of a
similar mass. The details of these selective pairings provide insight into the underlying formation channels of
merging binaries.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Gravitational wave sources (677);
Massive stars (732); Stellar remnants (1627)

1. Introduction

Following the first two observing runs (O1 and O2) of
advanced LIGO(Aasi et al. 2015) and Virgo(Acernese et al.
2015), the LIGO/Virgo Collaboration (LVC) reported 10
detections of merging binary black holes (BBHs;Abbott et al.
2019b), with tens more detections expected from the third
observing run (O3), and hundreds of expected detections per
year once the gravitational-wave (GW) detector network
reaches design sensitivity(Abbott et al. 2018). In addition to
the LVC-published detections of Abbott et al. (2019b), new
BBH detections in the O1 and O2 data have been reported by
Venumadhav et al. (2019a, 2019b) and Nitz et al. (2019). The
formation and history of these BBHs remain a fundamental
question in GW astrophysics. The proposed formation channels
include isolated(Dominik et al. 2015; Belczynski et al.
2016a, 2016b; Eldridge & Stanway 2016; Woosley 2016;
Stevenson et al. 2017; Kruckow et al. 2018; Spera et al. 2019),
dynamical(Hurley et al. 2016; Mapelli 2016; Rodriguez et al.
2016b; Askar et al. 2017; Chatterjee et al. 2017; Rodriguez
et al. 2018; Samsing 2018; Di Carlo et al. 2019; Zevin et al.
2019), and primordial(Bird et al. 2016; García-Bellido 2017)
ones, with many variants within each model. Different
formation channels are expected to leave an imprint on the
properties of the BBH population(Barrett et al. 2018; Taylor &
Gerosa 2018; Arca Sedda & Benacquista 2019), including the
mass distribution(Stevenson et al. 2015; Zevin et al. 2017),
spin distribution(Rodriguez et al. 2016c; Farr et al. 2017,
2018; Vitale et al. 2017b), and redshift evolution(Fishbach
et al. 2018; Rodriguez & Loeb 2018; Vitale & Farr 2018). It is
therefore possible to learn about the astrophysics of BBH
formation by fitting for these population distributions using
GW data. In Abbott et al. (2019a), the LVC carried out such an
analysis on the first 10 BBH detections, fitting the mass, spin,
and redshift distributions with simple parameterized models.

For example, the mass distribution was fit to a model in which
the primary mass (the more massive component of a binary)
follows a power law between some minimum and maximum
mass, while the secondary mass is distributed with a power law
between the minimum mass and its primary mass partner.
Abbott et al. (2019a) additionally considered a slightly more
complex model, which replaces the minimum mass cutoff with
tapering at the low-mass end and allows for an additional
Gaussian component at the high-mass end of the primary mass
power law. In this work, we restrict the population analysis to
the 10 Abbott et al. (2019b) BBH detections, as the detection
efficiency has been previously studied for this sample and is
well understood. The detection efficiency between the LVC
detections and the Venumadhav et al. (2019b) detections is
significantly different; see, e.g., Figure 5 of Venumadhav et al.
(2019b). Using the wrong detection efficiency leads to
selection biases in population inference. In future work we
will extend our analysis to include overlapping samples with
differing selection effects.
In this work we extend the analysis of Abbott et al. (2019a)

by focusing on a particular aspect of the BBH mass
distribution: the pairing between the two component BHs in
the binary. We ask whether the universe makes merging BBH
systems by randomly pairing up black holes, or whether the
mass of each black hole in a pair influences the mass of its
companion. This differs from the analysis of Abbott et al.
(2019a), in which the parameterization for the mass distribution
does not separate the underlying BH mass distribution and the
pairing function. Under the models considered by Abbott et al.
(2019a), it is not possible to fit for an underlying mass
distribution that is common to both component BHs or quantify
the deviation from the random-pairing scenario, as we do in
this work.
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We expect that the pairing function carries an imprint of the
physics by which component BHs find their partners. Various
formation models predict that the mass ratio and/or total mass
of the two components may determine their probability of
merging. Despite the different physical processes involved,
many formation channels predict a preference for similar
component masses(Mandel & Farmer 2018). Binaries formed
via homogeneous chemical evolution are expected to strongly
prefer equal mass components due to the progenitor stars
exchanging mass during an early overcontact phase(Mandel &
de Mink 2016; Marchant et al. 2016). The traditional isolated
evolution channel is also expected to favor comparable mass
components, because the common envelope phase is unsuc-
cessful at producing close binaries for extreme mass ratio
systems(Dominik et al. 2015). However, the common
envelope phase remains poorly understood, and this channel
can produce mergers between fairly unequal component
masses, especially at lower metallicities(Dominik et al.
2012; Stevenson et al. 2017; Giacobbo et al. 2018; Klencki
et al. 2018; Spera et al. 2019). Some studies have suggested
that dynamical evolution also tends to produce more mergers
with equal mass components due to the fact that comparable
mass binaries have a higher binding energy and form tighter
binaries(Amaro-Seoane & Chen 2016; Rodriguez et al.
2016a). However, other dynamical channels may mildly prefer
unequal mass components(Michaely & Perets 2019). Alter-
natively, it has been suggested that in dynamical channels, the
merger probability depends on the total mass, rather than the
mass ratio, as mass segregation and dynamical interactions may
favor binaries with larger total masses(O’Leary et al. 2016;
Perna et al. 2019). Kocsis et al. (2018) proposed measuring the
pairing function’s dependence on the total mass to discriminate
between formation channels, as the pairing function is expected
to scale as aMtot with α=4 in the dynamical channel modeled
by O’Leary et al. (2016) and α∼1 for merging primordial
BHs. Constraining the BBH pairing function with GW
observations allows us to test these different predictions.

The pairing function has been previously studied in the
context of the initial mass function for binary stars, where
the degree of correlation between component stars (and
the dependence on the orbital separation) remains an open
question(Pinsonneault & Stanek 2006; Kouwenhoven et al.
2009; Kroupa et al. 2013; Moe & Di Stefano 2017; Kroupa &
Jerabkova 2018). It is possible that studying the pairing
function for merging BBHs may shed light on the masses of
their stellar progenitors, although the relationship between a
BH’s mass and its progenitor star’s zero-age main-sequence
(ZAMS) mass is complicated by the many stages of evolution
undergone by BBHs.

In the stellar context, it has been pointed out that different
pairing functions affect the one-dimensional distribution of
mass ratios as well as the one-dimensional distributions of
primary and secondary masses(Kouwenhoven et al. 2009).
Because the primary (secondary) mass is defined to be the more
(less) massive component in the binary, even randomly
drawing two components from the same underlying distribution
results in the primary and secondary masses having different
distributions. Random draws can also result in very different
mass ratio distributions, depending on the shape of the
underlying mass distribution. We emphasize that the pairing
mechanism cannot be determined by examining any one of these
one-dimensional distributions independently. For example, a

mass ratio distribution that favors near-unity mass ratios may
simply indicate that the underlying BH mass distribution peaks
in a narrow mass range, rather than that similar component
masses are more likely to partner and merge. It is therefore
important to examine the two-dimensional mass distribution in
order to analyze whether or not there is a preference for similar-
mass components.
This Letter explores the BBH pairing function by analyzing

the first 10 LIGO/Virgo BBHs according to the mass models
described in Section 2. The results of the analysis and
implications for future detections are found in Section 3. In
Section 4 we demonstrate the analysis on mock GW data and
forecast the constraints that will be possible with ∼50–100
more BBH detections (to be expected at the end of O3 or
shortly after the start of O4). We conclude in Section 5.
Appendix A describes the details of the hierarchical Bayesian
analysis.

2. Mass Distribution Models

In the simplest case, we consider a model in which the
component masses in a BBH system are independently drawn
from the same underlying power-law distribution:

( ) ( )µ < <gp m m m m m, , 1min max

where γ is the power-law slope, and mmin and mmax are the
minimum and maximum mass. We refer to this as the “random-
pairing” mass distribution(Kouwenhoven et al. 2009). We note
that in this case, the marginal distributions of the primary and
secondary masses are not identical, because the primary
(secondary) is defined as the more massive (less massive)
component. Defining m1 as the primary mass and m2 as the
secondary mass, the random-pairing power-law distribution
takes the form
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We reiterate that the distributions in Equations (3) and (4) are
not the same as the underlying distribution (Equation (1)), even
though both masses are separately drawn from this distribution.
In particular, the primary mass distribution will tend to favor
larger masses compared to the secondary mass distribution.
Furthermore, different choices of the underlying power-law
parameters (γ, mmin, and mmax) will lead to different
distributions in the mass ratio º q m m 12 1 . If the under-
lying power law is steep enough in either direction, mass ratios
close to unity will be favored even if the two components are
randomly paired.
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In order to explore the pairing of two component BHs, we
consider mass distributions that contain the random-pairing
distribution as a submodel, but allow for deviations parameter-
ized by a pairing function, fp. Motivated by population
synthesis models, we consider two pairing functions: one that
depends on the mass ratio, q, where = q m m 12 1 , and one
that depends on the total mass, = +M m mtot 1 2. We also
consider the possibility that the probability of two BHs forming
a binary and merging depends on both q and Mtot.

If each BH mass is drawn from an underlying power-law
distribution with slope γ, and the probability of two masses
belonging to a merging binary is given by ( ∣ )bf q M,p tot , where
b denotes the hyperparameters of the pairing function, the mass
distribution of merging BHs follows
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We first consider pairing functions, fp, that depend purely on
the mass ratio. As a simple model, we assume that the pairing
function follows a power law in mass ratio with slope βq, with
a minimum mass ratio threshold required for merger, qmin. The
parameter qmin allows us to explore the scenario in which
mergers only take place between equal component masses
( q 1min ). In this model

⎧⎨⎩( ∣ { }) ( )b b= µ >b
f q M q q q q, , if

0 else.
6p qtot min

min
q

This model reduces to the random-pairing model for

( )( )b =q, 0,q
m

mmin
min

max
.

Second, we consider pairing functions fp that depend on the
total mass of the system. A simple model in this case,
motivated by the predictions of the dynamical channel of
O’Leary et al. (2016) and the primordial BH channel of Kocsis
et al. (2018), is a simple power law in Mtot:

( ∣ { }) ( )b b= µ bf q M M, . 7p Mtot tot
M

More generally, we may consider a pairing function that
depends on both the mass ratio and the total mass:

⎧⎨⎩( ∣ { }) ( )b b b= µ >b b
f q M q q M q q, , , if

0 else.
8p q Mtot min

tot min
q M

We highlight that because we consider models that reduce to
random pairing under some choice of parameters, our assumed
parameterization differs from the mass distribution models
analyzed in Abbott et al. (2019a). The basic power-law model
in Abbott et al. (2019a) is defined such that the marginal p(m1)
distribution follows a power law, so that the joint mass
distribution takes the form(note we have redefined α from
Abbott et al. 2019a, as −α)
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On the other hand, for the parameterizations we consider in this
work, the marginal distribution of primary masses does not

follow an exact power law; instead, these parameterizations
allow for the possibility that both masses in a binary are drawn
from the same underlying power-law distribution.
Following the methods laid out in Appendix A, we fit the

pairing models discussed above to the first 10 BBH detections
in Section 3. As part of our results, we quantify the evidence
against the random pairing and the total-mass-dependent
pairing models, and find that the mass-ratio-dependent pairing
model provides the best fit to the data.

3. Results

3.1. LVC Model

We begin by recovering the results of Abbott et al. (2019a)
under the same mass model given by Equation (9), equivalent to
Model B of Abbott et al. (2019a), in order to demonstrate
consistency between our methods. Although we use slightly
different assumptions regarding the spin distribution and the
selection effects calculation (see Appendix A), we recover nearly
identical posterior distributions on the population hyperparameters:
a = - -

+1.7 1.5
1.8, b = -

+6.1 5.7
5.4, = -

+m M7.3min 3.7
1.7 , and =mmax

-
+ M41.8 5.5

18.6 . This is to be compared with a = - -
+1.6 1.5

1.7, b =
-
+6.7 5.9

4.8, = -
+m M7.9min 2.5

1.2 , and = -
+m M42.0max 5.7

15.0 found by
Abbott et al. (2019a). As described in Appendix A, our prior on
mmin starts at 3 Me rather than 5 Me. Furthermore, recall that our
convention for the power-law slope α has a sign flip compared to
the convention in Abbott et al. (2019a).
With the current set of events, the data cannot distinguish

between the mass model of Abbott et al. (2019a; Equation (9))
and the models we consider in this work, and they all give
consistent results for the inferred mass distribution p(m1, m2).
However, the parameters of our models have a different
interpretation from the mass model of Abbott et al. (2019a).
While the power-law slope α of Equation (9) refers to the
power law of the primary mass distribution, the power-law
slope γ of this work refers to the underlying mass distribution
power law from which both primary and secondary BHs are
drawn. The additional parameters βq, qmin, and βM in our
models allow us to explore whether the pairing between the
two component masses is random or whether (and how) it
depends on the mass ratio or total mass of the system,
according to Equation (8)).

3.2. Random Pairing

Figure 1 shows the results of fitting the random-pairing
model (Equation (2) with free parameters γ, mmin, mmax), the
mass ratio power-law model (Equation (6) with free parameters
γ, mmin, mmax, βq) and the total mass power law (Equation (7)
with free parameters γ, mmin, mmax, βM) to the 10 BBHs
from the first two observing runs. We use flat priors on all
free parameters, with uninformative prior bounds listed in
Appendix A. In each case, the parameters of Equation (8) that
are not left free are fixed to the default values βq=βM=0,

=q m mmin min max.
If we fix the pairing to be random, we find g = - -

+1.1 0.9
1.0.

However, as shown in the left and middle panels of Figure 1,
and explained in Section 2, this does not imply that the
one-dimensional marginal distributions of the primary and
secondary masses follow this common power law; the primary
masses follow a flatter distribution, while the secondary masses
follow a steeper distribution. Note that the inferred mass ratio
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distribution (bottom left panel) in this case is inferred to be
nearly flat across the range ∼0.15–1. This is a consequence of
this particular fit to the random-pairing model; in general the
marginal mass ratio distribution can slope significantly upward
depending on the value of γ. The lower limit on the mass ratio
in the random-pairing model is given by the ratio m mmin max,
and is constrained to ∼0.15 in this case due to the
measurements ~m M7min and ~m M40max .

3.3. Mass-ratio-dependent Pairing

The effect of introducing βq as a free parameter, while still
fixing =q m mmin min max and βM=0, is shown in the middle
column of Figure 1. Under this model extension, the data
display a clear preference for mass ratios close to unity
(bottom middle panel), which implies more overlap between
the primary and secondary mass distributions (middle center
panel). We infer b = -

+7.0q 5.5
4.5, and find that βq�0 is ruled

out with probability 0.987. This suggests that the random-
pairing model (βq= 0) is strongly disfavored by the data.
Meanwhile, the underlying mass distribution power-law slope
is inferred to be a bit steeper than in the random-pairing case,

with g = - -
+1.3 0.8

0.9 compared to g = - -
+1.1 0.9

1.0 for the random-
pairing model. All models essentially agree on ~mmin

-
+ M6.7 3.2

1.9 and ~ -
+m M41.9max 5.7

18.2 .
We fit the model with both βq and qmin left free in

Figure 2, which displays the posterior distributions on the five
hyperparameters (three parameters to characterize the one-
dimensional mass distribution, and two—βq and qmin—to
characterize the pairing function) as a corner plot(Foreman-
Mackey 2016). We find a strong preference for near-equal mass
ratios, inferring that 99% of merging BBHs have mass ratios
between = -

+q 0.661% 0.28
0.25 and unity. For reference, under Model

B from Abbott et al. (2019a), we find = -
+q 0.591% 0.33

0.13.
Meanwhile, we find that the median mass ratio is =q50%

-
+0.91 0.17

0.05. This agrees very closely with the findings of Roulet
& Zaldarriaga (2019), who find a preference for population
distributions with an average mass ratio ¯ = -

+q 0.89 0.18
0.08. In fact,

the current set of detections is consistent with all binaries
consisting of equal component masses (to within 5%, with

=q 0.95;min the maximum value permitted by our prior). We
find that qmin=0.95 is five times more likely than ( )b =q,q min
( )m m0, min max , meaning that it is five times more likely that all

Figure 1. Top row: joint m1–m2 distribution as inferred from the 10 BBHs assuming a mass distribution given by Equation (8) with free parameters γ, mmin, mmax (left
column); γ, mmin, mmax, and bq (middle column); and γ, mmin, mmax, and βM (right column). In each case, those parameters that are not free are fixed to βq=βM=0
and =q m mmin min max. The color scale indicates the median log10 of the merger rate density as a function of the two masses. Middle row: marginal distributions of
single BH masses (green), along with the primary masses (blue) and secondary masses (yellow) of component BHs in binary systems. These distributions are inferred
by fitting the 10 BBH detections to the model of the corresponding column. The line shows the median merger rate density as a function of mass, while the shaded
bands show symmetric 90% credible intervals. Bottom row: marginal distribution of the mass ratio implied by the fits to the three models. The solid line and dark
(light) bands denote median and 50% (90%) credible intervals on the merger rate as a function of mass ratio.

4

The Astrophysical Journal Letters, 891:L27 (11pp), 2020 March 1 Fishbach & Holz



binaries consist of equal component masses than that they are
randomly paired. Although we do not include the events of
Venumadhav et al. (2019a, 2019b) or Nitz et al. (2019) in our
analysis (in order to avoid assuming an incorrect selection
function and biasing our results), we note that all of their
detections are also consistent with mass ratios of unity. This
suggests an even stronger preference for near-equal component
masses in the underlying population.

A strong preference for near-equal component masses with
q 0.9min is consistent with the chemically homogeneous/

massive overcontact binary evolutionary channel(Marchant
et al. 2016). However, our results are also consistent with a

milder preference for near-unity mass ratios, which may be
expected from classical isolated binary evolution or dynamical
formation(Mandel & Farmer 2018).

3.4. Total-mass-dependent Pairing

The effect of introducing βM as a free parameter, while fixing
=q m mmin min max and b = 0q , is shown in the right column of

Figure 1. We note that these results are similar to the random-
pairing case, as there is a strong degeneracy between the
isolated BH mass power-law slope γ and the pairing function
power-law slope βM. We do not recover significant constraints

Figure 2. Posterior on the hyperparameters of the power-law model with the mass-ratio-dependent pairing (Equation (6)) fit to the 10 BBH detections from O1 and
O2. In the two-dimensional plots, the contours denote 50% and 90% posterior credible regions.
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beyond the linear combination g b+ » - -
+2 1.1M 0.9

1.0 (matching
the constraints reported in Section 3.2 for the case βM= 0). The
degeneracy between βM and γ causes the constraints on the
isolated BH mass function (shown in green in the middle left
panel of Figure 1) to be degraded. In addition to the degraded
constraints on γ, the constraints on mmin are also less
informative, as there is a significant correlation between mmin
and γ, with shallow (less negative) power-law slopes corresp-
onding to smaller allowed values of mmin. However, mmax
remains very well measured at ~m 41.9max .

It is interesting to note the inferred value of the power-law
slope γ for the cases βM=4 (predicted by some globular
cluster simulations) and βM=1 (predicted by the primordial
BH channel). For βM=4, we find γ∼−2.5, which is close to
the Salpeter initial mass function for massive stars. The
interpretation in this case is that BHs in globular clusters, where
the merger probability roughly follows Mtot

4 (O’Leary et al.
2006), are distributed according to a power-law mass
distribution with slope γ∼−2.5. This agrees with the findings
of Perna et al. (2019), who forward-model dynamical mergers
for various initial BH mass functions and compare the model
predictions to the LIGO/Virgo data to infer an initial BH mass
function with slope - -

+2.35 0.55
0.36 (68% credibility). Meanwhile,

βM=1 implies a shallower underlying mass distribution for
single BHs, with γ∼−1.

If we leave all three parameters of the pairing function, qmin,
βq, and βM, free, we recover identical constraints on qmin and
βq as we do in the βM=0 case. The additional freedom in βM
is fully absorbed by the degeneracy with γ, and we recover the
prior on βM. This is expected, because the data prefer equal
mass systems with m1=m2, and in this limit, Equation (8)
reduces to

( ) ( )µ =g b-p m m m m m, , for , 101 2 1
2

1 2
M

yielding a complete degeneracy along g b- =2 constM .

3.5. Comparison of Pairing Functions

The data strongly prefer a mass-ratio-dependent pairing
function that favors mergers between similar-mass components
over random pairing, as discussed in Section 3.3. However,
unless one has a strong prior on the single BH mass distribution
that would push βM away from zero (e.g., a prior belief that
γ<−2 favors βM> 0), there is no evidence that the total mass
plays a role in the pairing function. This is apparent from the
fact that when we fit Equation (8) to the data with all six
hyperparameters free, we recover the prior on βM. Computing
the evidence ratio in favor of a model in which βM=0 to one
in which ( ) ( )b =q m m, 0,q min min max , we find that it is ∼6
times more likely that the pairing function depends on the mass
ratio than on the total mass.

3.6. Posterior Predictive Distributions

In the following, because there is no evidence that the data
prefer nonzero βM, we fix βM=0 in the population model of
Equation (8) (reducing to the model of Equation (6)). Using the
recovered posteriors on the population hyperparameters, shown
as a corner plot in Figure 2, we calculate the posterior
population distribution ( ∣ )p m m, data1 2 , shown in Figure 3. We
define the posterior population distribution as in Abbott et al.
(2019a); this refers to the distribution of true mass values
marginalized over the hyperparameter posteriors for a given

population model:

( ∣ ) ( ∣ ) ( ∣ ) ( )ò q q q=p m m d p m m p d d, , . 111 2 1 2

Here, ( ∣ )qp d refers to the posterior distribution on the
population model’s hyperparameters inferred from the 10
BBH events. Figure 3 shows draws from the posterior
population distribution on the true masses of the underlying
BBH population (blue) as well as the true masses of detected
systems (orange), found by applying selection effects to the
underlying mass distribution. For comparison, the mass
measurements of the O1 and O2 detections are shown in black.
Using the posterior population distribution on the masses m1

and m2, we calculate the corresponding distribution on the mass
ratio q in Figure 4. The dashed blue line in Figure 4 shows the
mass ratio distribution in the underlying population, corresp-
onding to the blue m1–m2 distribution of Figure 3, while the
orange line shows the mass ratio distribution among detected
systems, corresponding to the orange m1–m2 distribution of
Figure 3. While selection effects have a significant effect on the
two-dimensional m1–m2 distribution, the one-dimensional mass
ratio distribution among detected systems is nearly identical to
the mass ratio distribution in the underlying population.
We expect 90% of detected events to have their true masses

fall within the orange credible region of Figure 3. In terms of
the mass ratio distribution, we expect that 90% of detected
events will have mass ratios q>0.73, and 99% of detected
events will have mass ratios q>0.51. We can take these
predictions one step further by simulating the measured mass
ratio values for detected events, which accounts for measure-
ment uncertainty in addition to the selection effects. Given the
true masses of a detected event, we generate a mock posterior
to represent how those masses would be measured in LIGO/
Virgo data. The mock posteriors are generated according to the
prescription described in Appendix B. We summarize the
expected mass ratio posteriors from anticipated detections as
the green dashed line (median) and shaded band (symmetric

Figure 3. Posterior population distribution of the component masses in BBH
binaries, as inferred from the mass-ratio-dependent pairing model. The true
masses of the underlying population are represented by the blue points and
90% credible region, while the orange points represent the detected population,
accounting for selection effects that favor more massive systems. In gray scale
are the mass measurements of the 10 LIGO/Virgo O1 and O2 detections. The
contours denote 90% credible intervals. All detected systems are consistent
with equal component masses m1=m2.
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90% interval) in Figure 4. We refer to this green band as the
“posterior predictive process.” Based on the first 1 detections,
and assuming that all detections are described by the same
population model assumed here, we expect that 90% of future
detections will have recovered mass ratio posteriors that lie
within the shaded band. We see that measurement uncertainty
plays a significant role in shifting the observed mass ratio
posteriors (with the default flat-in-component-mass priors)
away from 1 relative to qtrue.

4. Simulations

We expect to have tens more BBH detections by the end of
LIGO/Virgo’s third observing run in mid-2020, and hundreds
of detections within a few more years(Abbott et al. 2018).
In this section, we explore the expected mass distribution
constraints from tens to hundreds of detections under the
models considered here. We perform our analysis on mock GW
detections that we generate from known underlying distribu-
tions. We follow a simplified yet realistic method for
generating mock measurements from the underlying population
and ensure that the mock primary and secondary masses are
measured with uncertainties typical to second-generation GW
detectors(Vitale et al. 2017a). The method for generating
mock detections is described in Appendix B.

The expected constraints from 60 detections (similar to what
we expect by the end of O3; Abbott et al. 2018) are shown in
Figure 5 for a simulated population described by Equation (6)
with =m M7min , =m M40max , γ=−1, βq=6, and

= =q m m 0.175min min max . We find with 60 events from this
simulated population, we can typically rule out random pairing
with Bayes factors 1000. These projections are conservative
because the deviations from random pairing in the chosen
mock population are not very large compared to the values of
qmin and βq that are favored by the first 10 events. The

parameters that govern the pairing mechanism will become
increasingly well constrained, although with large correlations
between them. The simulated 60 events shown here yield
b = -

+3.4q 5.9
4.6 and = -

+q 0.5scale 0.4
0.4 ( = -

+q 0.5min 0.3
0.3). Meanwhile,

the parameters of the underlying power-law mass distribution
will also become well constrained. With 50 more events, we
expect to constrain mmax to a couple of solar masses (this
particular realization yields = -

+m 40.6max 1.7
2.4) and the power-

law slope γ to a 90% credible interval of <1 (g = - -
+1.1 0.3

0.4).
Note that if βM is left free in the pairing function, the
measurement of γ will become less informative, as we
constrain a linear combination of βM and γ (see Section 3).
With 100 events, these constraints will improve roughly as 1/N
and N1 for mmax and γ, respectively3: 100 simulated events
give = -

+m M38.9max 0.9
1.4 and g = - -

+0.8 0.3
0.3. It may take more

events for the constraints on mmin to become interesting,
because the detector sensitivity is a steep function of BH mass,
and most detections are at the high end of the mass
function(Fishbach & Holz 2017), or beyond(Fishbach et al.
2019). For a flat prior starting at 3Me, 60 mock events give

= -
+m 6.5min 2.4

1.3. However, the constraints on mmin, like the
constraints on γ, are less informative if bM is allowed to vary.

5. Conclusion

We have fit the mass distribution of merging BBHs with a
simple model that parameterizes the pairing function between
the two components in a binary. We highlight the importance
of comparing the full two-dimensional mass distribution of
BBHs, because it is impossible to disentangle the overall BH
mass distribution from the pairing function when considering
only one-dimensional distributions of the primary/secondary
mass or the mass ratio.
Based on the first 10 LIGO/Virgo BBH detections, we

conclude that component BHs are not randomly paired in a
binary; rather, the pairing likely favors components of
comparable masses. We find that it is five times more likely
that mergers only take place between equal (to within 5%) mass
BHs than that component BHs are randomly drawn from the
same underlying distribution. Our fits imply that 99% of mass
ratios among the population of merging BBHs are greater
(closer to equal mass) than = -

+q 0.661% 0.28
0.25. This is to be

compared with an expected value of = -
+q 0.151 % 0.06

0.07 for the
random-pairing scenario. We predict that among detected
BBHs, 90% will have mass ratios q>0.73, and 99% will have
mass ratios q>0.51. Meanwhile, we find no evidence that the
pairing function depends on the total mass of the system,
contrary to the predictions of some dynamical and primordial
BH formation channels(O’Leary et al. 2006; Kocsis et al.
2018; Perna et al. 2019). The current constraints on the pairing
function remain compatible with a range of formation channels,
with the exception of those that favor random pairing or a
preference for unequal mass ratios(Michaely & Perets 2019).
All binaries detected so far are consistent with equal mass
components, which are compatible with predictions from the
massive overcontact binary/chemically homogeneous forma-
tion channel, in which mass transfer may lead to very nearly
equal mass components with minimum mass ratios qmin∼0.9
(Marchant et al. 2016). However, the current constraints on the

Figure 4. Posterior population distribution of the mass ratio qtrue in the
underlying population (dashed blue line), the mass ratio qdet among detected
systems (dashed orange line), and the posterior predictive process of the
measured mass ratio qobs (dashed green line and shaded band), accounting for
detection efficiency and measurement uncertainty. These distributions are
inferred by fitting the 10 BBHs from O1 and O2 to the mass distribution model
described by Equation (6). If all BBHs belong to this population, we expect that
90% of the recovered posteriors from detected BBHs will fall within the shaded
green region. The gray scale lines show the posterior probability distributions
of the 10 observed BBHs. Note that measurement uncertainty shifts the
posteriors on the mass ratio for individual systems to smaller values relative to
the true mass ratio.

3 Because mmax is a sharp feature, its measurement converges faster than the
typical N1 (see, e.g., Chakrabarty et al. 2003; Johnson 2007). This makes it
particularly useful as a feature to constrain cosmology(Farr et al. 2019).
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pairing function are also compatible with scenarios that more
mildly prefer equal mass components, such as common
envelope binary evolution, which tends to result in mergers
with q0.5 (Mandel & Farmer 2018), or dynamical
interactions in globular clusters, which tend to result in
mergers with median mass ratios q50%=0.9 (Zevin et al.
2019), consistent with our measurement = -

+q 0.9150% 0.17
0.05. On

the other hand, some dynamical channels predict that the
pairing function should scale with the total mass of the system.
While we cannot rule this out with 10 detections, it is six times

more likely that the pairing function has some mass-ratio
dependence rather than depending on total mass alone.
Although the data do not call for a total -mass dependence, it

remains possible that the pairing probability depends on the
total mass in addition to the mass ratio. If the merger
probability scales with total mass as bMtot

M, the implied power-
law slope of the mass distribution among single BHs is roughly
g ~ - b+1

2
M . Thus, prior belief that the BH mass spectrum is

steep (with g - 2.2) would suggest that the pairing function
depends on the total mass with βM>0.

Figure 5. Constraints on the population hyperparameters for a simulated population of 60 BBH detections that follow Equation (6) with =m M7min ,
=m M40max , g = -1, βq=6, and = =q m m 0.175min min max . These injected hyperparameter values are shown in orange lines. In the two-dimensional plots, the

contours show 50% and 90% posterior credible regions.
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By the end of O3, the details of the pairing function will be
better constrained (compare the joint posterior on qmin and βq in
Figure 2—the current constraints—with Figure 5—the con-
straints we expect by the end of O3). We hope that these results
will enable detailed comparisons with the predictions of the full
two-dimensional merger rate ( ) m m,1 2 from population
synthesis simulations.

As usual, our results rely on the assumption that there is a
single population of BBHs that is adequately described by our
simple parameterized model(see, e.g., Doctor et al. 2019).
One way to test the validity of this assumption with future
detections is to compare them against the posterior predictive
distribution (for example, Figures 3 and 4) inferred from
the model. We conclude that the universe does not assemble its
black hole binaries at random, and future constraints of the
pairing function we have introduced above will yield important
insights into these formation processes.
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also supported by the Kavli Institute for Cosmological Physics at
the University of Chicago through NSF grant PHY-1125897 and
an endowment from the Kavli Foundation. D.E.H. also gratefully
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Appendix A
Methods

We carry out a hierarchical Bayesian analysis to fit the
hyperparameters for each of the mass models discussed in
Section 2. We fit only for the distribution of primary and
secondary masses, and fix the distributions of all other BBH
intrinsic and extrinsic source parameters. We fix the underlying
redshift distribution to follow a merger rate that is uniform in
comoving volume and source-frame time. We assume that the
underlying population is isotropic on the sky, with isotropic
inclination angles. For definiteness we fix the spin distribution
of both binary components to be uniform in spin magnitude
and isotropic in spin tilt. Although this distribution is not
necessarily favored by the data, the correlation between the
inferred spin distribution and the inferred mass distribution is
negligible, as shown in Abbott et al. (2019a), which fit
simultaneously for the mass and spin distribution. In particular,
despite using a different spin model, we recover the results of
Abbott et al. (2019a) under the same mass model.

The likelihood is given by the inhomogeneous Poisson
process likelihood(Loredo 2004; Abbott et al. 2019a; Mandel
et al. 2019). For Nobs independent events, the likelihood of the
data d given hyperparameters θ is

( ∣ ) ( ∣ )

( ) ( )

( )  òq

q

µ

´

m q-

=



p d e p d m m

d

dm m
dm m

,

, 12

i

N

i
1

1 2

1 2
1 2

obs

where ( ∣ )p d m m,i 1 2 denotes the likelihood of an individual

event’s data given its component masses; ( )qd

dm m1 2
is the

differential merger rate density, which integrates to the total
merger rate density  and is given by ( ∣ )qp m m,1 2 ; and

( )m q = á ñq VT denotes the expected number of detections
given  and the sensitive spacetime volume á ñqVT of the
detector network to a given population of BBHs with
hyperparameters θ.
We assume that the merger rate density is uniform in

comoving volume and source-frame time, and calculate á ñqVT
according to a semi-analytic prescription(Finn & Chernoff
1993; Finn 1996). Following Abbott et al. (2019a), we assume
that a single-detector signal-to-noise (S/N) threshold of 8 is
necessary and sufficient for detection, and that the detector’s
noise curve is described by the Early High Sensitivity power
spectral density (PSD) for advanced LIGO(Abbott et al. 2018).
The validity of these assumptions is discussed in Abbott et al.
(2019a). Unlike in Abbott et al. (2019a), in this work we do not
calibrate the ( )VT m m,1 2 to the results of injection campaigns
into the detection pipelines. As we demonstrate by explicitly
comparing our results to those of Abbott et al. (2019a) in
Section 3, using the uncalibrated VT calculation leads to a
slight bias in our inference of the overall-merger rate, with the
median shifting by a factor of ∼1.7, as expected from Figure 9
in Abbott et al. (2019a). However, this does not affect the
inferred shape of the mass distribution, which is our primary
interest in this work. We also neglect the effect of nonzero
spins in the estimation of VT, as spins have a subdominant
effect on the sensitivity(Abbott et al. 2019a), especially given
that existing detections disfavor a significant population of
highly spinning systems.
Note that if we marginalize over the rate density  with a

flat-in-log prior, the likelihood takes the form(Fishbach et al.
2018; Mandel et al. 2019)

( ∣ )
( ∣ ) ( ∣ )

( ) ( ∣ )
( ) ò

ò
q

q

q
µ

=

p d
p d m m p m m dm dm

VT m m p m m dm dm

, ,

, ,
. 13

i

N
i

1

1 2 1 2 1 2

1 2 1 2 1 2

obs

To get the individual-event likelihood term ( ∣ )p d m m,i 1 2 that
appears in Equation (12), we use the publicly available
IMRPhenomPv2 posterior samples for the 10 BBH detections
in O1 and O2(Vallisneri et al. 2015). There is a negligible
difference between the mass posteriors derived with the
IMRPhenomPv2 waveform(Husa et al. 2016; Khan et al.
2016) and the SEOBNRv3 waveform(Pan et al. 2014). The
individual-event posteriors were calculated under priors that are
flat in detector-frame masses, and “volumetric” in luminosity
distance, dL. In terms of source-frame masses and cosmological
redshift z, the default event-level prior is therefore(Abbott
et al. 2019a)

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( )

( )
( )µ + +

+
p m m z d z z d z

z d

E z
, , 1

1
, 14L C

H
1 2

2 2

where dC is the comoving distance and dH=c/H0 is the
Hubble distance, and ( ) ( )=E z H z H0 (Hogg 1999). We
divide out by these priors in our analysis to get a term that is
proportional to the likelihood rather than the posterior. We fix
the cosmological parameters to the best-fit Planck 2015
values(Ade et al. 2016) throughout for consistency with
Abbott et al. (2019a, 2019b).
We sample from the overall likelihood of Equation (12)

using PyMC3(Salvatier et al. 2016). In all models considered,
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we choose priors that are flat over mmin, mmax, and the power-
law slope γ within the ranges  < <M m M3 10min ,

 < <M m M35 100max , and −4<γ<2. We take a flat-
in-log prior on the rate ( ) µ p 1 . Unless they are fixed to
some value, we take a flat prior on βq in the range −4<
βq<12 and a flat prior on βM in the range 0<βM<12.
Because the prior range of the minimum mass ratio qmin

depends on two other free parameters, mmin and mmax, we
introduce another parameter qscale, defined so that

( ) ( )= + -q m m q m m0.95 , 15min min max scale min max

and, unless it is fixed, we sample over qscale with a flat prior
from 0 to 1, so that < <m m q 0.95min max min . We restrict the
upper limit of qmin to slightly below 1 in order to avoid
sampling issues, as the mass ratio of any individual GW event
is measured with a finite resolution, and this prevents qmin from
being resolved arbitrarily close to =q 1min . When using Model
B from Abbott et al. (2019a), we use their same priors, with the
exception of the lower prior boundary for mmin, which we take
to be 3Me rather than 5Me.

For those models that contain random pairing as a subset, we
quantify the evidence for the random-pairing hypothesis versus
the full model by calculating the Savage-Dickey density ratio,
which is defined as the ratio of the posterior probability to
the prior probability at the given point in parameter space
(Dickey 1971). We calculate the evidence between the pure
mass-ratio-dependent pairing function of Equation (6) and
the pure total-mass-dependent pairing function of Equation (7)
by introducing a more general model that contains both models
of interest as nested models. This general model contains a
mixture parameter x, where x denotes the amplitude of the
mass-ratio-dependent component and (1−x) denotes the
amplitude of the total-mass-dependent component. By sam-
pling from this mixture model, the recovered likelihood at
x=1 compared to x=0 denotes the evidence in favor of a
pure mass-ratio-dependent pairing function.

Appendix B
Simulated Detections

In generating mock detections, we assume that the under-
lying population follows a uniform in comoving volume and
source-frame time merger rate, with isotropic sky positions and
inclinations, and zero spins. The true component masses are
drawn from the given population distribution. We note that the
assumptions of fixed redshift and spin distributions are unlikely
to affect the inference of the pairing function (mass ratios are
measured independently of redshift, and excluding spins did
not make a difference in the O1 and O2 analysis); however,
these distributions can be fit jointly with the mass distribution
and marginalized over(Abbott et al. 2019a).

Given the true parameters of the binary, we calculate the
S/N of the signal in a single detector, assuming that the noise is
described by the Mid-High Sensitivity PSD as expected for O3
for the LIGO detectors(Abbott et al. 2018). We assume that
the binary is then detected if it passes a single-detector S/N
threshold of 8. In order to assign measured component masses
to each detected binary, we assume that the fractional
uncertainty on the source-frame chirp mass follows =s




( )( )+
r +

0.01 z

z

8 0.2

1

2 1 2
, where z is the true redshift, while the

uncertainty on the symmetric mass ratio
( )

h º
+

m m

m m
1 2

1 2
2 follows

s =h r
0.03 8 , where ρ is the single-detector S/N of the source.

Given a true value of and η for each binary, we randomly
drawobs from a log-normal distribution centered on with
standard deviation s, and ηobs from a normal distribution
centered on η with standard deviation ση. With these values of
obs and ηobs and their assumed known distributions about the
true chirp mass  and symmetric mass ratio η, we generate
mock posterior samples for the component masses m1 and m2

under flat priors using the Monte Carlo sampler PyStan
(Carpenter et al. 2017). These uncertainties are typical of the O2
detections, and result in typical 90% measurement uncertainties
on the source-frame component masses of ≈50%, with a
distribution of uncertainties that matches the one in Vitale et al.
(2017a).
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