
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: d.bustan@qiet.ac.ir; 

 
 

Journal of Scientific Research & Reports 
 
16(3): 1-9, 2017; Article no.JSRR.37083 
ISSN: 2320-0227 

 
 

 

 

Improving Modelling Accuracy of Aerodynamic 
Curve of a Wind Turbine Using Neural Networks 

 
Danyal Bustan1* and Hoda Moodi1 

 
1
Department of Electrical Engineering,

 
Quchan University of Advanced Technology, Quchan, Iran. 

 
Authors’ contributions  

 
 This work was carried out in collaboration between both authors. Both authors read and approved the 

final manuscript. 
 

Article Information 
 

DOI: 10.9734/JSRR/2017/37083 
Editor(s): 

(1) Ming-Jyh Chern, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan. 
Reviewers: 

(1) Edisson Sávio de Góes Maciel, Instituto Tecnológico de Aeronáutica, Brasil. 
(2) Imdat Taymaz, Sakarya University, Turkey. 

Complete Peer review History: http://www.sciencedomain.org/review-history/21559 

 
 
 

Received 30th September 2017 
Accepted 17

th
 October 2017 

Published 25
th

 October 2017 

 
 

ABSTRACT 
 

This paper addresses improved modelling of one of important aerodynamic curves of a wind 
turbine by means of artificial neural networks (ANNs). Aerodynamic curves play an important role in 
designing controller in wind turbines. Inherent nonlinearity of these curves and dependence of their 
current values to the operating conditions, make the wind turbine controller design a challenging 
problem. Currently, there are two major approaches for modelling these curves: 1- lookup tables 
and 2-polynomial approximation. Lookup tables are discrete and hence not suitable for continuous 
controller design and polynomial approximations are not accurate enough. These drawbacks 
impose inaccuracy to the controller design. To overcome this weakness, ANN is utilized to identify 
the aerodynamic curves. Specially, rotor power coefficient (Cp) is the focus of this paper as this 
curve has a direct effect on the controller’s parameters both in below and above rated wind speed. 
As ANNs are universal approximators, they can model this curve with required accuracy. Using this 
approach in addition to identification of Cp and obtaining a high accuracy model for this curve, 
optimum critical parameters of this curve can be estimated. By employing these estimated values, 
a new controller gain is computed. This controller is used when the wind speed is below rated 
speed and the rotor speed should track a reference trajectory (named variable speed or region II). 
Simulation shows that with this new controller the overall power capture is improved at no cost. 
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1. INTRODUCTION 
 
Renewable energies have gained great focus 
nowadays. One of the most attractive sources of 
energy is the wind power. Although producing 
power from wind seems very simple, in the 
industrial scale, it is very costly and needs 
complex systems. As these expensive systems 
should work in the maximum efficiency, 
numerous engineering problem arises and 
should be addressed in appropriate manner.  
 
One of these problems is controlling such huge 
structures. The goal of control is to maximize 
energy production while reducing structural load 
as much as possible. 
 
Based on the wind speed, there are three 
regions of operation for a variable speed wind 
turbine. Region 1, is startup of a wind turbine. 
In this region, the wind speed is too low to 
generate power. Hence wind turbine is stopped 
or rotates freely without producing power. In 
region 2, the goal is to maximize the power 
capture from the wind. In this region, the wind 
speed is below the rated speed of wind turbine. 
The goal of the controller is to change the rotor 
speed to capture maximum power. In region 3, 
as the wind speed is above the wind turbine 
rated speed, and in order to save electrical and 
mechanical equipment from exceeded loads, 
turbine should limit the capture of power by 
changing its blade pitch angles. In this region 
controller tries to maintain the rotor speed at 
predefined value and reduce undesired 
mechanical torques by changing blade pitch 
angels.  
 
In this paper, the goal is to improve the 
accuracy of modeling the rotor power 
coefficient curve. Specifically, the focus is on 
enhancing the estimation accuracy of the 
curve’s critical parameters such as its maximum 
and the parameters at which this maximum 
occurs. This curve plays an important role in 
controller design. For simplicity, only region II is 
considered in this paper. This region is 
responsible for more than 50% of power 
capture for a wind turbine in a year [1].  
 
This paper is organized as follows. In sections 
2 and 3, a brief introduction to rotor power 
coefficient is presented. Section 4, is devoted to 
artificial neural networks and their capability of 

modelling and estimation. The outcome of the 
proposed method is reported in Section 5. And 
finally some concluding remarks are given in 
section 6.  
 
2. MATHEMATICAL THEORY 
 
The standard control scheme which is used in 
region 2 is called variable-speed control law [2] 
and basically it is a simple gain (k) multiplied by 
square of angular speed of the rotor [1-3]:  
 

                                               (1)  

 

                                      (2) 

 

In the abovementioned equations, the 
parameters are defined as follows: is 
computed controller torque,  is the rotor 
angular speed in rad/s, is the maximum 

rotor power max coefficient, is the optimal tip 

speed ratio (TSR) corresponding to and 

TSR is max defined as  and  is the 

wind speed. 
 
The goal of this control law is to keep the turbine 
operating at the peak of Cp - TSR – Blade Pitch 
angle (BPA) surface [1]. Fig. 1 is an example of 
such surface. 
 
Although this scheme seems to be very simple, 
there are two significant problems with this 
control scheme: 
 

1. As blade aerodynamics could change 
over time, determination of k (the 
controller gain) is not accurate. 

2. Wind speed fluctuations, causes the 
turbine to operate off the peak of its 
optimal curve, causing reduction of energy 
capture. 

 
It can be seen from (1) and (2) that the controller 

relies on two critical parameters:  and . 
In [2], sensitivity of energy loss to errors in 

these two critical parameters is considered and 
it is showed that [3]: 
 

“a 5% error in the optimal tip-speed ratio λ 
can cause a significant energy loss of 1–3% 
in region 2” 



 
 
 
 

Bustan and Moodi; JSRR, 16(3): 1-9, 2017; Article no.JSRR.37083 
 
 

 
3 
 

 

 
Fig. 1. Cp curve 

 
There are some papers dealing with these 
issues. [1, 3], have proposed adaptive controllers 
to overcome both issues and showed that 
maximum power capture in the presence of 
parameter uncertainty is reachable. [2], modifies 
above mentioned simple controller and this new 
controller leads the rotor to approach the 
desired operating point more rapidly. With such 
controller, it is shown that improving overall 
energy capture by 5% is feasible. 
 
As determination of controller gain is heavily 
based on maximum rotor power coefficient 

and optimum tip speed ratio ; and 

these parameters should be determined via Pmax 

modelling tools, there is an inherent inaccuracy 
in them, because the modelling software used 
to determine the Cp-TSR-Pitch surface is not 
perfectly accurate [1]. In fact in [3] it is stated 
that: 

 
“Unfortunately, modeling tools such as 
PROP are of questionable accuracy; in              
fact, an NREL study [4] comparing wind 
turbine modeling codes reports large 
discrepancies and an unknown level of 
uncertainty. Therefore, computer models  
are unreliable for fixed-gain controller 
synthesis.” 

 
It should be noted that, in literature, the reported 

is 0.482 which occurred at zero BPA and 

optimum TSR = 7.55 for a benchmark 5-MW 
wind turbine model [5]. But these parameters 
lead to a suboptimum controller because the 

modelling software used to determine the Cp-
TSR-Pitch surface is not perfectly accurate [1]. 
 
This paper addresses the first issue by an 
intuitive way: instead of relying just on 
inaccurate modeling tools, an ANN is utilized to 

model the rotor power coefficient (C p) as a 

nonlinear function and its critical parameters 
have been estimated using this network, which 
is trained specially for this purpose. To this end, 
an ANN has been trained by using available 
data on Cp-TSR-Pitch which can be accessed at 
[6]. 
 
Simulation results show that the new optimum 

values for and  the controller which 
will improve the efficiency of entire system. 
 

3. ROTOR POWER COEFFICIENT 
 

The ratio of turbine power to the available power 
in the wind is called rotor power coefficient 

(C p) 
 

                                                 (3) 

 

where  
 

  

 

It is obvious that the rotor power (P) is 

proportional to , so it is desired that the 

turbine works at . 
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As mentioned earlier,  varies by                             
two parameters: BPA and tip speed ratio                
(TSR). Fig. 1, shows the surface which                        
is produced by changing these two parameters 
for NREL 5-MW wind turbine benchmark              
model. 
 
For producing Fig. 1, a lot of simulation should 
be conducted. In each simulation, the values of 
TSRs and BPAs should have been fixed to 
produce a point in this surface. Next, another 
pair of TSR and BPA should be chosen and the 
entire simulation should be repeated. This 
procedure should be iterated until desired points 
in the surface are produced. It should be noted 
that a simple controller must be designed                

to control the system to a steady state 
condition. 
 
So this surface is produced in a discrete 

fashion. Also the value for C p in each 

simulation has a transient part and a steady 

state part. The reported C p is the mean value 

for the steady state part. Fig. 2, shows the 
behavior of this parameter during a simulation. 

 
By fixing BPA at zero, Fig. 3 is produced which 

shows how C p varies with TSR. In region II, it is 

common to fix BPA to a constant value (e.g. 0 
degree, which is supposed to have maximum 

Cp). 

 

 
 

Fig. 2. Time evolve of Cp during one of simulations 
 

 
 

Fig. 3. Cp-TSR curve at BPA=0 
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As mentioned earlier, aerodynamic curves play 
an important role in wind turbine systems. 

Among them, rotor power coefficient (Cp) 

attracted more attention since it is directly 
related to controller design. There are some 
researches that have tried to model this curve. 
 
Reference [7], proposes an exponential 
relation. The author simplifies the dependency 

of C p to BPA and TSR by fixing BPA at a 

constant value. The resulting model is: 
 

 
 
Reference [8] tries to model aerodynamic curves 
of wind turbine, with polynomial/exponential 
equations. Resulting models are relations with 10 
to 12 coefficients. 
 
The proposed model in [9-10] for rotor power 
coefficient is: 
 

 
 
Reference [11], has tried to estimate TSRs 
under wind speed variations, based on a 
perturbation and observation (P&O) method. 

 
In [12], ANFIS and ANN methods for predicting 
tip speed ratio and power factor for data set of 
blade profile types (LS-1 and NACA 4415) are 
proposed. In this reference, the focus is on 
designing the wind turbine blades, not on the 
controller. 

 
In theory, the maximum efficiency of a wind 
turbine is given by the Betz limit and for any real 

wind turbine, it is equal to  = 16 / 27 [3] 
Typically wind turbines operate below this limit 
[13]. 
 

Any inaccuracy in the  or  has a direct 
effect on the controller gain and results in less 
efficient power capture. This inaccuracy is the 
motivation for improving modeling accuracy of 

 curve and estimation of and  by 
means of neural network. 
 
In the next section, a brief overview of 
artificial neural network and their modelling 
and estimation capability is presented. 

4. ARTIFICAIL NEURAL NETWORKS [14] 
 
Curve fitting is a well-known problem in 
engineering. It consists of fitting parameterized 
functional forms to the sets of input-output pairs 
of data. 

 
Neural networks are computational systems 
which are inspired by human brain. Many 
different structures of these networks exist,  
each of them specially developed to tackle a 
specific problem. Interested reader can refer to 
[15] for an introductory review of neural 
networks. 

 
A multilayer perceptron (MLP) consists of a 
network of neurons as illustrated in Fig. 4 

 

 
 

Fig. 4. A MLP with one hidden layer [14] 

 
Each circle in the diagram is a node or neuron 
and the lines connecting the nodes are called 
weights. 

 
This network is an analytical mapping between 
input xm (m = 1,..., M ) and output zn (n = 1,..., N ) 

where M and N are the number of inputs and 
outputs respectively. 

 
The inputs are fed into the input layer (the first 
layer in the diagram), then multiplied by a 
weight matrix W = [wlm ] (l = 1,..., L; m = 1,...,M) 

where L is the number of neurons in the hidden 
layer (the second layer in the diagram). The 
results then transformed by a nonlinear function 

f (.) and multiplied by another weight matrix Ŵ 

= [ŵ nl ] to produce outputs. The function f (.) is 

generally a sigmoid or hyperbolic tangent 
function. 

 
The entire network could be summarized as 
following analytical function: 
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     (4) 
 

Where bl and b̂ are bias inputs to the network’s 

layers. 
 

Determining weights to optimize the accuracy of 
the mapping is called training. To this end a 
large number of input-output pairs are required. 
 

The error between the output vector y of the 

network (for given input vector x 
p
) and the 

corresponding target vector z 
p

, summed over all 
exemplars p is defined as: 
 

 
 
Minimizing this error function is used to 
determine network’s weights. Back-propagation 
is the most widely used technique to minimize 

the Enet A detailed information for the back- 
propagation procedure can be found in [16]. 
More powerful optimization algorithms exist, 
and in this article, Levenberg-Marquardt [15] is 
used for training the network. 
 

5. ESTIMATION OF CP CURVE 
 

As mentioned previously, Cp is an important 

parameter for tuning the gain of controller for a 
wind turbine. So knowledge of its behavior and 
the way it varies is vital for controller design. Fig. 
1, depicts the way this parameter varies with 
TSR and BPA. 
 

It is obvious that there are at least two sources of 

uncertainty and inaccuracy to obtain  
Conducting simulations in discrete steps and 
Time varying behavior of Cp during each 

simulation. 
 

The first problem could easily resolve as ANNs 
has the ability of estimating a continuous 
function from discrete samples. To overcome the 
second problem, mean value of steady state 
condition for each simulation is used. So the goal 
is to train an artificial neural network to model the 
relationship between Cp, TSR and BPA 

accurately. 
 

The data which is used for training this                
network is freely available in the NREL website 
[6]. This data contains various simulation 
scenarios for BPAs from -5 degree to 9            
degree with 1 degree step, and TSR between 
0.4120 and 26.3640. All these scenarios 
assume steady wind condition (v=8 m/s). The 
maximum Cp in this data is 0.48546 which is 

occurred at TSR=8 and pitch angle=0, which its 

difference with reported  and optimum  

TSR by [5], proves the imperfection of modelling 
tools. 
 
The network which is used in this paper has 2 
inputs (TSR and pitch angle) and 1 output (Cp). 

In total, 2730 input-output pairs are available for 
training, validating and testing. 
 
As the aim of neural network in this paper is to 
find the maximum of Cp curve and the point in 

which this maximum is occurred, without loss of 
generality and to increase the accuracy of overall 
network, negative values of Cp can be 

removed from data. Also for getting better 
performance and to give equal importance to the 
inputs, it is advised to normalize the inputs and 
output of the network [15]. 
 
With this modification 2474 normalized input-
output pairs are utilized. 70 percent of this data 
is used for training while 15 and 15 percent of 
randomly selected data are chosen for validating 
and testing. Levenberg-Marquardt optimization 
technique is used for training function and mean 
square error (MSE) is selected for performance 
function. 10 neurons are placed in the hidden 
layer. Also MATLAB neural networks toolbox is 
used for training. 
 
Fig. 5 shows regression plot and Fig. 6 depicts 
output of NN after training. These two plots 
confirm that training procedure is accomplished 
successfully. 
 
It should be noted that, because of the             
nonlinear nature of data and sensitivity of  
neural network training algorithms to initial 
weights, the training of the network is repeated 
several times to obtain optimum performance. 
This repetition causes to reinitialize the weights 
and helps the network to escape from local 
minima. 
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Fig. 5. Regression plot for training phase of ANN 
 

 
 

Fig. 6. Comparison of normalized output of NN and training data 
 
After training phase, finding the maximum                     
of resulting model should be triggered. To this 
end, because of the nature of data a direct 
search with arbitrary step size could be 
employed. In this research a step size of 0.01 is 
chosen. 

 

The resulting  obtained with this method 
is 0.48955 at BPA= -0.11 and TSR= 7.63. 

Recall that in [3] these optimum parameters are 

=0.482, BPA= 0 and TSR=7.55. 
 

By replacing the old optimum values by new 
ones in eq. (2) the new gain can be computed: 

. Compared to the old gain

 it could be seen 
that the new gain is reduced by a factor of 
0.9841. 
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Fig. 7. Generated power 

 
The reason of reduction in controller gain is that, 

although the new  is higher than old
,the new optimum TSR, is also higher than old 
optimum TSR. As this parameter has an inverse 
cubic form in eq. (1), this parameter, cancels out 

improvement of new . 
 
But, with this new controller gain and under 
steady wind condition, simulation shows that, in 
spite of reduction in control gain, the overall 
energy capture is improved. 
 
Fig. 7, compares the generated power with old 
and new controller gains. This figure shows 
generated power of benchmark 5 MW wind 
turbine model for steady wind (8 m/s). 
 
It is clear that with the new controller gain, the 
power capture of wind turbine is increased. 
 
Recall that, region II is responsible for 50% of 
power generation in a year. So this new 
controller gain can improve the power generation 
capability of a wind turbine system at no cost. 
 

6. CONCLUSION 
 
In this paper, using neural network modelling 
capability and based on simulated data, an 
accurate model for one of the most important 
aerodynamic curves of wind turbine, namely 
rotor power coefficient (Cp) is identified. 

 

The proposed method, addressed the problem 
of sub-optimality of controller gain in the region 
II. Because the reason for this inaccuracy lies 

in uncertainty of Cp curve, accuracy of this 

curve could enhance the efficiency of the entire 
wind turbine and improves the power capture, 
especially in region II. 

 
Based on this model, the maximum of this curve 
is estimated. This maximum, together with blade 
pitch angle and tip speed ratio at which this 
maximum occurs, result in a new controller 
gain which cause improvement in the overall 
power capture. 

 
Using the outcome of this paper, it is planned to 
design more advanced controllers using 
adaptive and nonlinear control theory. Also the 
Cp curves varies slightly with wind speed. In this 

research, only constant wind is considered. So 
modelling Cp in variable wind speed could be 

the topic of future research. 
 
Simulations, showed the effectiveness of 
proposed method. 
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