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Abstract 
Population growth and improved gross domestic product may increase food consumption. Soybean is the main 
source of protein, lipids and mineral salts for human and domestic animals’ foods. Brazil is responsible of most 
of the soybeans produced in the world. However, soybean production in Tocantins/Brazil state caused a decrease 
in the Cerrado’s biome. Therefore, the aim of this study was to evaluate the anthropic impact of planting of 
soybean on microbial and physical-chemical properties of Cerrado’s soil. Soil samples were collected in three 
soybean farms (SF) of the Tocantins/Brazil state. They were collected in the soybean field, in native vegetation 
field, and in anthropogenic fragmentation area in the dry and wet seasons. The diversity of arbuscular 
mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB) were analyzed by denaturing gradient gel 
electrophoresis (DGGE). Regardless of the SF, physico-chemical indicators did not present significant 
differences between the seasons. The DGGE profiles of NFB and AMF genes were different between the 
soybean field and native vegetation field in both seasons. The viable cells counts and NFBs and AMFs diversity 
were influenced by the substitution of native vegetation for soybean. The increase of the agricultural production 
in Cerrado soil is worrisome, due to the endemic microorganisms that was observed in this study. In addition, 
anthropic action on the microbial community was more effective in the soybean field during the dry season, 
which showed the importance of maintaining an environmental reserve area within agricultural production units. 

Keywords: environmental impacts, mycorrhizal, nitrogen-fixing bacteria, soil resistance, native vegetation 

1. Introduction 
World population in July 2017 was 7.55 billion inhabitants and in 2050 it will be about 10.00 billions 
(UFNPA/ONU, 2017). If this population grows in geometric progression, Malthusian theory, it has an annual 
growth rate of about 0.78. This rate is higher in poor and developing countries than in developed countries. 
Therefore, the human population in poor and developing countries, between 2017 and 2030, will have an 
increase of 83 millions (UFNPA/ONU, 2017).  

According to the World Bank, the gross domestic product (GDP) in 2018 will have an increase of 3.1% in the 
world and 4.5% in developing countries (Exame Magazine, 2018). The GDP growth in developing countries may 
be due to commodities exports. Growths in population and further improvement in GDP may increase food 
consumption and subsequently increase planting of soybean. This commodity is the main source of protein, 
lipids and mineral salts of human and domestic animal foods. 

Brazil is responsible of most of the soybeans produced in the world. The country has approximately 33.890 
million hectares planted with soybean that represent the world largest area planted with this plant (Conab, 2018). 
The agricultural regions of Maranhão (MA), Tocantins (TO), Piauí (PI) and Bahia (BA) states, which it is known 
as MATOPIBA, has been responsible for a big part of the country’s soybean production. The Tocantins state has 
about 1.3 million hectares of soybean that is the highest area of soybean planting among high altitude regions 
(SEAGRO, 2017). 
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The soybean production in Tocantins state has caused a decrease of Cerrado biome in replacing native vegetation 
by soybean. This substitution may have changed the physical, chemical and biological properties of the soil, 
mainly in the agricultural layer. This layer houses microorganisms that degrade organic matter and rocks. 
Microbial decomposition of the rocks from the mineral soils of the Cerrado. Therefore, identification of these 
microorganisms is an important parameter to evaluate the changes caused in the soil fauna by the conversion of 
native vegetation to soybean field. 

Thus, the aim of the study was to evaluate the anthropic impact of planting of soybean on microbial and 
physical-chemical properties of Cerrado soil in regions of Tocantins state in Brazil. 

2. Materials and Methods 
2.1 Site Location and Characterization  
The study was carried out in three regions of Tocantins/Brazil State, the highest soybean (Glycine max (L.) 
Merril) producers, including (i) Central region, (ii) Throat region and (iii) Campos Lindos and Petro Afonso 
region. The cities concerned per region were Porto Nacional, Silvanópolis and Santa Rosa in the Central region 
and Mateiros and Dianópolis in the Throat region (Table 1). The climate, soil, and vegetation are peculiar to the 
region (Table 1). 

 

Table 1. Climate, soil declivity, vegetation and soil type of the Tocantins/Brazil state for collection of soil 
samples 

Tocantins/Brazil regions Cities Climate Declivity Soil Phytoecology 

Central  

Porto Nacional 

Silvanópolis 

Santa Rosa 
C2wA’a’’ 
(Humid and subhumid 
with moderate  
water deficiency) 

Class A 
(< 5%) 

Latosol 

Plintosols 

Cerrado biome 

Ecological Pressure  
(Disjunction Cerrado/ 
Seasonal Forest 

Campos Lindos and Pedro Afonso 
Neosol 

Latosol 

Throat 

Mateiros Neosol 

Dianópolis 

C2w2A’a’ 

(Humid and subhumid 
with small  
water deficiency) 

Classe C
(10-15%)

Cambisol Neosol 

Source: Tocantins atlas (2012). 

 

2.2 Sample Collection Plan 

The soil samples were obtained in three soybean farms (SF) of the Tocantins/Brazil. They were collected in three 
different areas of soybean planting or native vegetation and four sampling points (Table 1).  

In the Throat region (SF1), soil samples were collected in (i) the soybean field, (ii) in the native vegetation of 
Serra Geral field, and (iii) in the native vegetation field adjacent to the soybean field. 

In Pedro Afonso/Tocantins/Brazil city (SF2), soil samples were collected in (i) one soybean field with little dead 
plant cover (soybean field 1), (ii) one native vegetation field of an ephemeral stream, surrounded by soybean 
field, and (iii) one soybean field with moderate dead plant cover (soybean field 2). The soybean fields 1 and 2 
had about three years of cultivation of the crop. The soils were light gray and red-yellow, respectively. In the 
native vegetation, the relief was uneven and gravelly. 

In the Central region (SF3), soil samples were collected in (i) one area of crop-livestock system integrating a 
beef cattle herd and soybean cultivation (soybean field), (ii) one native vegetation field, and (iii) one 
anthropogenic fragmentation area. The soil in this area had little dead vegetation cover, red-yellow color and 
enough gravel on the surface and along the profile. In points, P25-P26 has also invasive plants (Tables 2 to 5). 
The native vegetation area had foliage on the soil surface, plenty of gravel, adventitious roots and a natural 
runoff of water. The anthropogenic fragmentation area that is an island in the soybean field has dark red soil, 
arboreal vegetation of 15 to 20 m tall, abundant foliage on the surface and adventitious roots along the soil 
profile. 

The soil samples were collected in 0 to 10, 10 to 20, 20 to 30 and 90 to 100 cm of depths in the dry period of 
September 2016 and wet period of January 2017. At each depth, three samples (10 g) were collected using a 
Dutch auger, according to the methodology of Raij (2001). The depth of 0-30 cm was defined as the effective 
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depth for soybean roots (~40 cm). The 90-100 cm depth was used to analyze the leaching effect of chemical 
elements from fertilizers and agrochemicals. In these soil samples were assessed the physical-chemical 
indicators and microbiota soil (item 2.4). The physico-chemical indicators were determined according to 
Standard Methods (APHA, 2005). Soil resistance to root penetration in depths of 0 to 60 cm and 2.5 cm interval 
was measured with the aid of a penetrometer (Falker-PLG 1020). 

2.3 Analysis of the Soil Microbiota in the Dry and Wet Seasons 

These analyses were performed as described in Carvalho et al. (2018). 

2.3.1 Viable Microbial Cells in Soil 

Ten grams of soil sample were used to quantify the viable microorganisms. The quantification of bacterial cell 
was performed in the nutrient agar culture medium containing 0.3 ml of nystatin at pH 7 (Sabino, 2007). The 
plates were incubated at 25 °C for 3 days.  

Martin medium containing rose bengal (0.1% w/v) and 1 ml of streptomycin (0.3 mg/ml) was used to 
filamentous fungi count (Martin, 1950). The pH of this culture medium was pH 5.8. The plates were incubated at 
25 °C for 7 days. 

The actinomycete counts in selective medium containing glycerol (Rodrigues, 2007). The plates were incubated 
at 25 °C for 7 days. 

The microbial cells were estimated as logarithm of the colony-forming unit (CFU) per gram of soil. 

2.3.2 Microbial Diversity by DGGE Profile 

The diversity of arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB) were analyzed by 
denaturing gradient gel electrophoresis (DGGE). Fungal and bacterial DNA were extracted from the soil samples 
using a soil DNA Mega Prep Kit (Kit-MO BIO, Ultraclean TM, Quiagen, USA). This extraction was done with 
0.5 g of soil in plastic tubes (Eppendorf type) containing polypropylene beads. The nifH and 18S rDNA genes 
amplification were performed by polymerase chain reaction (PCR) from the total DNA for analysis of NFB and 
AMF, respectively. 

The PCR and Nested-PCR of the nifH gene were done with the 19F and 407R primers (Ueda et al., 1995) and 
19F-GC (with GC clamp) and 278R primers (Direito & Teixeira, 2002), respectively. The 18S rDNA gene 
amplification was performed with AM1, NS31, NS31-GC (with GC clamp) and Glo1 primers (Simon et al., 
1992; Helgason et al., 1998; Kowalchuk et al., 2002; Cornejo et al., 2004). 

DGGE analysis of the Nested-PCR fragments was performed (Model DCodeTM Systems—BIO-RAD, 
California, USA). Twenty μL of these fragments (150 to 200 ng of DNA) were loaded onto polyacrylamide gel 
(8%, w/v) in 1xTAE buffer.  

2.4 Statistical Analysis  

The estimates of the physical-chemical and biological parameters were performed at 95% confidence level (p < 
0.05) based on the coefficient of variation (CV). Pimentel-Gomes (2000) classifies the experimental variations in 
low variation (CV < 10%), medium (10-20%), high (20-30%), and very high (CV > 30%). 

The DGGE profiles were analyzed in the Bionumerics software Version 5.1 (Applied Maths, Belgium). The 
software has generated dendrograms of the unweighted pair group method with arithmetic mean (UPGMA) 
using the Jaccard similarity index. The similarity of bands was determined at 0.5% probability by the post-hoc 
Bonferroni test.  

Excel, Surfer, SigmaPLOT12.0 and Minitab 17 software were also used in these analyses. 

3. Results and Discussions 
3.1 Physical-Chemical Indicators Determination of Soil Quality 

We did not observe any difference in the physico-chemical indicators between seasons in the soybean farms 
(Figure 1). 

In SF1, differences were observed in the Fe, K and P contents, base saturation, aluminum saturation and sand 
between sample collection points and soil depths (Figures 1A and 1B). These physico-chemical indicators and 
Mn content and clay had also no difference among the soil depths, soil moisture and samples collection points of 
SF2 (Figures 1C and 1D). In SF3, only Fe and K contents, organic matter, base saturation were different between 
soil depths and between sample collection points. Thus, although SF2 is closer to SF3 than to SF1, its 
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The RP represent the critical limit of soil compaction (Figure 2). In soils of native vegetation has a roots depth 
threefold greater than in soil of soybean field, because of the reduction in RP and the increase of soil moisture 
(Genro Junior et al., 2004). 

The soil of SF1 had RP of 2 MPa in the dry season (Figure 2A). According to Tormena et al. (1998), this value is 
used as a critical limit to the soybean roots growth. The estimation of roots’ depth in this area was higher than 50 
mm in the dry season (Figures 2A and 2B).  

In soybean field, the roots depth was higher than in other areas of SF1, because of the plowing and the harrowing 
that contributed to the reduction of RP by the breakdown of micro particles and increase of soil porosity. 
However, the removal of native vegetation and soil homogenization for soybean planting, might have 
contributed to increased soil moisture loss and RP if plowing and harrowing were not done. 

3.5 Biological Indicators of Soil Quality 

The biological indicators’ estimation in soil samples did not concern samples collected from 90-100 cm, because 
of small amount of microbial cell present at that depth. Carvalho et al. (2018) did not observed bands in the 
DGGE profile of NFB and AMF genes at this soil depth. According to the authors, there was no viable fungal 
cell in the soil at a depth beyond 30 cm.  

Viable bacterial cells counts were higher than those of actinomycete and fungi regardless of the soybean farm, 
sample collection points, soil depth, and season (Tables 3 to 5). These results are similar to those obtained by 
Silva et al. (2018) in soil samples from Cerrado. In addition, a high amount of actinomycete cells was observed 
in the farms. These microorganisms are mainly responsible of nitrogen fixation and its presence in the soybean 
field can reduce the requirement of nitrogen fertilization (Faleiro, 2011; Moreira & Siqueira, 2006). Da Silva 
(2012) identified a predominance of the nifH gene in actinomycete when compared to other bacterial groups in 
Cerrado soil.  

In both seasons, the DGGE profiles of NFB and AMF genes were different in soybean farms (Figures 3 to 5). 
The diversity of nifH gene in Cerrado soil was also changed by environmental conditions (Da Silva, 2012). The 
18S rDNA gene amplified using NS1 and FR1-GC primers presented alterations in the DGGE profile for 
different times of incubation (Gomes et al., 2003). NS1 primer was also used in this study to evaluate the AMFs 
diversity in soybean farm of the Tocantins state (Figures 3 to 5). Thus, the soybean farm had the different 
microbial diversity that shows the need for the preservation of Cerrado biome. 

In these farms, bacterial diversity was greater than that of fungi, which confirms the results of viable cell counts 
(Tables 2 to 4) and Silva et al. (2018). This author analyzed the microbial communities in the soil with native 
vegetation cover. Furthermore, the soil microbial cell count may vary depending on the technique, the depth and 
the culture medium (Silva et al., 2018; Faleiro, 2011). 

In SF1, the viable cell counts were lower in soybean field compared to native vegetation field (Table 2). This 
result showed the depressive effect of agricultural activity on the number of microbial cells that maight have 
affected their diversity in soybean fields. It was also observed that the microbial diversity of Serra Geral was 
intermediate between those of soybean field and native vegetation field. In the Serra Geral, human activities 
were greater than those observed in native vegetation field, which may have influenced in viable cell counts. The 
relative abundance of microorganisms in Cerrado soil after removal of native forest by anthropic activities has 
not been intensively studied (Monteiro et al., 2004). According to the authors, there are changes in the bacterial 
population after replacement the of native vegetation cover by planting of Eucalyptus and/or pinus. 

The depth and moisture of soil had an unlike distinct influence on viable cell counts (Table 2). The counts were 
inversely proportional to soil depth. Monteiro et al. (2004) also observed this negative correlation between the 
microbial cell and soil depth. The fungal cell was not observed in the soil depth of 20-30 cm (Table 2). The cell 
count was higher in the wet season than the dry season that shows the influence of water availability on 
microbial growth. This increase of cell count in wet season may be due to spore germination or growth in size 
and number of cells favored by soil humidity. In fact, water is one of the parameters that most influence on 
microbial metabolism (Madigan et al., 2010 Tortora et al., 2014). Furthermore, in native vegetation field in the 
wet season, fungal cells were observed along the entire soil profile (0-30 cm). These fungal cells may be due to 
spore germination or cells percolation under moist condition. According to Gomes et al. (2003), fungi are in 
greatest quantity in the rhizosphere. 

In SF1, the dry season’s 16S-nifH profile differed from the wet season’s one (Figure 3). In the dry season, bands 
from the same soil depth (SD1, SD2 and SD3) were grouped in the same cluster showing that bacterial 
distribution was a function of soil depth. 
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Table 2. Viable microbial cells count in dry and wet seasons, of the soil samples of soybean farm 1 (SF1). 

Sampling area Sample code 
Dry season Wet season 

Actinomycetes Bacteria Fungi Actinomycetes Bacteria Fungi 

  -------------------------------------- Log (Colony forming unit g-1) --------------------------------------

Soybean field 

P1SD1 7.73±0.22 12.7±0.89 6.27±0.25 9.52±0.49 13.29±0.40 7.88±0.71 

P1SD2 6.22±0.10 9.90± 0.98 5.08±0.20 7.62±0.50 10.85±0.38 6.89±0.72 

P1SD3 5.31±0.11 7.80± 0.90  6.47±0.51 9.19±0.27  

P2SD1 9.39±0.11 12.8 ±0.61 7.76±0.24 11.36±0.45 13.10±0.47 8.69±0.73 

P2SD2 8.31±0.11 9.21± 0.61 5.62±0.20 9.20±0.58 10.20±0.41 6.26±0.73 

P2SD3 6.11±0.11 7.21± 0.70  7.30±0.59 9.56±0.30  

P3SD1 10.48±0.10 13.1± 0.65 8.41±0.24 12.44±0.54 13.13±0.46 8.82±0.74 

P3SD2 7.54±0.10 10.2± 0.23 6.54±0.26 8.90±0.59 10.82±0.37 4.96±0.75 

P3SD3 5.76±0.10 8.71± 0.27  6.75±0.55 9.83±0.28  

P4SD1 10.82±0.10 12.32±0.36 8.35±0.22 12.62±0.44 13.89±0.39 9.28±0.75 

P4SD2 9.51±0.11 10.63±0.39 7.36±0.22 10.03±0.10 10.92±0.33 6.79±0.76 

P4SD3 7.89±0.11 8.92±0.70  9.09±0.29 9.87±0.27  

Native vegetation  
field of Serra Geral 

P5SD1 10.38±0.10 12.50±0.66 8.71±0.24 11.90±0.30 13.06±0.44 9.06±0.77 

P5SD2 8.64±0.11 10.10±0.28 7.68±0.22 9.84 ±0.30 10.25±0.34 7.58±0.77 

P5SD3 5.91±0.11 7.20±0.74  6.69±0.31 9.06±0.28  

P6SD1 11.98±0.10 13.0±0.55 9.05±0.22 12.49±0.32 13.13±0.38 9.81±0.78 

P6SD2 9.68±0.11 10.20±0.49 7.94±0.25 9.84±0.32 10.24±0.36 8.64±0.79 

P6SD3 7.25±0.10 8.70±0.32  8.07±0.47 9.42±0.28  

P7SD1 11.61±0.11 13.20±0.98 8.50±0.22 11.85±0.45 13.16±0.41 9.26±0.79 

P7SD2 8.99±0.11 10.10±0.70 6.43±0.24 9.90±0.46 10.90±0.34 8.17±0.80 

P7SD3 6.43±0.11 7.61±0.66  7.92±0.47 9.48±0.29  

P8SD1 11.79±0.11 13.41±0.43 8.22±0.20 12.44±0.49 13.64±0.42 9.62±0.73 

P8SD2 10.57±0.11 10.81±0.44 5.95±0.24 10.87±0.50 11.72±0.34 8.69±0.74 

P8SD3 7.88±0.10 8.32±0.37  9.54±0.46 9.94±0.27  

Native vegetation field 

P9SD1 11.83±0.11 13.72±0.95 8.38±0.25 14.22±0.49 14.67±0.42 9.84±0.75 

P9SD2 10.49±0.10 11.12±0.47 5.96±0.22 11.53±0.45 11.89±0.37 6.78±0.75 

P9SD3 8.24±0.11 8.43±0.96  8.79±0.29 8.97±0.29 2.54±0.44 

P10SD1 12.03±0.11 13.51±0.63 8.66±0.24 13.20±0.30 14.2± 0.40 9.51±0.76 

P10SD2 10.26±0.11 10.93±0.56 7.35±0.22 11.04±0.31 11.32±0.30 8.75±0.76 

P10SD3 5.55±0.11 8.20 ±0.47  6.98±0.31 9.22±0.47 2.68±0.34 

P11SD1 12.49±0.11 13.92±0.70 8.58±0.25 14.48±0.54 14.51±0.70 10.77±0.25

P11SD2 9.20±0.11 10.93±0.70 8.14±0.22 10.91±0.55 11.16±0.70 9.72±0.22 

P11SD3 6.46±0.11 8.51±0.66  7.41±0.56 9.45±0.66 2.57±0.31 

P12SD1 12.45±0.11 13.40±0.28 8.76±0.24 14.21±0.11 14.40±0.28 10.92±0.24

P12SD2 9.62±0.11 10.40±0.74 8.70±0.22 10.01±0.49 11.44±0.74 9.37±0.22 

P12SD3 6.81±0.10 8.72±0.55  7.90±0.32 9.30±0.55 2.64±0.32 

Note. P: Sample collection point, SD: Soil depth (SD1 = 0-10, SD2 = 10-20, SD3 = 20-30 cm). 
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The effect of the moisture and depth of soil in SF2 on the viable cell count was similar to the results of SF1 
(Table 3). In fact, the lowest count was at 20-30 cm depth and in the dry season. The fungal growth was limited 
in anoxic sites (Madigan et al., 2010, Tortora et al., 2014). 

 

Table 3. Viable microbial cells count in dry and wet seasons, of the soil samples of soybean farm 2 (SF2) 

Sampling area Sample code 
Dry season Wet season 

Actinomycete Bacteria Fungi  Actinomycete Bacteria Fungi 

  -------------------------------------- Log (Colony forming unit g-1) -------------------------------------

Soybean field 1 

P13SD1 7.47±0.45 10.00±0.29 6.18±0.32  9.12±0.89 12.20±0.42 7.55±0.39

P13SD2 5.73±0.47 8.20±0.31 5.18±0.29  6.95±0.95 9.90±0.36 6.29±0.33

P13SD3 4.01±0.48 6.10±0.31   6.04±0.48 7.30±0.52  

P14SD1 9.02±0.50 10.90±0.32 6.90±0.46  10.82±0.61 13.10±0.21 8.28±0.31

P14SD2 8.54±0.45 9.30±0.32 6.29±0.49  10.18±0.61 11.10±0.45 7.51±0.37

P14SD3 4.98±0.46 7.50±0.32   7.09±0.70 8.90±0.41  

P15SD1 10.10±0.46 11.40±0.29 6.83±0.30  11.90±0.65 13.40±0.58 8.04±0.31

P15SD2 7.32±0.48 9.20±0.30 5.38±0.31  8.57±0.23 10.80±0.34 6.30±0.33

P15SD3 4.79±0.49 7.40±0.31   6.74±0.27 8.70±0.31  

P16SD1 8.18±0.45 9.90±0.31 6.74±0.57  11.78±0.36 11.50±0.53 7.79±0.11

P16SD2 6.96±0.47 8.60±0.32 5.98±0.59  10.31±0.39 9.90±0.59 6.88±0.12

P16SD3 4.89±0.49 7.70±0.32   9.02±0.70 8.80±0.27 2.77±0.80

Native vegetation field  
of ephemeral stream  

P17SD1 11.36±0.47 12.60±0.30 6.69±0.56  13.63±0.47 14.10±0.58 8.03±0.06

P17SD2 9.80±0.48 10.30±0.31 6.23±0.56  11.69±0.96 12.20±0.45 7.42±0.60

P17SD3 5.51±0.49 8.20±0.31   10.08±0.62 9.70±0.50  

P18SD1 11.48±0.46 11.70±0.32 6.99±0.30  13.52±0.56 13.80±0.48 8.24±0.26

P18SD2 7.55±0.46 8.60±0.32 5.83±0.48  11.19±0.47 10.10±0.47 6.82±0.30

P18SD3 5.60±0.49 8.00±0.30   10.01±0.70 9.30±0.52  

P19SD1 10.99±0.50 11.70±0.31 7.10±0.49  13.88±0.63 13.60±0.47 8.22±0.17

P19SD2 10.31±0.50 10.50±0.49 6.46±0.32  11.80±0.39 12.00±1.67 7.43±0.09

P19SD3 5.00±0.45 9.50±0.51   6.90±0.47 10.90±0.94  

P20SD1 11.91±0.46 12.30±0.46 7.34±0.31  13.50±0.74 14.00±0.40 8.34±0.23

P20SD2 7.70±0.47 9.00±0.48 6.99±0.46  10.90±0.59 10.10±0.47 7.90±0.19

P20SD3 5.61±0.48 8.30±0.32   9.60±0.81 9.30±0.70  

Soybean field 2 

P21SD1 9.72±0.50 11.80±0.29 7.11±0.48  11.05±0.66 13.50±0.35 8.09±0.18

P21SD2 7.94±0.45 9.00±0.31 6.19±0.49  8.97±0.74 10.10±0.40 7.00±0.15

P21SD3 4.69±0.46 7.80±0.31   6.40±0.55 8.80±0.45  

P22SD1 9.27±0.48 10.80±0.32 7.56±0.58  12.59±0.49 12.10±0.72 8.44±0.15

P22SD2 9.35±0.49 10.50±0.29 6.85±0.56  10.38±0.32 11.70±0.66 7.61±0.95

P22SD3 4.50±0.46 8.20±0.30   9.40±0.98 9.00±0.90  

P23SD1 10.93±0.49 12.00±0.31 7.23±0.60  12.01±0.70 13.20±0.63 7.95±0.17

P23SD2 8.63±0.50 10.50±0.31 5.60±0.54  9.42±0.66 11.50±0.39 6.12±0.09

P23SD3 4.77±0.51 8.20± 0.32   7.36±0.43 8.90±0.47  

P24SD1 10.77±0.45 10.80±0.32 6.13±0.54  13.16±0.44 13.20±0.74 7.50±0.23

P24SD2 8.13±0.46 9.30±0.29 4.68±0.57  12.30±0.37 11.30±0.59 5.68±0.19

P24SD3 5.92±0.46 7.20±0.29   10.76±0.95 8.70±0.81  

Note. P: Sample collection point, SD: Soil depth (SD1 = 0-10, SD2 = 10-20, SD3 = 20-30 cm).  

 

The viable microbial cell counts in soybean field 2 were similar to the cell counts from native vegetation field of 
the ephemeral stream (Table 3). This result may be due to the time of planting soybean and soil type. 
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In SF2, we also observed that the NFBs and AMFs profiles depended on the season (Figure 4). Similar to the 
result of SF1, in the dry season, samples formed clusters for 16S-nifH gene based on soil depth (Figure 4A). 
Therefore, in same soil depth, there was no difference in microbial diversity among soybean field 1 (P13-16), 
native vegetation field (P17-20) and soybean field 2 (E21-24). This result may be due to the few microbial 
groups that can grow in low water availability. Silva et al. (2018) also obtained clusters of nifH and 18S rDNA 
genes by soil depth in the Cerrado. 

In the wet season, there was an increase in the intensity of 16S-nifH bands (Figure 4B). These bands were more 
evident in the upper part of the gel. Therefore, there was not an increase in bacterial diversity. Furthermore, only 
on the soil surface, there was a cluster between sample collection points, because of the influence of water on the 
microbial community. 

In SF2, the bacterial community of native vegetation field was similar to the soybean field (Figures 4A and 4B). 
The soil resilience and the short time anthropic activity had not considerably affected bacteria in the soybean 
field. 

The fungal community was present in all sample collection points, but with higher intensity in the wet season 
(Figures 4C and 4D). In dry season, there was no difference between bands of AMFs profile from 20-30 cm soil 
depth (Figure 4C). At this depth, the lack of oxygen and other nutrients led to low survival of the aerobic 
microorganisms. In addition, in the wet season, there was an increase in the intensity of the AMF bands (Figure 
4D). Therefore, the highest fungal cell amount in the wet season was due to the water availability that 
contributes to spore germination. 
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Table 4. Count of viable microbial cells in dry and wet seasons, of the soil samples of soybean farm 3 (SF3) 

Sampling area Sample code 
Dry season Wet season 

Actinomycetes Bacteria Fungi  Actinomycetes Bacteria Fungi 

  --------------------------------------- Log (Colony forming unit g-1) ---------------------------------------

Soybean field 01 

P25SD1 6.59±0.29 10.80±0.42 5.45±0.17  8.06±0.23 13.17±0.45 6.66±0.85 

P25SD2 4.90±0.28 8.50±0.40 4.43±0.17  5.95±0.08 10.31±0.36 5.38±0.69 

P25SD3 3.95±0.26 5.80±0.37   4.76±0.27 6.96±0.78  

P26SD1 8.01±0.29 11.70±0.42 6.13±0.17  9.61±0.56 13.99±0.51 7.35±0.95 

P26SD2 7.30±0.28 9.50±0.40 5.38±0.17  8.70±0.73 11.34±0.45 6.42±0.83 

P26SD3 4.71±0.26 7.00±0.37   5.58±0.31 8.30±0.69  

P27SD1 8.92±0.29 11.90±0.42 6.0±0.17  10.50±0.85 13.99±0.51 7.10±0.93 

P27SD2 6.26±0.28 9.30±0.40 4.6±0.17  7.33±0.43 10.84±0.39 5.39±0.71 

P27SD3 4.56±0.26 6.80±0.37   5.31±0.30 7.94±0.54  

P28SD1 9.04±0.29 10.20±0.42 5.98±0.17  10.46±0.49 11.82±0.52 6.92±0.93 

P28SD2 7.66±0.28 8.50±0.40 5.11±0.17  8.82±0.44 9.78±0.44 5.88±0.79 

P28SD3 6.22±0.26 6.90±0.37 1.57±0.15  7.11±0.84 7.92±0.14 1.79±0.24 

Native vegetation field 

P29SD1 9.55±0.32 13.20±0.46 6.99±0.19  10.86±0.84 15.05±0.61 7.95±0.88 

P29SD2 7.58±0.31 9.70±0.45 5.92±0.19  8.57±0.81 10.95±0.52 6.69±0.92 

P29SD3 5.05±0.29 7.80±0.42 1.58±0.17  5.68±0.31 8.76±0.14 1.78±0.25 

P30SD1 11.25±0.33 12.10±0.47 7.55±0.20  12.58±0.92 13.51±0.68 8.4±0.80 

P30SD2 7.99±0.28 10.00±0.40 5.85±0.17  8.88±0.89 11.12±0.53 6.51±0.91 

P30SD3 6.70±0.26 7.10±0.37 1.82±0.15  7.41±0.97 7.86±0.16 2.01±0.28 

P31SD1 10.74±0.32 13.00±0.46 7.11±0.19  11.81±0.81 14.28±0.65 7.81±1.10 

P31SD2 7.55±0.29 10.10±0.41 4.90±0.17  8.25±0.74 11.02±0.45 5.36±0.76 

P31SD3 5.34±0.26 7.00±0.37 1.73±0.15  5.80±0.54 7.65±0.16 1.88±0.27 

P32SD1 10.53±0.32 12.90±0.46 6.00±0.19  12.87±0.88 15.74±0.49 7.33±0.93 

P32SD2 8.66±0.28 9.7±0.40 4.00±0.17  10.52±0.66 11.73±0.33 4.86±0.62 

P32SD3 7.03±0.26 6.80± 0.37 1.87±0.15  5.48±0.66 8.24± 0.15 2.26±0.29 

Anthropogenic  
fragmentation area 

P33SD1 4.35±0.13 5.40± 0.18 2.56±0.07  5.22±0.48 6.48± 0.21 3.07±0.40 

P33SD2 2.50±0.08 3.10± 0.12 1.59±0.05  2.98±0.27 3.73± 0.13 1.90±0.25 

P33SD3 6.70±0.26 7.70± 0.37 1.95±0.15  7.94±0.86 9.09± 0.16 2.32±0.30 

P34SD1 4.46±0.13 5.40± 0.18 2.72±0.08  5.25±0.53 6.32± 0.23 3.20±0.42 

P34SD2 2.23±0.08 2.40± 0.11 1.36±0.05  2.61±0.32 2.76± 0.12 1.59±0.21 

P34SD3 6.78±0.26 7.30± 0.37   7.89±0.95 8.55± 0.14  

P35SD1 4.39±0.12 5.00± 0.17 2.60±0.07  5.08±0.58 5.75± 0.22 3.01±0.40 

P35SD2 2.50±0.08 2.90± 0.12 1.58±0.05  2.90±0.31 3.39± 0.14 1.82±0.24 

P35SD3 3.20±0.17 5.80± 0.25   3.70±0.04 6.59± 0.16  

P36SD1 3.70±0.10 4.40± 0.15 2.28±0.06  4.20±0.46 4.95± 0.20 2.60±0.35 

P36SD2 2.00±0.07 2.10± 0.10 1.47±0.04  2.30±0.30 2.41± 0.13 1.66±0.23 

P36SD3 5.80±0.22 6.30±0.32   6.60±0.82 7.11±0.55  

Note. P: Samples collection point, SD: Soil depth (SD1 = 0-10, SD2 = 10-20, SD3 = 20-30 cm).  

 

SF3 bands’ profiles of 18S-AMFs gene were also different from the profiles of the other soybean farms (Figures 
3 to 5). In the dry season, the band’s profiles of anthropogenic fragmentation were more closer to the profile of 
the soybean field than to that of the native vegetation field (Figure 5C). However, in the wet season, an inversion 
occurs of this result (Figure 5D). This demonstrate that the anthropogenic action is most evident in the period of 
water scarcity. 
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