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Excess potentially toxic elements (PTEs), including arsenic (As), cadmium (Cd),
lead (Pb), and zinc (Zn), above permissible limits in the environment, have
detrimental effects on trophic levels. Hence, imperative to devise advertent
measures to address this situation, especially in the soil ecosystem: the major
reservoir of many PTEs. Using aerial plant parts (shoot) to accumulate As, Cd, Pb,
and Zn - hyperaccumulators are considered a permanent approach to PTE
removal from soils. This communication expatiated the principles that govern
the hyperaccumulation of plants growing on As, Cd, Pb, and Zn-contaminated
soils. The contribution of soil microbial communities during
hyperaccumulation is well-elaborated to support the preference for this
remediation approach. The study confirms a flow direction involving PTE
uptake–translocation–tolerance–detoxification by hyperaccumulators.
Rhizosphere microbes exhibit a direct preference for specific
hyperaccumulators, which is associated with root exudations, while the
resultant formation of chelates and solubility of PTEs, with soil
physicochemical properties, including pH and redox potential, promote uptake.
Different compartments of plants possess specialized transporter proteins and
gene expressions capable of influx and efflux of PTEs by hyperaccumulators. After
PTE uptake, many hyperaccumulators undergo cellular secretion of chelates
supported by enzymatic catalysis and high transport systems with the ability to
form complexes as tolerance and detoxification mechanisms. The benefits of
combining hyperaccumulators with beneficial microbes such as endophytes and
other rhizospheremicrobes for PTE removal from soils are vital in enhancing plant
survival and growth, minimizing metal toxicity, and supplying nutrients.
Inoculation of suitable rhizosphere microbes can promote efficient cleaning of
PTEs contaminated sites utilizing hyperaccumulator plants.
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1 Introduction

Potentially toxic elements (PTEs), not excluding arsenic (As), cadmium (Cd), zinc (Zn),
and lead (Pb), exert antagonistic behavior in the soil ecosystem, associated growing plants,
and biomagnifications in animals and humans through ingestion (Knabb et al., 2016;
Landrigan et al., 2018). Elements such as copper (Cu) and Zn are ubiquitous and exhibit
direct physiological and metabolic relevance in plants as micronutrients, while excess
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accumulation above threshold limits incurs growth dysfunctions
and death (Liu et al., 2018). Arsenic, Pb, and Cd have no benefit to
plants and humans with possible health disorders, e.g.,
cardiovascular disease and diabetes upon accumulation (Fuller
et al., 2022), as their environmental exposure increases.

Despite the geogenic occurrence of PTEs, anthropogenic
interferences, including mining and smelting (Knabb et al., 2016;
Boente et al., 2022), the extended application of untreated organic
wastes (e.g., sewage sludge and compost) andmineral fertilizers (e.g.,
phosphate fertilizers) application to arable lands (Bisht and
Chauhan, 2020), and coal ash deposition (Shin et al., 2017) often
release enormous contents in soils. Industrialization, war, and
intensification of agriculture have left a legacy of soil
contamination throughout, with 80,000 sites (in Australia),
1,300 in the United States, 3 million in Europe and the western
Balkans, and 16% in China’s soils representing the hot spot of global
polluted sites (FAO/UN, 2018). Culminating these data reveals the
extent of loss of land resources for agricultural sustainability and
calls for more effective, efficient, and affordable removal methods.
The vicinity of point sources of potentially toxic elements (PTEs),
e.g., As, Cd, Pb, and Zn, become contaminated, affecting the quality
of the water table via infiltration and the metabolism of soil
microfauna/microflora (Cempel and Nikel, 2006; Ji et al., 2021).
For example, mining and metallurgy of the 19th century in the
Linares district (Jaén, South Spain) accumulated (mg kg−1) As (42),
Cd (140), Pb (4,244—35,899), and up to 768 Zn compared to

threshold limits of <20, 2, 100, and 200, respectively (Boente
et al., 2022). Environmental exposure to PTEs results in
hazardous effects as they are non-degradable (Woldetsadik et al.,
2017; Landrigan et al., 2018). These raise significant awareness about
the cleaning of affected soils as increases in human population
parallel metalliferous activities (Figure 1). Considering climate
change in recent decades and the consequences of its impacts
(Hardy, 2003; National Academy of Sciences, 2020), removing
PTEs in soils by plants offer adequate results over conventional
technologies. Conventional strategies for cleaning up contaminated
lands, e.g., soil washing (Shen et al., 2019), solidification (Matec
industries, 2021), landfilling, soil flushing, and washing, capping,
and vitrification (Koul and Taak, 2018; Liu et al., 2018; Khan et al.,
2021), are often ex-situ and involve high treatment costs. These
approaches often result in losing the fertility of soils and biodiversity,
e.g., microfauna (Liu et al., 2022).

Some plants demonstrate Cd, Pb, and Zn accumulation in
tissues and organs, especially shoots, providing evidence of their
suitability in cleaning contaminated soils (Berhongaray et al., 2015;
Yan et al., 2020). Hence, plant-based remediation techniques:
phytoextraction, phytostabilization, phytodegradation, and
phytovolatilization, most recently, have been adopted based on
their success in revegetating PTE-polluted soils at an optimized
cost and providing a greener ecosystem. Phytoremediation supports
large field reclamations, prevents erosion and leaching by stabilizing
metals, enhances organic matter (OM) accumulation, and builds up

FIGURE 1
World production trend of (A) As, (B) Cd (adopted from Lucía Fernández, 2022, (C) Pb (Statista Research Department), and (D) Zn (U.S. Geological
Survey, http://minerals.usgs.gov/ds/2005/140).
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soil fertility (Jacob et al., 2018; Yan et al., 2020). During the
reclamation of contaminated lands, a selection of
phytoremediation type depends on the contaminants and the
intended purpose of the field.

Some plant species extract and accumulate PTEs in
aboveground organs (stem, appendages, leaves, lateral buds,
flowering stems, and flower buds), with minimal or no signs of
toxicity, termed hyperaccumulators (Suman et al., 2018; Ashraf
et al., 2019). In recent times, PTE-polluted soils have been well-
used to grow high-biomass woody plants, e.g., Salix and Populus spp
allowing the reduction of environmental mobility of PTE and
producing polluted harvested woody biomass to produce income
(Guerra et al., 2011; Mleczek et al., 2018). Extraction of PTEs in
contaminated soils to aboveground organs of plants
(phytoextraction) prevents surface soils from contaminating other
areas via runoff and erosion (Yan et al., 2020). Many
hyperaccumulators grow faster, with high-biomass, fast root-to-
shoot translocation, PTE-tolerant, and detoxify PTEs (Balafrej
et al., 2020). The possibility of other low biomass and slow-
growth plant hyperaccumulators, e.g., Solanum nigrum L., exhibit
high PTE accumulation under the assistance of microorganisms
(Zhang et al., 2021). Plant species from families including
Brassicaceae (e.g., Brassica sp. and Noccaea sp.), Pteridaceae (e.g.,
Pteris vittate L.), Lamiaceae (Lamium maculatum L.), Poaceae
(Deschampsia caespitosa L.), and Crassulaceae, are often
characterized by high accumulation of PTEs aboveground
biomass (Małecka et al., 2019; Castaňares and Lojka, 2020). For
example, out of 970 mg kg−1 total Zn content in soils, the leaf, stem,
and root of Cratoxylum sumatranum (Jack) accumulated 223, 329,
and 210 mg kg−1 of Zn, respectively, in the mountain of Magdiwata,
Philippines (Castaňares and Lojka, 2020).

Furthermore, the extension of roots creates a microbe-
rhizosphere community with bacteria, fungi, actinomycetes,
protozoa, and algae that regulate the mobility and bioavailability
of PTE (Jacob et al., 2018; DalCorso et al., 2019). Microbes that
tolerate PTEs contribute to plant survival and growth in the
rhizosphere. For example, rhizobium represents bacteria that
capture groups of plant rhizosphere with symbiotic nitrogen (N)
fixation in soils (Visioli et al., 2015) and promote OM
decomposition (Geng et al., 2022). Generally, root exudates
capture microbes in soils and colonize root surfaces or infiltrate
root cortexes (Visioli et al., 2015).

Organic acids, phenolics, and siderophores affect the
acidification process, and the dynamics of redox conditions
change the potential in rhizospheres (Glick, 2010). Hence,
adsorbed, precipitated, and residual fractions of PTEs solubilize
by increasing acidity, chelation, and ligand-induced dissolution by
microbes to become accessible to plants (Sessitsch et al., 2013). For
example, under Cd, Pb, and Zn stress, Enterobacter sp. andKlebsiella
sp. cause high accessibility in the root rhizosphere of Brassica napus
L. (Jing et al., 2014). It is vital to understand microbial input during
hyperaccumulation of PTEs and their extent of effects on
hyperaccumulating plants. Such studies enable specific microbes
culturing for plants suitable to alleviate PTEs contaminated soils.
Although there is individual scattered literature on soil PTEs,
hyperaccumulation, and microbial effects on PTE cleaning by
plants, a compilation of such studies remains scarce. It is
pertinent to treat environmental contamination with urgent

concern as the production rate of these metals, e.g., Cd, Pb, and
Zn, keep increasing over the years (Figure 1). The end-products,
such as litharge, after ore processing, are often disposed of and
contribute to high PTE contents, especially in soils.

The current study presents an overview that describes in detail
the principles governing the uptake, translocation, accumulation,
and detoxification of As, Cd, Pb, and Zn by hyperaccumulating
plants. We also answer questions that pertain to the extent of
microbial participation in the accessibility of PTEs by
hyperaccumulators. The implications of specific rhizosphere
microbes in reworking PTEs during phytoextraction by
hyperaccumulators deserve critical attention. Knowledge of the
intensity of accumulation of exaggerated content of As, Cd, Pb,
and Zn by plant hyperaccumulators is essential in avoiding the
detrimental effects on soils and living things.

2 Data acquisition and proceedings

Relevant peer-reviewed publications covering sub-headings of
this study were critically elucidated from ScienceDirect, Google
Scholar, Web of Science, ResearchGate, and Scopus in the last
decades to date to satisfy the flow chart in Figure 2. We used the
search engines to elaborate on keywords, including the impacts of
PTEs on the environment, processes of PTE uptake and
translocation in plants, and effects of plant hyperaccumulators on
microbes growing on PTE-contaminated soils.

3 Fractionation and speciation of PTEs
in soils and their interactions with
plants

Different elements are well-categorized by their
physicochemical forms in soils, especially in organic complexes,
adsorbed in solid phases or constituents of solid/mineral phases,
with diverse solubility (Wu et al., 2019; Salman et al., 2021). Plant-
accessible forms represent the exchangeable complexes (organic and
inorganic components) and soluble forms in soil solution taken
predominantly by plants as divalent ions.

The principles underlying the mobility (e.g., high pH, redox
dynamics) and immobilization (e.g., high OM contents, soil
colloids) may individually or collectively complement the
dynamic of elements in soils (Wu et al., 2019; Zemanová et al.,
2021). For example, PTEs undergo reactive dissolution leading to
bioavailability in highly acidic soil (Kicińska et al., 2021). Again, OM
reduces the mobility of PTE due to high negative charges that adsorb
cationic elements (Sarkar et al., 2021).

(i) Arsenic (As): Various forms of As in soils include free ionic
species, precipitated as solids, adsorbed on organic or inorganic
constituents, and the exchangeable and structural composition
of primary and secondary minerals (Shahid et al., 2014; Joseph
et al., 2015). Inorganic species of As (As (III) and As (V)) are
present in forms such as fully protonated As or arsenous acids
(Fayiga and Saha, 2016). Arsenate (AsO3

−4) is more stable and
quickly adsorbed to surfaces of clay minerals and Fe/Mn (hydro)
oxides (Khalid et al., 2017), while under reduced soil conditions,
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arsenite (As (OH)3
0) becomes highly toxic, soluble, and mobile

for easy plants availability (Zemanová et al., 2021). Both As (V)

and As (III) are highly soluble in H2O and may change valency
states depending on the pH (Parvin et al., 2021) and Eh (da Silva
et al., 2018).

In As contaminated soils, organoarsenicals, e.g.,
monometylarsenic (MMA), dimethylarsenic (DMA),
tetramethylarsonium (TMA), trimethylarsine oxide (TMAO), and
tetramethylarsonium ion (TETRA) usually represent a minor
component or are not detected in many soils (Shrivastava et al.,
2015). Arsenic can undergo oxidation, reduction, methylation, and
demethylation in soils under the modulation of microorganisms (Di
et al., 2019). Arsenic mobility, availability, and toxicity in the soil-to-
plant system depend on the oxidation states of As (da Silva et al.,
2018).

(ii) Cadmium (Cd): Cadmium occurs in a soluble and
exchangeable portion, precipitated with carbonates, occluded
in amorphous Fe/Mn oxides, complexed with OM, and residual
forms (Wiggenhauser et al., 2021). In soils, Cd can bind with
colloids and organic amendments (e.g., hydroxyapatite-
phosphate materials) to reduce mobility (Zeng et al., 2020).
High alkaline soils constitute Cd precipitates (Cd (OH)2), a
condition for low accumulation by plants (Gong et al., 2021;
Asare et al., 2023). Additionally, low Eh can induce reductive
dissolution of Fe and Mn oxides, which release bonded Cd into
soil solution and increase bioaccessibility (Izquierdo et al.,
2017; Wu et al., 2019).

(iii) Lead (Pb): Lead in soils exists as a free metal ion, mostly
complexed with inorganic components (e.g., PbCO3

2–,
PbHCO3 –, PbSO4

2–, and PbCl2
−), or occurs as organic

ligands (e.g., humic and amino acids) (Lodygin et al., 2020).
Ionic Pb, PbII, Pb oxides and hydroxides, and Pb-metal

oxyanion complexes are the general forms released into
soils. Organo-Pb compounds of commercial and
toxicological value are predominantly limited to the alkyl
(methyl and ethyl) Pb compounds and their salts (e.g.,
diethyl-Pb-dichloride, dimethyl-diethyl-Pb, and trimethyl-
Pb-chloride) (Wang and Mulligan, 2006). Lead shows a high
affinity to soil OM and colloidal surfaces, thus, reduces, its
availability in plants. Free Pb in soils often remains the only
phyto-available form (Punamiya et al., 2010).

(iv) Zinc (Zn): The mobility and immobilization of Zn in soils are
associated with chemical fractions; Fe/Mn oxide bound,
residual (immobile), OM bound, carbonate bound,
exchangeable, and soluble in H2O (Đurić et al., 2021).
Soluble forms of Zn, such as ZnSO₄, are moderately mobile
in many soils. Zinc content in contaminated soils occurs in
immobile forms (Sharma et al., 2013). Studies show that most
agricultural and industrial activities result in a high fraction
(>70%) of inaccessible Zn by plants with availability
(exchangeable and carbonate forms) of >30% (Mertens and
Smolders, 2013; Liao et al., 2019).

In soils with free molecular oxygen, reductive dissolution of Fe/
Mn (hydr)oxides releases Zn into the aqueous phase, which
repartitions with Zn into sulfide and carbonate solids. In dry
oxidized soils, Zn relates with (hydr)oxide phases, and in flooded
systems, sulfides and carbonates (Mondillo et al., 2018). In general,
the speciation and bioavailability of As, Cd, Pb, and Zn in soils are
individually or collectively associated with soil reaction (pH), redox
potential (Eh), dissolved organic carbon, clay content, Fe/Mn/Al
(hydr)oxides, and microbial processes (Dary et al., 2010; Sungur
et al., 2020).

Meanwhile, plants modulate the mobility and accessibility of
PTEs by discharging root exudates: oxalic, fumaric, malic, and acetic
acids (Lapie et al., 2019), which enhance solubilization. However,

FIGURE 2
Showing the sequential flow of topical issues treated in this study.
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TABLE 1 Contents of As, Cd, Pb, and Zn in plant hyperaccumulators from different studies.

Hyperaccumulator/family Frequent occurrence Soil content
(mg kg−1)

Content of elements in the
plant (mg kg−1)

References

Leaf Shoot

As

Pteris vittata L./Pteridaceae Indigenous Asia, southern Europe, tropical Africa, and Australia 18.8–1,603 4,240–6,030 3,280—4,980 Ma et al. (2001) Visoottivisetha
et al. (2002)

Pteris vittata Linn/Pteridaceae 12,300

Isatis cappadocica Desv./Brassicaceae Native in Iran, Iraq, Lebanon-Syria, Transcaucasia, and Türkiye >200 350 Karimi et al. (2009)

Brassica juncea L./Brassicaceae Eastern Europe and China, where the range of its parent species As-fed in
hydroponics

>2000 Karimi et al. (2009)

Pityrogramma calomelanos L./Parkeriaceae Native in Mexico, Central, and South America 12,300 8,350 Visoottivisetha et al. (2002)

Berkheya coddii Roessler/Asteraceae Tropical Africa, especially in southern regions 4,100 Mesjasz-Przybyłowicz et al.
(2004)

Cd

i. Viola baoshanensis/Violaceae ii. Lysimachia deltoidea Wight/
Primulaceae

(i) Native in Southeast China. (ii) Native in parts of China East
Himalaya, India, Laos, Myanmar, Nepal, Sri Lanka, Thailand,
Vietnam

(i) 1,090 Wu et al. (2010)

(ii) 212

(i) Nocceae caerulenscens (J.Presl & C.Presl)/Brassicaceae (i) Native to Eastern and Central Europe. Introduced to Baltic
States, Belarus, Central European Rus

(i) 160 Bridgwater et al. (1999)

(ii) Euphorbia cheiradenia Boiss. & Hohen/Euphorbiaceae (ii)Native in Afghanistan, Iran, Iraq, Lebanon-Syria, Palestine,
Türkiye

(ii) (ii) 237

Viola baoshanensis/Violaceae 663 >1,000 Liu et al. (2004)

Arabidopsis hellari/Brassicaceae >400 Mohiley et al. (2021)

Leaf Shoot

Pb

(i) Viola baoshanensis/Violaceae (ii) Silene viscidula Franch/
Caryophyllaceae (iii) Silene gracilicaulis C. L. Tang/Caryophyllaceae

Native in parts of China, East Himalaya, India, Laos, Myanmar,
Nepal, Sri Lanka, Thailand, Vietnam

(i) 1902 (ii) 3,930
(iii) 3,617

Wu et al. (2010)

Betula occidentalis Hook/Betulaceae >1,000 Koptsik (2014)

Euphorbia cheiradenia Boiss. & Hohen/Euphorbiaceae Native in Afghanistan, Iran, Iraq, Lebanon-Syria, Palestine, Turkey - 967 Bridgwater et al. (1999)

Zn

Euphorbia cheiradenia Boiss. & Hohen/Euphorbiaceae 3,614 Bridgwater et al. (1999)

Nocceae caerulescens (J.Presl & C.Presl)/Brassicaceae Native to Eastern and Central Europe. Introduced to Baltic States,
Belarus, Central European Rus

2,100 Lombi et al. (2002)

(Continued on following page)
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root exudates can remove PTEs by chelating and complexation,
altering the numbers and activity of rhizosphere microbes (Jing
et al., 2014; Lapie et al., 2019). Uptake of PTE is partly possible via
diffusion into the root epidermis. However, the primary passage
occurs via the apoplast and symplast (Yan et al., 2020). Apoplastic
movement involves several transporter proteins for uptake and
translocation (Guerinot, 2000). Casparian strips represent an
apoplastic restriction of PTE, especially Pb (Wang et al., 2015;
Wilkins et al., 2016). The uptake of PTEs through the symplast is
well-governed by metal carriers or complexing agents (Asare et al.,
2023). Chelation resulting from the production of phytochelatins
can result in the immobilization of PTEs in roots (Flores-Cáceres
et al., 2015) while remaining PTEs sequester in cellular organelles.
Cadmium, As, Pb, and Zn sequestered inside the vacuoles can
transport into the stele and enter the xylem via the root symplast
(Thakur et al., 2016). In the apoplast, many precipitated forms of
compounds, e.g., CO2-

3, get immobilized. However, the mobile
fractions of PTEs at this point are translocated via the apoplast
or symplast movement into leaves and sequestered in extracellular
parts to stop compartmental cellular accumulation (Tong et al.,
2004).

4 PTE hyperaccumulators and their
protein transporters

4.1 PTE hyperaccumulators

Several plants can accumulate As, Cd, Pb, and Zn above
threshold levels in aboveground organs. At the organ level, leaves
are well-considered in establishing the hyperaccumulating statuses
of plants (Yan et al., 2020; Lima et al., 2022). Hyperaccumulators of
PTEs have distinguished physiological properties capable of
sequestering high contents of PTEs at a high rate (Lima et al., 2022).

Due to health and ecotoxicological reasons, PTE contents in
plants have assigned global and regional permissible limits.
According to WHO (1996), the content of (in mg kg−1) As- 0.1,
Cd- 0.02, Pb- 2, and Zn- 0.60 should not exceed the standard
reference in plants. The use of translocation (root-to-shoot quotient,
TF) and bioaccumulation (plant-to-soil quotient, BF) factors over
1 are vital parameters when associated with permissible limits of
PTEs determining plant hyperaccumulating abilities (Ghori et al.,
2016; Souri et al., 2017). Many hyperaccumulating plant species,
including Lysimachia deltoids L., Viola baoshanensis (W. S. Shu),
Silene gracilicanlis L., and Gentiana sp. exhibit translocation
factors >1 for Cd, Zn, and Pb (Reeves and Baker, 2000; Table 1).

Studies show that Cd, Pb, and Zn-hyperaccumulator can
accumulate (in mg kg-1 dry weight) > 100 (Baker et al.,
2000), >1,000 (Baker et al., 2000), and 3,000 (Reeves and Baker,
2000), respectively, in any above-ground organ. According to Baker
and Whiting (2002), these high contents only provide guidelines in
recognition of the extreme behavior of plants during PTE uptake.
High consideration is, thus, given to the content of PTEs in
contaminated soils and their respective accumulation by the
aboveground biomass, especially in the case where BF > 1. Plant
species such as Pteris vittata L. (Danh et al., 2014) and Isatis
cappadocica Desv (Karimi et al., 2009), hyperaccumulate As. For
example, Pteris vittata adopts a mechanism of arsenate and arseniteTA
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uptake, translocation, and vacuolar sequestration (Danh et al.,
2014), while the stem and shoot remain unaffected by As stress
(Sridhar et al., 2011). Many hyperaccumulators possess multiple
abilities in accumulating several PTEs. Wu et al. (2010) observed
that V. baoshanensis accumulated (in mg kg−1) 1,090 of Cd,
1,902 Pb, and 3,428 Zn in the shoots.

4.2 PTE transporters

Plant uptake and subsequent transport of PTEs are well-
mediated by complex sequences. Many specialized protein
transporters in different plant parts exhibit diverse abilities for
PTE translocation, maintaining homeostasis, and controlling ion
movements across cellular channels from roots to shoots
(Ricachenevsky et al., 2013; Mishra et al., 2017). These
transporters enable the re-mobilization of sugar molecules from
photosynthetic tissues in leaves to roots, stems, and seeds through
phloem loading. Primary protein transporter families for PTEs
include;

Zinc/iron protein transporter (ZIP): Most divalent cationic
elements (Cd, Ni, Cu, Co, and Fe), especially Zn, undergo uptake
and active translocation in the plant system by ZIP and associated
transcription genes (Table 2). Another subfamily, the iron-regulated
transporters (IRTs), are implicated mainly in the transport of Fe
(Verret et al., 2004). The IRT is also responsible for Cd transport in
the Arabidopsis (Lee and An, 2009).

Metal tolerance protein (MTPs): This transporter transports
metals at the whole plant level (Desbrosses-Fonrouge et al., 2005)
and regulates homeostasis and active Zn translocation
(Ricachenevsky et al., 2013). The MTP transporters have different
sub-families; Fe/Zn-MTP, Zn-MTP, and Mn-MTP (Shirazi et al.,
2019), and can exist in several assessions from MTP1 to MTP12
(Shirazi et al., 2019).

Members of this family and their accessions partly mediate Co,
Ni, and Cd transport. Studies have previously shown MTP1 in
Hordeum vulgare (HvMTP1), Oryza sativa- (OsMTP1), and
Cucumis sativus (CsMTP1), with MTP3 and MTP4 in A.
thaliana and Cucumis sativus, respectively, into different
compartments (Shahzad et al., 2010; Yuan et al., 2012).

Yellow Strip-like transporter family (YSL): YSL is well-known for
the transport of Zn and Cd; described as an essential regulator of
excess Zn together with Ferric Reductase Defective3 (FRD3), a
MATE (multi-drug and toxin efflux) transporter (Pineau et al.,
2012). They mediate the cellular uptake of metals that form
complex to non-proteinogenic amino acids (Socha and Guerinot,
2014). According to DiDonato Jr et al. (2004), YSL2 is expressed in
many cell types in roots and shoots of Arabidopsis and represents a
metal-regulated gene encoding transporter of nicotianamine–metal
complexes. In A. thaliana, YSL4 and YSL6 buffer the adverse effects
of excess Fe (Divol et al., 2013).

Natural resistance-associated macrophage protein (NRAMP):
The functions of the NRAMP were previously related to Fe2+

uptake and translocation (Williams and Mills, 2005; Mishra
et al., 2017). The NRAMPs are well-identified in varied
compartments of Arabidopsis, and other monocot and dicot,
governing the transport of divalent PTEs, e.g., Cd, Zn, and Pb
(Bastow et al., 2018).

Nodulin 26-like intrinsic proteins (NIP): NIPs are cationic
element transporters, including Si, Se, As, and Sb. Various
species of As in soils are loaded into plants by NIP (Zhao et al.,
2008; Chen et al., 2016). Evidence of As(V) species transport in P.
vittate and I. cappadocica was well-demonstrated by Su et al. (2008)
and Karimi and Souri (2015).

Different groups of transporters control the transport of specific
PTE (Figure 3).

i. Arsenic transporters

Plant roots select As species by distinct transporters. For
instance, in A. thaliana, As (v) uptake is mediated by phosphate
(PHT) transportersAtPHT1, 4, 5, 7,8, and 9, while theNIP1-3, 5, and
7 for As (III) (Xu et al., 2015). Moreover, NIP has shown evidence in
root-to-shoot translocation of As (III) (LeBlanc et al., 2013), with
ACCC1 and 2 responsible for cellular transport of As (III) in the
cytosol while in the presence of phytochelatins (Song et al., 2010).

Another transporter pertinent in As (III) is the tonoplast intrinsic
protein (TIP) determined in P. vittate (He et al., 2016). Gene
expressions, such as NIP1;1, NIP1;2, NIP3;1, NIP5;1, NIP6;1, and
NIP7;1, are capable of coordinating H3AsO3 from the root and their
subsequent transport (Bienert et al., 2008; Xu et al., 2015). The
unanswered question so far is, are the same transporters solely for As
species transport in hyperaccumulating plants?

ii. Cadmium transporters

Transporters Nramp, HMA, ZIP, ATP, YSL, and ABC (ATP
Binding Cassette) families are involved in Cd distribution. The
Nramps are well-identified in different compartments of
Arabidopsis, and other monocots and dicots, Cd transport
(Bastow et al., 2018). Meanwhile, Nramp1, 3, and 4 are often in
charge of Cd above-organ accumulation in A. thaliana. Nramp6 is a
Cd transporter, which mediates Cd transport from storage into the
toxic cellular compartment. Gene transcription NcNramp1 in N.
caerulescens regulates Cd influx across the endodermal plasma
membrane, which implies possible root-to-shoot transport
(Milner et al., 2014).

HMA1 is an efflux transporter localized in the chloroplast and
controls the export of Cd from the chloroplast. HMA2 is a plasma
membrane transporter involved in Cd root-to-shoot translocation,
while overexpression of AtHMA3 enhanced Cd tolerance and
increased its accumulation (Morel et al., 2009). AtHMA2 and
AtHMA4, localized in the plasma membrane, are responsible for
the xylem loading of Zn/Cd and play a key role in their accumulation
in the shoots (Takahashi et al., 2012). Heavy-metal ATPase
transporters are responsible for the long-distance transport of Cd
from root to shoot. Additionally, gene expressions HMA4 and
HMA2 regulate the influx of Cd into the stele to promote root-
to-shoot transport in Arabidopsis Mishra et al. (2017).

YSL family involved in Cd transport include YSL1, YSL3, YSL6,
and YSL7 (Curie et al., 2009). An excess of Cd can stimulate the
expression of YLS. Overexpression of YSL1 or YSL3 in Arabidopsis
increases the Cd translocation ratio under Cd stress (Tao and Lu,
2022).

iii. Lead transporters
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NRAMP transporter family has been noted with the uptake of
Pb, e.g., in O. sativa (Qiao et al., 2021). HMA3, a vacuolar P1B-
ATPase, mediates the sequestration of Pb2+ and other cationic
metals, into the vacuole of different plant species (Liu et al.,
2018). ABC transporters and their subfamilies also modulate Pb
transport. For example, the transcription gene ABCG36 of poplar
hybrid located on the plasma membrane transports Pb2+ from the
cytoplasm across the plasma membrane (Abolghassem et al., 2015).
Expression ABCG48 was upregulated in the shoots and roots of
plants treated with Pb2+ (Abolghassem et al., 2015). A homolog of
HMA5 in poplar, PtHMA4, was also found to be localized at the
plasma membrane. Meanwhile, the upregulation of Pb in the root by
PtHMA4, suggests Pb from roots to shoots (Qiao et al., 2021). In
Arabidopsis helleri L, AtHMA3 participates in Pb2+ sequestration by
transporting it to the vacuoles (Hasan et al., 2017).

iv. Zinc transporters

ZIP transfers Zn to the stele in roots. For example, Noccaea
caerulescen (J. Presl. & C. Presl.) and A. halleri exhibit improved Zn
uptake (Assunção et al., 2001) and are represented by ZNT1 (Van de
Mortel et al., 2006). The NcZNT1 gene expression and AtZIP4 for A.
thaliana are active in the cortex, endodermis, and pericycle cells.
These expressions are also in the same tissues of N. caerulescens but
are not limited to Zn-deficient conditions (Van de Mortel et al.,
2006; Lin et al., 2016). Zinc transporter 2 (ZNT2) and ZNT5 are also
responsible for Zn2+ transport in the root cortex or by diffusion (Lin

et al., 2016). The Zn ion is sequestered for vacuole storage and
transported to the endodermis by ZIP23, ZIP19, ZIP5, and IRT3.
Zinc ion transport stops by the apoplastic barrier (e.g., Casparian
strip) and enters the endodermis via ZNT1/ZIP4. Transcriptional-
level analysis shows that HMA2 and HMA4 form vital components
of Zn hyperaccumulation and hyper-tolerance in A. halleri -
AhHMA2 and AhHMA4 (Hanikenne et al., 2008; Frérot et al.,
2018). Moreover, in the root pericycle, AhHMA2 and AhHMA4
promote Zn2+ efflux and loading in the root xylem (Hussain et al.,
2004). Again, HMA3 mediates the sequestration of cationic Zn into
the vacuole.

Zinc can transport from the root to shoot by ZIP4 and IRT3,
form chelates, or possibly diffuse into the pericycle cells (the
outermost part of the stele). Enhanced accumulation of Zn in the
shoot by overexpression of IRT3 was suggested by Balafrej et al.
(2020). Meanwhile, Zn enters the leaf cell either in chelation with
low-molecular-weight ligands or as free Zn2+ complemented by ZIP4
and ZIP6 (Sinclair and Kramer, 2012). Several gene transcriptions
from different transporters (e.g., MTP1 and 8, HMA3 and 4, and
NRAMP3) promote the transport of Zn into the vacuole. The long-
distance root-shoot translocation of Cd and Zn is solely responsible
for HMA4 (Verret et al., 2004). Additionally, overexpression of
HMA4 enhances Zn2+ efflux from the root symplast into the xylem
vessels and promotes metal tolerance (Verret et al., 2004). After Zn
loading in the xylem by different transporters: HMA, ZIP, and YLS,
Zn reaches the leaves, where it binds to organic acids, e.g., malate
and citrate, and sequesters in vacuoles. Unchelated Zn at the

TABLE 2 Examples of types of protein transporter and function.

Transporter (gene
expression)

Example of
hyperaccumulators

PTE Part of plant Function References

Zinc-iron protein (ZIP)

(NcZNT1) Noccaea caerulescen Zn Stele in root The radial movement to stele in
roots

Van de Mortel et al. (2006)

ZIP23, ZIP19, ZIP5, and
IRT3

Zn Vacuole in the root Vacuole storage and
transported to the endodermis

Balafrej et al. (2020)

ZNT2, ZNT5 Zn Root Transport in the root cortex Balafrej et al. (2020)

ZIP4, and IRT3 Root, shoot Root-to-shoot translocation Balafrej et al. (2020)

Heavy metal ATPases (HMA)

HMA3 Many plants, e.g., Arabidopsis
helleri

Zn, Cd,
and Pb

Vacuole Sequestration of Zn, Cd, and Pb
into the vacuole

Hanikenne and Baurain
(2014), Liu et al., 2018

HMA4 N. caerulescens and Arabidopsis
helleri

Cd, Pb, Zn Root and shoot Xylem loading of Cd, Pb, and
Zn for root-to-shoot transport

Mishra et al. (2017)

HMA 2 Arabidopsis helleri Cd and Zn Shoot Hyper-tolerance Frérot et al. (2018)

Metal Tolerance
Protein (MTP)

MTP1 Arabidopsis thaliana (Non-
hyperaccumulator)

Zn Vacuole and
plasma membranes

Accumulation and tolerance Desbrosses-Fonrouge et al.
(2005)

Yellow Strip-like

YSL2 Arabidopsis Zn and Cd Root and shoot xylem loading Curie et al. (2009)

Nodulin 26-like intrinsic
proteins (NIP)

HvNIP1:2 Hordium Vulgaris As Root As uptake Chen et al. (2016)

NIP1;1, NIP1;2, NIP3;1, NIP5;
1, NIP6;1, and NIP7;1

Oryza sativa, Hordium Vulgaris,
Pteris vittata’s

H3AsO3 Root root uptake Chen et al. (2016); He et al.
(2016)
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apoplastic barrier reaches the xylem through YSL or direct diffusion.
Zn2+ crosses the xylem as free Zn or coupled with histidine, citrate,
or malate (Tao and Lu, 2022). YSL transporters are also known for
loading and unloading Zn in the xylem (Curie et al., 2009).

5 Persistence of hyperaccumulators
under PTE stress

Plants, especially hyperaccumulators, either tolerate or detoxify
PTEs to persist under high PTE (Dalvi and Bhalerao, 2013). Already
taken ionic PTEs must undergo intracellular mechanisms to
tolerance, including (a) cellular and subcellular
compartmentalization of PTEs, (b) formation of chelates-
reducing the toxicity of ionic forms of PTEs (Dalvi and Bhalerao,
2013), and (c) transportation capability. Meanwhile, other
detoxification approaches involved in PTE tolerance in plants,
such as PTE-immobilization in cell walls, impeded permeation
across cell membranes, and active export into the apoplast
(DalCorso et al., 2019).

Stress from PTEs triggers the production and accumulation of
bioactive substances in plants. For instance, proline accumulation
results from Cd, Pb, and Zn stress on plants (Roy and Bera, 2002).
The detoxification process begins as proline (comprised of amino
acids) chelates with PTE (Rai, 2002). Inadequate detoxification
increases PTEs accumulation in the cytoplasm, enabling the
release of reactive oxygen species (ROS). Excess production of
ROS results in oxidative stress, may disrupt cell homeostasis,
inhibit cellular processes, DNA damage, and protein oxidation

(DalCorso et al., 2019). In PTE-induced oxidative damage, plant
cells activate the ROS-scavenging system, which induces antioxidant
enzymes (e.g., superoxide dismutase, catalase, peroxidase, and
glutathione reductase) and non-enzymatic antioxidant
compounds, e.g., metabolites (DalCorso et al., 2019).

(i) Arsenic (As): In the cells of roots, As is converted to less toxic
forms, transported to vacuoles as AsIII, and forms complexes
with glutathione/phytochelatins (Souri et al., 2017). The
formation of As (III) complexes with γ-glutamyl-cysteinyl-
glycine and phytochelatins (PC) and their transport into roots
and shoots forms the dynamics of As coping (Souri et al., 2017).
In the vacuole, As is predominantly sequestered in the form of
phytochelatins (PC)-As or GSH (glutathione) conjugates
(Kumar et al., 2015). Thus, the transporters responsible for
vacuole sequestration of PC-As or GSH-As conjugate control
As detoxification. Volatile fractions of reduced organo-arsenicals
taken up by plants partly disappear via stomatal openings during
phytovolatilization (Limmer and Burken, 2016).

For instance, As uptake by P. vittata is achieved through a high-
affinity phosphate transport system, having the ability to store
complexes in vacuoles of leaf cells (Singh et al., 2016). Ionic
forms of PTE can sequestrate into petioles, sheathes, and
trichomes of leaves (Eapen and D’souza, 2005; Yan et al., 2020).
Transport systems with the ability to store complexes in vacuoles of
leaf cells (Singh et al., 2016). Meanwhile, organic acids within cells
prevent PTEs as free ions in the cytoplasm by forming complexes.
However, this reduces the further availability y of PTEs. For

FIGURE 3
Schematic diagram showing various transporters are involved in As, Cd, Pb, and Zn uptake, transport, and sequestration in plants. Potentially toxic
elements (PTEs) are taken up by root cell membrane transporters as free cations diverse transporters followed by Xylem–phloem Zn allocation occurs.
The different PTEs also translocate to the leaf and seed tissues of NA-PTE complexes. Furthermore, MTs, PC, and GSH have been implicated in PTE
homeostasis, transport, and sequestration in plants. Abbreviations: FRD ferric reductase defective; HMA heavy metal ATPase; IRT Fe-regulated
transporter; MT metallothionein’s; MTP metal tolerance protein; NA nicotianamine; NRAMP natural resistance-associated macrophage protein; YSL
yellow strip like; ZIP zinc-ion permease; ZNT zinc transporter and TIP tonoplast intrinsic protein (adopted and modified from Tao Lu, 2022).
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example, Malate is involved in the chelation of Zn in A. halleri
(Shanmugam et al., 2013). Translocated As species are partly
detoxified by ABC and ACR3 (arsenite transporters), an arsenic
transporter (Thounaojam et al., 2021).

(ii) Cadmium (Cd): Plants exhibit efficient strategies to respond to
Cd in their environments. In the root, Cd forms chelate with
ligands in the cell wall, cytoplasm, and vacuole resulting in its
immobilization, thereby losing toxicity (Ali et al., 2013). Root
vacuole storage of Cd reduces its toxicity and long-distance
transport to shoot (Thakur et al., 2016). Cd is sequestered in
shoots, and detoxification occurs in cell walls or plant vacuoles.
The main mechanism of PC-mediated Cd detoxification is
chelation by PCs to form a complex, which is then
transported into the vacuoles by ABC transporters
(Vatamaniuk et al., 2000; Zhang et al., 2018). Again,
metallothionein, minute peptides that contain cysteine also
act as cytoplasmic Cd chelation proteins (Zhang et al., 2013).
Studies show that the cell wall, particularly pectin increases
plant Cd tolerance by preventing Cd from entering root cells
(Gutsch et al., 2018). The studies by Luo and Zhang, (2021)
indicate that the expression of different genes occurs in the cell
wall, which supports Cd hyperaccumulation and detoxification,
e.g., in Sedum plumbizincicola.

InBrassica napus (Bna), ABCC sub-transporters BnaABCC3 and
BnaABCC4 were upregulated under Cd stress and enhanced Cd
tolerance by limiting the entry of Cd inside the cells and their
phytochelatins-mediated detoxification (Yamaji et al., 2013).

(iii) Lead (Pb): Pb in plant tissue activates cellular responses and
changes in signaling mechanisms and gene expression (Kumar
and Prasad, 2018). These mechanisms trigger the release of
specific metabolites, e.g., phytochelatins (PC), glutathione, and
metallothionein (Estrella-Gómez et al., 2009). These bioactive
materials, e.g., PC effectively bind with Pb and transport it to
the vacuole, where detoxification of Pb occurs. Reportedly, Pb
accumulation in plant tissues increases the expression of the
PCS gene with a concomitant increase in PCs in aquatic fern
Salvinia minima, a known Pb-hyperaccumulator (Estrella-
Gómez et al., 2009). Increased synthesis of PCs reduces free
Pb content in the cytoplasm and shows a strong correlation
with the suppression of stress-related responses in plants
(Estrella-Gómez et al., 2009). Finally, PTE complexation
with glutathione, amino acids, and PCs is transported to the
tonoplast or vacuole, where active detoxification and cell
removal occur.

(iv) Zinc (Zn): Firstly, Zn storage in root vacuoles is used as a
mechanism of Zn exclusion from the shoot in the presence of
excess Zn influx into roots or excess Zn supply in the soil
(references). The accumulation of Zn in different cells, e.g.,
trichomes, is thought to act as a detoxification and storage
strategy under excess Zn growth conditions (Ricachenevsky
et al., 2021). Zinc import into subcellular compartments is also
a vital detoxification strategy. Meanwhile, studies show that
AtHMA3 is involved in the vacuole sequestration of Zn2+ and
the overexpression of AtHMA3 resulting in hyper-tolerance in
A. thaliana (Miyadate et al., 2010).

6 The rhizosphere definition and its role

The rhizosphere elaborates on the root system and its close soils
that foster biological and chemical activities, e.g., by exudation, for
plant security and growth (Hartmann et al., 2009; Chamkhi et al.,
2022). Rhizosphere represents nutrient-rich zones in soils that
exhibit the capacity to perform extended functions for plants
during stress (Chamkhi et al., 2022). However, the region
supports beneficial and non-cooperative associations between
rhizosphere microbes and plants (Figure 4). Due to the diverse
root structure, the rhizosphere may exhibit varied size ranges.
Hence, the properties of this region change only along roots.
Meanwhile, about 90% of plants have roots extending from
0.27 to 0.9 m in soils, with a few reaching 1.82 m (Gilman, 1990).

The secretion of different bioactive (metabolites) compounds
directing depends on the type of plant (genotype) and stress elicitor
(e.g., abiotic and biotic). For example, roots can discharge their
photosynthetically fixed C- into the soil (Sasse et al., 2018). The
composition of exudates significantly impacts the activities and
microbial count and diversity. Increased microbial count and
activities in rhizosphere regions are a function of metabolite
discharge (Sasse et al., 2018). Microbial preferences in the
rhizosphere also depend on the influence of root exudates, which
can affect the dissolution of PTEs for effective uptake. Hence,
exudate patterns are vital drivers that shape the rhizosphere
microbiome (Zhalnina et al., 2018) and are plant species-specific
(Gianfreda, 2015).

Knowledge of the soil–root interface is pertinent to managing
microorganisms, increasing plant growth, and reducing the effect of
plant production. However, with the identification of plant genomes
and the genes induced under different PTE stress, e.g., encoding for
transporter proteins, metal sequestering peptides, and enzymes
metabolism in plants, the principles governing PTEs uptake,
accumulation, transport, chelation, and detoxification provide
vital information for effective soil decontamination.

6.1 Rhizosphere microbe-plant interactions

Rhizosphere microbes exhibit movement to discharge pulses
along plant roots (Hünninghaus et al., 2019) and play a vital role in
regulating nutrition in plants, e.g., N fixation (Xiong et al., 2021).
These microbes can compete and populate the root rhizosphere
(Schreiter et al., 2018; Mulero-Aparicio et al., 2019). The attraction
of microbes to the rhizosphere depends on the characteristics of the
roots. Microbe-plant interaction in the rhizosphere involves
chemical processes that partly account for the chelation and
solubilization/dissolution of PTEs to promote mobility or
immobilization (Figure 4). Although some microbes may not
show a direct affinity for root exudates and many
physicochemical properties of soils, especially toward the
dissolution of PTEs, but contribute to their detoxification in soils.
For example, Bacillus subtilis shows high tolerance and adsorption
for Cd and Pb, a means of detoxification and elimination (Li et al.,
2022). Soil properties, e.g., OM, organic C, and clay contents,
influence microbial functional diversity (Li et al., 2022).

Microbes exhibiting resistance to the long-term effect of PTE
contamination provide a basis for selecting suitable microbial species
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to assist in phytoremediation (Zubair et al., 2016; Table 2). Bacteria can
help plants to resist stress and improve plant growth and productivity.
For example, resistant bacteria can transform PTEs into less toxic forms
and alter their availability for possible plant uptake or chelation
(Whiting et al., 2001). Rhizosphere microbes such as Acinetobacter,
Bacillus, Gluconacetobacter, and Pseudomonas affect the bioavailability
of Zn (Costerousse et al., 2017), which involves pH reduction (acidic)
and root growth. Additionally, the presence of mycelium fungi
contributes to the increase in plants’ tolerance to excess Cd and Zn
in Salix sp (Hrynkiewicz et al., 2012). Some rhizosphere microbes
promote plant growth by direct interactions with plants or indirect
antagonistic activities against plant pathogens. Pathogens affect many
bacteria and fungi.

A typical example is endophyte resistance toward pathogenic
space and nutrients in the rhizosphere and plant tissues (Vogel-
Mikuš et al., 2006). The apical roots are involved in the active
selection of specific microbe. Studies show that the polysaccharide
composition of root mucilage for microbes with suitable glycosyl
hydrolase composition (Amicucci et al., 2019) and further by
extracellular DNA, antimicrobial proteins, and secondary
metabolites (Haichar et al., 2014). Meanwhile, arbuscular
mycorrhiza and ectomycorrhiza avoid PTEs from root uptake via
absorption or chelation, indicating resistance (Hall, 2002).

Loading of PTEs in plant cell walls represents an approach to
metal avoidance (Memon and Schroder, 2009; Krzeszowska et al.,
2021). Cell wall pectin made of negative carboxylic groups of

polygalacturonic acids can bond with cationic PTEs. The cation
exchange reactions prevent free metallic ions from entering plant
cells. Various interacting microbes produce phytohormones, which
inhibit or promote root growth, protect plants against abiotic stress,
and improve nutrient acquisition by roots (Gupta et al., 2014). One
pertinent role of microbes in plant nutrition and health is the
association between rhizosphere fluorescent pseudomonas and
plants, while others suppress plant diseases and fungal pathogens
from OM (Kumari and Kumar, 2018). For example, in soils
suppressive to the fungal pathogen Rhizoctonia solani, Raza et al.
(2016) reported that proteobacteria, firmicutes, and actinobacteria
were prominent taxa involved in disease suppression.

Stable isotope study of plants and root-associated microbes shows
dynamics in taxonomic composition and activities of microbial
consumers. For example, Hünninghaus et al. (2019) pointed out that
bacterial taxa with the highest abundance in the root of Zea mays L.
were not necessarily those showing the highest enrichment of 13C from
rhizodeposition, indicating substantial differences in consumption of
exudates. Active and passive exudation of low molecular weight carbon
compounds, e.g., sugars and organic acids, during root expansion and
root hair zones (Canarini et al., 2019) constitutes microbial community
modulation (Hu et al., 2018). These locations also modulate enzymatic
activities (Zhang et al., 2020) and affect PTEs in soils and plant
accessibility.

Arsenic reduction, methylation, and demethylation depend on
the type of microbes in the soil. Under anaerobic conditions,

FIGURE 4
Shows the root rhizosphere region and the relationship between microbes and plants during the uptake of potentially toxic elements (PTEs) in soils.
The process is well-supported by the production of root exudates. Plant growth-promoting microbes (PGPM), with a high preference for root exudation,
colonize root surfaces and rework PTEs (adopted and modified from Ma et al., 2016). (A) indicates microbial activities; (B) indicates root exudation +
microbial interaction.
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organoarsenicals reduce to volatile arsine, such as
monomethylarsonous acid [MMA(III)], dimethylarsinous acid
[DMA(III)], and trimethylarsine TMA(III) (Zhang et al., 2021).
Microbial As methylation is an effective method for As
detoxification in microbes as a bioremediation approach.

6.2 Effects of PTEs on rhizosphere microbes
during hyperaccumulation

Many rhizosphere microbiomes can tolerate high contents of
Zn, As, Cd, and Pb (Abou-shanab et al., 2019), which contribute
significantly to the mobility and immobilization of PTE in soils.

Rhizosphere microbes, such asbacterial siderophores, can increase
PTE accumulation and induce tolerance during phytoremediation
(Benizri and Kidd, 2018). For instance, rhizobacteria, endophytes,

siderophores, carboxylic acids, and phosphate solubilizers can
contribute to the dissolution of As for plant uptake (He et al., 2013;
Cabello-Conejo et al., 2014). Plant-associated microbes protect host
plants by releasing phytohormones to combat biotic and abiotic elicitors
that cause adverse effects on plants.

Moreover, the secretion of root exudates by hyperaccumulating
plants and the attraction of rhizosphere microorganisms can
significantly affect the availability of PTEs (Figure 4). For
example, a Cd content of 7 mg kg-1 in soil caused a reduction in
rhizobium populations (Chaudri et al., 1992). Thus, high contents of
some PTE can reduce microbial diversity and abundance (Abou-
Shanab et al., 2005). For instance, the inoculation of Bacillus sp.,
Delftia sp., Pseudomonas sp., Pseudoxanthomonas sp., and
Variovorax sp. on P. vittata plants under As stress resulted in
increased plant biomass and As removal efficiency in soils (Yang
et al., 2012).

TABLE 3 Effects of rhizosphere microbes on plant hyperaccumulators/tolerant of Potentially toxic elements (PTE).

Hyperaccumulator/Tolerant
plants

Rhizosphere microbes PTE Effects on plant References

Pteris vittate Pseudomonas sp., Delftia sp.,, Bacillus
sp.,, Variovorax sp., and
Pseudoxanthomonas sp.

As Increased plant biomass,
solubilization, and As removal

efficiency in the soils

Yang et al. (2012)

Pteris multifida Bacillus sp, Massilia sp,
Curtobacterium

As Increased tolerance Zhu et al. (2014)

Brassica napus Enterobacter sp., Klebseilla sp. Cd Increased uptake Jing et al. (2014)

Arabidopsis thaliana (non-
hyperaccumulator)

Bacillus megaterium Cd and Pb Enhanced tolerance and
accumulation

Hsieh et al. (2009)

Dryobalanops fusca Siderophore-producing, phosphate-
solubilizing, and acid-producing

bacteria

Pb Increase in metal ion uptake Abou-Shanab et al. (2005)

Brassica napus Enterobacter sp., Klebseilla sp. Pb Increased uptake Jing et al. (2014)

Thlaspi praecox Wulfen (Brassicaceae Arbuscular mycorrhizal fungal Zn, Cd,
and Pb

Vogel-Mikuš et al. (2006)

Trifolium hybridum, Alopecurus
pratensis, Poa pratensis, Hordeum
violaceum, Ranunculus kotschyi,

Cerastium sp

Bacillus megaterium var.
phosphaticum

Zn Nutrient-solubilization; Pathogens
control

Gullap et al. (2014)

Nocceae caerulescens, Alyssum
bertolonii, A. murale, and B. juncea

Rhizobacteria Zn Increased content of Zn Delorme et al., 2001; Abou-Shanab
et al., 2003; Whiting et al., 2001)

Nicotiana tabcum Neurospora crassa Zn Enhanced Zn accumulation Dixit et al. (2011)

Trifolium hybridum, Alopecurus
pratensis, Poa pratensis, Hordeum
violaceum, Ranunculus kotschyi,

Cerastium sp

Bacillus megaterium var.
phosphaticum

Zn Nutrient-solubilization; Pathogens
control

Gullap et al. (2014)

Dryobalanops fusca Siderophore-producing, phosphate-
solubilizing, and acid-producing

bacteria

Zn Increase in metal ion uptake Abou-Shanab et al. (2005)
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Changes in pH affect microbial abundance and diversity, which
are directly associated with the solubility of PTEs. According to
Delorme et al. (2001), a high alkaline pH by adding lime increased
bacteria count reduced Zn toxicity and enabled the growth of N.
caerulescens and Trifolium pratense L. Meanwhile, increasing acidity
promotes the high solubility of PTE for effective bioaccumulation
(Becker and Skaar, 2014). Microbial counts also affect
hyperaccumulators, probably because of the different secretions.

For example, N. caerulescens recorded a higher microbial
population in Zn-contaminated soil than Trifolium pratense L.
(Delorme et al., 2001) via acidification by microbes, which
improves Zn availability, uptake, and selection for metal-resistant
bacteria. Bacterial strains with Hexa-, Penta-, Tetra-, and Trivalent-
metal ions tolerant are often abundant in the rhizosphere zone,
where they can resist high Cd and Pb contents (Abou-Shanab et al.,
2005). A unified multi-microbial influence on PTEs may result in
fast stabilization or dissolution. These multi-facet abilities of
diversified microbes in the rhizosphere are helpful during high
levels of PTEs, as this can affect the uptake (Gremion et al.,
2004). Antibiotics, phosphate solubilizers, hydrocyanic and
indoleacetic acids, and siderophores obtained from some
rhizobacteria increase Cd availability and facilitate absorption in
plant roots (Sharma and Archana, 2016; He et al., 2020). Microbial
populations often establish some positive relationship with the host
plant system. Soil contaminated with PTEs can lead to the
appearance of resistant rhizobacteria (Henao and Ghneim-
Herrera, 2021; Table 3). Hyperaccumulating plant species of
PTEs can significantly shape the rhizosphere ecosystem and
impact the microbial community to favor the reduction of As,
Cd, Pb, Zn, and many other pollutants. For example,
Actinobacteria, Bacteroidetes, and genus Streptomyces were well-
detected as dominant traits in Cd-stressed hyperaccumulator Sedum
alfredii compared to non-hyperaccumulating ecotypes (Hou et al.,
2018). Thus, S. alfredii and Cd exposure select suitable microbes for
hyperaccumulation. According to Lu et al. (2023), Acidobacteria,
Bacteroidetes, Deltaproteobacteria, and Gemmatimonadetes regulate
excess Cd uptake and accumulation in Triticum aestivumL. with
microbes partly influenced by soils with high OM.

Studies have shown that a high proportion of Zn-resistant
bacteria persist in the rhizosphere of the hyperaccumulator N.
caerulescens (Delorme et al., 2001; Whiting et al., 2001) and
Alyssum bertolonii Desv (Sessitsch et al., 2013) or Alyssum
murale M. Bieb (Abou-Shanab et al., 2003) grown in soil
contaminated with Zn. The addition of bacteria increased the
shoot Zn content in N caerulescens about two times and the rate
of soluble Zn transport compared to axenic controls (Whiting et al.,
2001). Enzymatic processes during detoxification and activation of
chemicals in plants are similar to microbial biotransformation
pathways in soils.

The comparison of biochemical isolates such as phosphate
solubilizers, siderophore, and acids showed that phosphate
solubilizers dissolve 82.2% Zn and 68.2% of Pb, siderophores
(71.02% Zn and 61.6% Pb), and acids—53.3% Zn and 42.9% Pb
(Abou-Shanab et al., 2005). Hence, several organic materials
released by microbes in the root rhizospheres are responsible for
the dissolution of PTEs for plants’ availability. According to Singh
et al. (2022), the presence of siderophores decreased the uptake of
metals by plants. Siderophores produced by Pseudomonas sp.,

Serratia marcescens, and Streptomyces sp. had either no effect or
negatively affected Zn uptake by Salix capreastrum. These effects
indicate that the principles underlying metal uptake are also plant-
dependent. The efficiency of siderophore producers in mobilizing or
immobilizing soil PTEs depends on the binding form of metal/(loid)
s, the charge of siderophores, soil pH, mineral composition, and
organic content (Jing et al., 2007). Soil microbiome, particularly
bacteria, containing enzymes, such as 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase, limits secretion in stressed
plants (Tiwari et al., 2018). Moreover, arbuscular mycorrhizal
fungi contribute to plant PTE uptake (Kranner and Colville,
2011). Therefore, mycorrhizal fungi with high metal contents
tolerance and biomass production can be applied for
phytoextraction (Sagardoy et al., 2010). Thus, it is pertinent to
co-inoculate PTE hyperaccumulators with desired microbes, e.g.,
Arthrobacter and other Microbacterium, that can improve uptake
and translocation (Visioli et al., 2015).

7 Future perspectives

Microbes exhibit preference for specific PTE during
hyperaccumulation. These attractions result from the secretion of
exudates into the root rhizosphere region. Meanwhile, the entire
microbial community may not necessarily benefit from the chelation
or dissolution of PTEs for effective uptake by plants. Culturomics
purposed on adapting beneficial microbes can improve the
accessibility of PTEs.

Gene encoding involved in the uptake and translocation of Pb
remains less published among crops such as Oryza sativa (Gong
et al., 2022), while so far neglected in the hyperaccumulation of risk
elements from contaminated sites. The induction of many of these
transporter families and the use of suitable nano/microparticles
remain the next level of concern for the remediation of PTE-
contaminated sites. Mutation and ionome modifications of plant
species with effective uptake and above-ground accumulation offer
another innovative approach to PTE management in contaminated
soils for sustainable use (Navarrete and De La Fuente, 2015).

8 Conclusion

Anthropogenic interferences contribute significantly to excess
potentially toxic elements (PTES; As, Cd, Pb, and Zn) above the
threshold of agricultural soils. Hyperaccumulating plants (above-
ground accumulators of PTEs) possess uptake ability and
accumulate the accessible portion of PTEs associated with the
exchange complexes and soluble forms in the soil solution.

Additionally, soil characteristics, including high organic matter,
carbon, and clay content increases microbial biomass and
functionality and induce changes that regulate soil microbial
community. These properties affect microbial abundance and
increase the chances of high PTE reworking to ease uptake.

Root exudations of hyperaccumulators contribute to
microbes’ selection. Microbial stimulation (chemotaxis and
excretion), e.g., flavonoids, also provide an anchor to colonize
the root surface to support the solubilization and uptake of PTEs.
The production rate of root exudate by hyperaccumulators and
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the attraction of rhizosphere microbes can significantly affect the
bioavailability and bioaccumulation of PTEs, which enhances
phytoextraction by hyperaccumulators. Changes in soil
physicochemical properties (e.g., pH and redox potential) and
root exudation affect microbial abundance and diversity, which
also influence the solubility, mobility, and accessibility of PTEs.
Multiple resistance of As, Cd, Pb, and Zn by microbes can assist
many hyperaccumulators during PTE uptake. Diversified
microbes in the root rhizosphere are vital during high levels of
PTEs, as this can increase metal uptake while plants utilize them
to avoid toxicity.

Meanwhile, different transporters, including Zinc-iron protein
(ZIP), Metal Tolerance Protein (MTP), Heavy metal ATPases
(HMA), Yellow Strip-like (YSL), and Natural resistance-
associated macrophage proteins (NRAMPs) and their
transcription genes are responsible for the influx/efflux of PTEs
to plant compartments. Many hyperaccumulators show unique
transcriptional transporters associated with fast uptake of high
contents of PTEs and subsequent translocation to the aerial
parts. Part of the bioavailable fractions of the PTEs is chelated
with intracellular organs of hyperaccumulators as a means of
detoxification, while exudation contributes to tolerance.

Thus, hyperaccumulation depends on the availability of
mobilized metal ions in soils, enhanced activity of metal
transporters, and metal chelates/solubilizers provided by plants or
their associated microbes.

Incorporating different transporter genes into plants to improve
the ability for PTEs hyperaccumulation needs attention. The
microbial community in the root rhizosphere during PTE
hyperaccumulation is not well-studied. The inoculation of
suitable transporter genes and rhizosphere microbes for an
effective hyperaccumulation of PTEs requires critical studies.
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