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ABSTRACT 
 

This study we aimed to identify how the harvest period of the stems from 5 sweet sorghum cultivars 
influences the production of sugar and ethanol under rainfed conditions in the municipality of 
Itambé, state of Pernambuco. Subsequently we evaluated the ethanol production from juice and 
bagasse of the different cultivars. The field experiment was evaluated in a factorial arrangement 
with two factors (5 cultivars and 3 harvest periods) and fours replications. The fermentation 
experiments, pretreatment and enzymatic hydrolysis were delineated in a completely randomized 
design in quadruplicate. Data obtained for all variables evaluated were submitted to an Analysis of 
Variance and the means compared by the Tukey test at 5% of probability. Results showed that the 
harvest period influenced the total soluble solids, and the harvest period of soft dough was chosen 
for assessments of ethanol production of first and second generation. Ethanol production from juice 
differed among cultivars with the best performance by cultivar SF 15. Significant differences were 
observed for the chemical composition of bagasses between cultivars, but there where no 
difference in efficiencies of enzymatic hydrolysis. The average conversion of cellulose in glucose 
was 64.87%. The cultivars of sweet sorghum biomass developed and adapted for the Northeastern 
region of Brazil showed potential for ethanol production from the juice and bagasse. 
 

 

Keywords: Bioenergy; energy crops; biofuels; forest zone of Pernambuco. 
 

1. INTRODUCTION  
 

In order to mitigate the environmental effects of 
fossil fuel use in the transportation sector, 
initiatives for the inclusion of biofuels in the 
energy matrix, especially ethanol, are increasing 
worldwide. About 100 billion liters of ethanol are 
currently produced in the world, and the major 
producers are the U.S. and Brazil [1]. Ethanol 
can be produced from different types of biomass, 
especially sweet crops (sugarcane and sugar 
beet) and starch (corn and wheat). In addition, 
research efforts have been focused to enable 
ethanol production from lignocellulosic biomass 
[2,3,4].  
 

To increase ethanol production, energy crops 
evaluated in past decades have attracted the 
interest of researchers in various countries like 
USA [5], India [6] China [7] and Brazil [8]. Among 
energy crops, sweet sorghum has gained 
prominence for ethanol production, as it presents 
the possibility of full utilisation of biomass usually 
containing 37% juice, 8% grain, 36% bagasse 
and 19% leaves [9].  
 

Sorghum main use is as fodder, but it can also 
be used for the production of energy, 
supplementing animal feed and fiber production 
[10].  Its main features are the efficient use of 
water and good development in different climate 
and soil conditions [11]. It is a crop widely 
cultivated due to its potential to produce ethanol, 
and several studies have shown its potential as a 
source of biomass with lower water requirements 
[12,13]. It is a grassy crop with C4 photosynthetic 
cycle cultivated in several countries, with high 

efficiency in the conversion of CO2 into sugars 
via photosynthesis [14]. It is originated in Africa, 
being the fifth cereal most cultivated in the world.  
 

Its productivity is highly variable and depends on 
growing and environmental conditions, but 
generally sweet sorghum yields 2.36 Mg ha

-1
 of 

grain and 42.15 Mg ha
-1

 of stalk [15], and the 
juice present in stalk, rich in sucrose, glucose 
and fructose, is the part of greatest interest for 
the production of first-generation ethanol [16]. 
The production of ethanol from the fermentation 
of sorghum juice is approximately 3451 L ha-1 
[17], but can vary widely depending on the 
cultivation region and cultivar used [18]. 
 

Recently, research has been developed to 
increase yields of ethanol production by using 
other carbon sources present in sweet sorgum 
hydrolysates. For this, it is necessary to use 
yeasts that are capable of fermenting alternative 
carbon sources, such as xylose and cellobiose, 
because Saccharomyces cerevisiae cannot 
convert them to ethanol. In view of this, 
Spathaspora passalidarum and Dekkera 
bruxelensis are alternatives in the increase of 
ethanol production, from the assimilation and 
fermentation of xylose and cellobiose, 
respectively, which can make this process more 
economically feasible [19,20]. 
 

Much of the information about the use of sweet 
sorghum biomass for ethanol production 
concerns cultivars developed in countries like 
USA [21], China [22] and India [23]. In Brazil, 
despite efforts by the Empresa Brasileira de 
Pesquisa Agropecuária (EMBRAPA) and the 
Agronomic Institute of Pernambuco (IPA), there 
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are few cultivars developed for different climatic 
and soil conditions and lack of information about 
actual ethanol production for each cultivar. 
Previous study [24] demonstrated the potential of 
some sweet sorghum cultivars harvested at 
maturation stage in Pernambuco with theoretical 
values of ethanol per hactare between 681 and 
3142 L from the juice fraction. In this context, the 
aim of this work was to assess the best harvest 
stage of stalks and subsequent ethanol 
production from stalk juice and bagasse using 
different cultivars with production history in 
Northeastern Brazil.  
 

2. MATERIALS AND METHODS  
 

2.1 Field Experiment  
 

A field experiment was conducted in 2011 at the 
experimental station of the Agronomic Institute of 
Pernambuco (07 º 24 'S and 35 º 06' W), 
municipality of Itambé, Zona da Mata, northern 
state of Pernambuco, Brazil, to evaluate the 
agronomic performance of IPA 467, SF 11, BR 
506, SF 15 and IPA 2502 cultivars. The area has 
annual average rainfall of 1200 mm and mean 
annual temperature of 25°C. The soil in the 
experimental area was characterized as clayey-
sandy loam, containing 577, 102, 321 g.kg-1 of 
sand, silt and clay, respectively. Approximately 
30 days from planting, 1.5 Mg ha

-1
 of lime was 

applied. Fertilization was also performed by 
applying 777 kg ha

-1
 of N (Urea), P (single 

superphosphate) and K (Potassium Chloride) 90-
90-60 formulation. One month after planting, top-
dressing fertilization was also performed by 
applying 60 kg N ha-1 in the form of urea.  
 

Stalk harvest was carried out at three stages of 
plant development, boot stage (HS1), soft dough 
grain (HS2) and hard dough grain or maturation 
(HS3). Ten plants were cut close to the ground 
and had leaves and panicles removed in order to 
perform juice extraction from the clean stalk in 
sugarcane milling system, and each sample was 
passed three times in rolls. Identifying the best 
harvest time allowed determining ethanol 
production at optimum stage.   
 

2.2 Characterization of Juices from 
Cultivars 

  

After extraction and filtration, juices were 
characterized for the levels of total soluble solids 
(TSS) °Brix using portable refractometer 
Instruterm model RT-30ATC with scale from 0 to 
32 °Brix, and total sugar concentration (TS) 
determined by the sum of sucrose, glucose and 

fructose contents by high-performance liquid 
chromatography (HPLC). Juices were also 
quantified for nitrogen levels (FAN-free amino 
nitrogen) using the ninhydrin method and for 
nutrients after digestion with sulfuric acid and 
hydrogen peroxide [25]. Total P 
(spectrophotometry) and K (flame photometry) 
were also determined in extracts generated.  
 

2.3 Characterization of Bagasses from 
Cultivars  

 
The characterization of bagasse samples 
originated from the juice extraction step was 
performed according to methodology of [26] to 
quantify NDF, ADF, carbohydrates (cellulose and 
hemicellulose) and lignin acid detergent. 
Moisture was determined using infrared 
analytical balance and ash by gravimetric 
method after calcination in muffle furnace at 
600°C for 2 h.  
 

2.4 Fermentation of Juices  
 
Fermentations were carried out in simple batch 
system in Erlenmeyer flasks with total volume of 
250 mL under a controlled temperature of 33°C 
in static condition for a period of 6 h. All assays 
were conducted in quadruplicate and arranged in 
a completely randomised design. Flasks were 
added of 100 ml of sterilized sorghum juice and 
inoculated with 10% (w/v) inoculum of 
Saccharomyces cerevisiae JP-1 yeast, 
previously grown in YPD medium (20 g L

-1
 

glucose, 10 g L-1 peptone and 10 g L-1 yeast 
extract). In inoculums, cell viability and initial cell 
concentration were determined by counting 
method after staining with methylene blue in 
Neubauer chamber. In juice fermentation assays, 
aliquots were collected at time 0 h and 6 h to 
determine sugar consumption and fermentation 
products such as ethanol and glycerol. The 
kinetic parameters calculated at the end of 
fermentation were: sugar consumption (Ac), 
ethanol volumetric yield (Qp) and sugar 
conversion yield (sucrose, glucose and fructose) 
into ethanol (Yp/s), according to equations 1            
and 2.  
 

                                   (1) 
 

                                                  (2) 
 
Where: Qp: volumetric yield; P: ethanol 
production; T: fermentation time; Yp/s: ethanol 
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yield per sugar consumed; and Ac: sugar 
consumption.  
 

2.5 Pretreatment and Enzymatic 
Hydrolysis of Sorghum Bagasses  

 
Pretreatment was conducted in Erlenmeyer 
flasks with total volume of 250 mL where 
sorghum bagasse was added at a ratio of 4% 
total solids solid-liquid with hydrogen peroxide 
solution at concentration of 7.5% w/v in 100 mL 
of water. pH adjustment was carried out with 5M 
NaOH up to the value of 11.5. Flasks were 
incubated in orbital shaker table at 150 rpm and 
25°C for 1 h [19]. 
 

Upon completion of the reaction, the two 
fractions derived from pretreatment were 
separated into liquid and the solid fraction by 
filtration and this step allowed quantifying the 
mass loss in the reaction (Equation 3). The solid 
fraction was washed with 1.5 L of distilled water 
in order to remove water-soluble solids. The solid 
fraction previously washed and dried in oven with 
air circulation at 45°C was submitted to 
enzymatic hydrolysis using commercial enzyme 
FibreZymeTM LDI (Table 1) at dose of 10 FPU  
g

-1
 of dry biomass without supplementation with 

β-glycosidases. The hydrolysis conditions were: 
total load of solids of 20 gL-1, pH 4.8, stirring 
at100 rpm, 50°C and time of 48 h. After 48 
hours, aliquots were collected for the 
determination of glucose released using glucose 
oxidase enzyme KIT and total reducing sugars 
[27]. The cellulase activity was quantified in filter 
paper units according to methodology proposed 
by [28]. The β-glucosidase activity was 
determined based on cellobiose solution and 
expressed in units per mL according to [29]. The 
xylanase, CMCase and avicelase activities were 
also quantified. The enzymatic hydrolysis 
efficiency was expressed according to Equation 
4 [30].  
 

Table 1. Enzymatic activity of the commercial 
preparation FibreZymeTM LDI 

 

Enzyme Activity 

FPase (Filtre Paper hydrolase) 11.5 FPU/mL 

Xylanase 789 U/mL 

Β-glucosidase 10 CBU/mL 

Avicelase 5.9 U/mL 

CMCase (CarboxyMethyl 
Hydrolase) 

175 U/mL 

 

                             (3) 

                             (4) 
  
Where PM: weight loss; Mi: initial bagasse mass; 
Mf: final bagasse mass.  
 
Where EH: enzymatic hydrolysis efficiency; C1: 
glucose concentration in the hydrolysate; M: 
mass of dry bagasse; W: cellulose content in 
pretreated bagasse; and 1.11 conversion factor 
of cellulose into glucose.  
 

2.6 Fermentation of Hydrolysates  
 
After enzymatic hydrolysis of the different types 
of bagasse, hydrolysates were submitted to 
fermentation with Dekkera bruxellensis GDB 248. 
Fermentation assays were performed in batch in 
125 mL Erlenmeyer flasks added of 100 ml of 
hydrolysate with 2% w/v of D. bruxellensis cells 
previously grown in YPD for 24 h. The flasks 
were incubated at 32°C in static condition and 1 
ml samples were collected at baseline and after 
7 h. After centrifugation, the supernatant was 
filtered at 0.22 µm and used for analysis of 
fermentation metabolites by HPLC under the 
conditions described above. The kinetic 
parameters calculated at the end of fermentation 
were: ethanol volumetric yield (Qp) and sugar 
conversion yield (glucose and cellobiose) into 
ethanol, according to Equations 1 and 2. 
 

2.7 Analytical Analyses 
 
Carbohydrates and ethanol concentrations were 
measured by High Performance Liquid 
Chromatography (HPLC), using column Aminex 
HPX 87H

+
 (300 x 7.8 mm, Bio-Rad), with 

refractive index detector (RID), at 50°C and 
mobile phase 5 mM H2SO4, at flow rate of               
0.6 mL/min. 
 
2.8 Statistical Analyses  
 
Field experiment was evaluated in factorial 
design with three harvest stages and five 
cultivars. The fermentation of juices extracted at 
the soft dough grain harvest stage was 
conducted in a completely randomized design. 
Pretreatment, enzymatic hydrolysis and 
fermentation of hydrolysates were also 
conducted in a completely randomized design. 
All determinations were performed in 
quadruplicate and the results for °Brix, N-FAN, P, 
K levels, pH, EC, initial sugars, mass loss, 
glucose content, total reducing sugars, efficiency 
of conversion of cellulose into glucose and 



kinetic parameters of fermentation and ethanol 
concentration, ethanol volumetric yield and 
efficiency of conversion of sugars into ethanol 
were submitted to analysis of variance (ANOVA) 
and means were compared by the Tukey test at 
significance level of p ≤ 0.05 using the 
ASSISTAT software. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Field Experiment  
 

A field experiment was initially conducted to 
evaluate the best harvest stage for the different 
sweet sorghum cultivars under study. For this, 
variable ºBrix was determined during three stalk 
harvest stages: booting, soft grain and 
maturation or hard grain. No significant 
interaction between harvest stage and cultivars 
was observed. The ºBrix levels during soft 
grain and hard grain harvest stage were similar 
and significantly higher than in the booting 
harvest stage (Fig. 1). Therefore, earlier harvest 
in soft grain phase was chosen as the best to 
evaluate first- and second-generation ethanol 
production. 
 

The choice of variable ºBrix is related to the 
direct correlation between levels of total soluble 
solids (°Brix) and levels of total sugars in the 
sweet sorghum juice [31,24]. Cultivars reached 
the soft grain stage on different days: IPA 467 in 

Fig. 1. Brix contents in sweet sorghum evaluated in the field experiment. Values 
General average for data collection, 5% probability, CV (%) = 17.20. HS1: Harvest boot stage, 

HS2: Harvest soft grain stage, and HS3: Harvest hard dough grain
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kinetic parameters of fermentation and ethanol 
concentration, ethanol volumetric yield and 
efficiency of conversion of sugars into ethanol 
were submitted to analysis of variance (ANOVA) 

were compared by the Tukey test at 
≤ 0.05 using the 

RESULTS AND DISCUSSION  

A field experiment was initially conducted to 
evaluate the best harvest stage for the different 

cultivars under study. For this, 
variable ºBrix was determined during three stalk 
harvest stages: booting, soft grain and 
maturation or hard grain. No significant 
interaction between harvest stage and cultivars 
was observed. The ºBrix levels during soft              
grain and hard grain harvest stage were similar 
and significantly higher than in the booting 

1). Therefore, earlier harvest 
in soft grain phase was chosen as the best to 

generation ethanol 

The choice of variable ºBrix is related to the 
direct correlation between levels of total soluble 

vels of total sugars in the 
sweet sorghum juice [31,24]. Cultivars reached 
the soft grain stage on different days: IPA 467 in 

140 days, SF 11 in 130 days, BR 506 in 92 days, 
SF 15 in 140 days and IPA 2502 in 92 days.
 

3.2 Initial Characterization and Juice
Fermentation  

 
The initial characterization of juices from different 
sweet sorghum cultivars is shown in Table 2. All 
variables that characterized juices showed 
significant differences among sorghum cultivars 
evaluated. The levels of ° Brix ranged from 8.
to 16.10 and the levels of total sugars (sucrose, 
glucose and fructose) ranged from 67.6 to 128.8 
g L

-1
. Generally, the levels of °Brix and total 

sugars are correlated, which allows the use of 
the determination of soluble solids in juices as 
important tool for sugar and alcohol facilities [32], 
[31,9]. Literature reports levels of °Brix in juice 
for stalk harvest from 15.5 to 16.5 as appropriate 
[17].  
 

In addition to the levels of ° Brix and total sugars, 
nutrient composition, pH and electrical 
conductivity (EC) are important in the 
characterization of juices. The analysis of these 
variables allows inferring on the need for addition 
or dilution or even correction of juices to be 
fermented, because microorganisms need 
nutrients to convert soluble sugars into ethanol 
[33,34]. The levels of N-FAN nitrogen                 
(free amino nitrogen) ranged from 193.4 to 

 

 

contents in sweet sorghum evaluated in the field experiment. Values for n = 4, MG: 
General average for data collection, 5% probability, CV (%) = 17.20. HS1: Harvest boot stage, 

HS2: Harvest soft grain stage, and HS3: Harvest hard dough grain stage
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140 days, SF 11 in 130 days, BR 506 in 92 days, 
SF 15 in 140 days and IPA 2502 in 92 days. 

Initial Characterization and Juice 

The initial characterization of juices from different 
sweet sorghum cultivars is shown in Table 2. All 
variables that characterized juices showed 
significant differences among sorghum cultivars 
evaluated. The levels of ° Brix ranged from 8.95 
to 16.10 and the levels of total sugars (sucrose, 
glucose and fructose) ranged from 67.6 to 128.8 

. Generally, the levels of °Brix and total 
sugars are correlated, which allows the use of 
the determination of soluble solids in juices as 

ool for sugar and alcohol facilities [32], 
[31,9]. Literature reports levels of °Brix in juice 
for stalk harvest from 15.5 to 16.5 as appropriate 

and total sugars, 
nutrient composition, pH and electrical 
conductivity (EC) are important in the 
characterization of juices. The analysis of these 
variables allows inferring on the need for addition 
or dilution or even correction of juices to be 

, because microorganisms need 
nutrients to convert soluble sugars into ethanol 

FAN nitrogen                 
(free amino nitrogen) ranged from 193.4 to 

 

for n = 4, MG: 
General average for data collection, 5% probability, CV (%) = 17.20. HS1: Harvest boot stage, 

stage 
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Table 2. Preliminary characterization of juices from distinct sweet sorghum cultivars obtained from a field experiment in Itambé, PE, Brazil 
 

Cultivares °Brix (g/100mL) TS (g/L) N-FAN (mg/L) P (mg/L) K (mg/L) pH EC(mS/cm) 

IPA 467 14.65± 3.56 ab 107.40 ± 36.64 ab 193.40 ± 65.03 b 74.90 ± 11.81 b 5403.29 ± 881.22 a 5.23 ± 0.06 bc 6.03 cd 

SF 11 13.95± 1.18 ab 99.17 ± 10.31 ab 294.58 ± 19.31 ab 78.34 ± 19.22 b 4893.17 ± 1004.34 a 5.10 ± 0.05 c 7.24 ± 1.13 bc 

BR 506 10.35 ± 1.87 bc 82.20 ± 23.26 ab 670.05 ± 121.05 a 161 ± 41.65 a 6205.21 ± 495.68 a 5.20 ± 0.04 bc 9.33 ± 0.49 a 

SF 15 16.10 ± 1.14 a 128.80 ± 13.17 a 233.25 ± 18.31 ab 72.93 ± 12.38 b 2768.98 ± 1002.49 b 5.26 ± 0.03 b 5.19 ± 1.45 d 

IPA 2502 8.95 ± 1.65 c 67.65 ± 17.29 b 655.24 ± 193.84 ab 127.05 ± 20.40 ab 5996.81 ± 669.61 a 5.42 ± 0.12 a 8.72 ± 0.75 ab 
*values for n=4. TS: Total sugar; N-FAN: Free amino Nitrogen; P: Phosphorus; K: Potassium; EC: Eletrical conductivity. Means with the same letter in the column are not 

significantly different (Tukey, P > 0.05) 
 

Table 3. Kinetic parameters in the static fermentation of the juices from different cultivars of sweet sorghum at 33 °C, 6h using industrial yeast JP1 
 

Cultivares SC (%) P (g/L) Qp(g.L.h) Yp/s Vi (%) Vf (%) Ci (108) Cf (108) 
IPA 467 92.1b 42.37 abc 7.06 abc 0.45 a 97.03 95.54 4.46 4.63 
SF 11 96.71ab 47.27 ab 7.88 ab 0.49 a 96.76 91.73 4.38 4.3 
BR 506 98.11 ab 35.27 bc 5.88 bc 0.44 a 96.95 96.00 4.52 4.64 
SF 15 95.64 ab 56.38 a 9.40 a 0.46 a 98.36 92.80 4.66 4.66 
IPA 2502 99.42 a 28.31 c 4.71 c 0.42 a 95.86 98.64 4.9 4.82 

Values for n=4. SC: Sugar consumed; P: ethanol; Qp: Volumetric productivity; Yp/s: Yield; Vi: Initial viability; Vf: Final viability; Ci: Initial concentration of cells; Cf: Final 
concentration of cells. Means with the same letter in the column are not significantly different (Tukey, P > 0.05) 
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670.05 mg l-1. The phosphorus contents ranged 
from 72.93 to 161 mg l

-1
 and potassium levels 

from 2768.98 to 6205.21 mg l-1. [35] observed 
similar concentrations of potassium, but different 
concentrations of nitrogen and phosphorus for 
four cultivars of sweet sorghum cultivated in 
Thailand. Differences in nutrient content in the 
juice can be explained by the harvest stage of 
the stems, where decreases levels of nutrients 
were observed since soft dough at maturation of 
the grain [36].  
 
The pH values for all cultivars were similar and 
with overall average of 5.24, which is within 
optimal values for fermentation with yeasts              
of the genus Saccharomyces [37]. Significant 
differences were observed for electrical 
conductivity (EC), which is correlated                     
with the salinity of juices and can interfere              
with the yeast metabolism and affect the 
fermentation yield. However, there are still few 
studies that relate EC with fermentation 
interferences.  
 

The variability in the levels of °Brix, total sugars, 
nutrients and variables such as pH and electrical 
conductivity in juices from different sweet 
sorghum cultivars is associated with the genetic 
capacity of each cultivar and also with 
environmental conditions such as soil type, 
rainfall, incidence of solar radiation [38]. The 
analysis and characterization of these variables 
in cultivars with potential for ethanol production is 
critical to the viability of sweet sorghum 
cultivation.  
 
The results of the kinetic parameters after 6 h of 
static fermentation with Saccharomyces 
cerevisiae of juices from different sweet sorghum 
cultivars are shown in Table 3.  
 

The ability of yeast to consume sugars from 
juices, ethanol production, ethanol volumetric 
yield, fermentation yield, cell viability and cell 
concentration were used as parameters to 
evaluate cultivars. Significant differences were 
observed in the ability of yeasts to consume 
sugars present in the juice from different 
cultivars, from 92.71 to 99.42% of sugar 
consumption (Table 3). These differences are 
due to the quality of juices and are related to the 
concentration of nutrients and other elements 
such as vitamins. The ethanol concentration in 
the fermentation juice ranged from 28.31 to 
56.38 gL-1. [39] observed similar results when 
evaluating the production of ethanol from sweet 
and forage sorghum cultivars in a region of low 

rainfall in Mexico, with ethanol content from 
35.78 to 56.36 g L

-1
.  

 

Similar to the ethanol concentration, the 
volumetric yield showed differences between the 
cultivars (Table 3). The cultivar SF 15 was 
highlighted due to Qp. This parameter is 
important in determining the amount of ethanol 
per unit of time, which in the sugar and ethanol 
industry is between 6 to 12 hours for initial sugar 
concentrations of 120 gL-1.  
 

There were no differences for variable 
fermentation yield, which expresses the 
transformation efficiency of sugars consumed 
into products of interest such as ethanol (Table 
3). Yp/s ranged from 0.42 to 0.49, which 
represents 82.35% to 96.07% conversion of 
sugars into ethanol from the maximum 
conversion coefficient of 0.51. 
 

No growth of yeasts was observed during 
fermentation (Table 3). This is explained by the 
high initial inoculum value used of 10% m / v, 
representing an average of 4.58 x 108 cells.mL-1. 
A decrease in cell viability was observed, which 
is the product of the concentration of products 
that inhibit the activity of yeasts.  
 

3.3 Pretreatment, Enzymatic Hydrolysis 
and Fermentation of Hydrolysates  

 

The chemical composition for the contents of 
cellulose, hemicellulose, and acid detergent 
lignin of the different types of fresh sweet 
sorghum bagasse and after pretreatment step 
are shown in Table 4.  
 

The initial composition showed significant 
differences among cultivars. The highest 
cellulose levels were observed for IPA 2502 and 
IPA 467 cultivars. Cellulose concentrations 
ranged from 38.64 to 42.50%. After pretreatment, 
there was an increase in the cellulose levels for 
all bagasses from 58.11% to 91.42%. The 
hemicellulose content ranged from 27.99 to 
33.34%, and after pre-treatment with H2O2, 
values decreased by 43.13%, 46.41%, 42.15%, 
44.64% and 48.13% for the IPA 467, SF 11, BR 
506, 15 SF and IPA 2502 cultivars, respectively 
compared to fresh bagasse, indicating 
solubilization of hemicellulose for the liquid 
fraction of the reaction. The acid detergent lignin 
(ADL) levels ranged from 2.63 to 4.02% and after 
reaction with H2O2, the values  decreased, 
indicating delignification of bagasses. Reductions 
of 78.55%, 62.68%, 86.09%, 64.16% and 
71.11% were observed for 467 IPA, SF 11, BR 
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506, SF 15 and IPA 2502 cultivars, respectively, 
compared to fresh bagasse.  
 
Delignification processes using pretreatment               
with alkaline hydrogen peroxide and                   
sodium hydroxide are quite variable in relation               
to the type of biomass being evaluated and 
pretreatment conditions. For sugarcane                 
bagasse, for lignocellulosic biomass with               
higher lignin content to sweet sorghum,                
removal values of about 70% are reported 
[40,41] under conditions similar to those used in 
this study. For cotton biomass, reductions 
between 6.22% and 32% were observed using 
H2O2 at different temperatures and pressure [41]. 
Optimal lignin removal values of 65.66% were 
observed for rapeseed straw biomass with 5% 
H2O2 in alkaline medium in 1 h reaction at 50°C 
[42]. For sweet sorghum biomass [30] reported 
value of 78.84% delignification using 5% H2O2 for 
24 h.  
 
Pretreatment of lignocellulosic biomass is       
aimed to disrupt the organic matrix to allow the 

hydrolysis step of carbohydrates. For all types of 
bagasse evaluated in this study, pretreatment 
with H2O2 in alkaline medium resulted in an 
average mass loss of 34.55%, 38.15%, 32.03%, 
41.5% and 36.22% for IPA 467, SF 15, BR 506, 
SF 15 and API 2502 cultivars, respectively. Mass 
loss is related to the solubilization of lignin, 
extractives, ash, and small fractions of 
carbohydrates into the liquid phase of the 
reaction.  
 
Pretreatment with H2O2 is a process for 
delignification of lignocellulosic biomass [43] that 
allows achieving greater efficiency in the 
recovery of sugars in the enzymatic hydrolysis 
step [42], since the presence of lignin impairs the 
access of enzymes to the substrate. The 
efficiency of this type of pretreatment is 
dependent on the biomass being evaluated and 
the results indicate no significant difference in 
relation to the glucose production and significant 
difference to reducing sugars (Table 5) for the 
different types of sweet sorghum bagasses 
evaluated.  

 
Table 4. Chemical composition of bagasse before and after alkaline H2O2 for differences sweet 

sorghum cultivars 
 

Before H2O2 pretreatment 

Cultivares Celulose (%) Hemicelulose (%) LDA (%) 

IPA 467 42.46 ± 0.42 a 27.99 ± 0.46 b 4,01 ± 0.19 a 

SF 11 38.64 ± 1.03 c 33.34 ± 1.13 a 4,02 ± 0.4 a 

BR 506 40.7 ± 0.69 b 29.52 ± 0.71 b 2,66 ± 0.65 b 

SF 15 38.73 ± 0.40 c 33.09 ± 0.96 a 3,07 ± 0.58 ab 

IPA 2502 42.50 ± 1.03 a 33.33 ± 1.80 a 2,63 ± 0.4 b 

After  H2O2 pretreatment 

IPA 467 67.13 ± 0.48 15.92 ± 0.12 0.86 ± 0.15 

SF 11 72.81 ± 2.23 17.87 ± 0.90 1.5 ± 0.3 

BR 506 73.12 ± 3.02 17.08 ± 1.56 0.37 ± 0.1 

SF 15 74.12 ± 1.83 18.36 ± 0.79 1.1 ± 0.2 

IPA 2502 75.15 ± 1.54 17.29 ± 1.62 0.76 ± 0.4 
Values for n=4 ± standard deviation. TS: Total sugar, LDA: Lignin detergent acid. Means with the same letter in 

the column are not significantly different (Tukey, P > 0.05) 
 

Table 5. Efficiencies of enzymatic hydrolysis for different types of sweet sorghum bagasse, 2% 
substrate, 10 FPU/g dry bagasse, 50°C, pH = 4.8, 48h, before pretreatment with H2O2 

 
Biomass TS (g/L) Glucose (g/L) EH(%) 
IPA 467 14.99 ± 0.83 ab 8.79 ± 0.66 a 61.44 ± 4.52 a 
SF 11 13.60 ± 1.08 b 10.06 ± 2.09 a 66.11 ± 13.41 a 
BR 506 15.17 ± 0.82 ab 9.31 ± 0.31 a 59.80 ± 2.60 a 
SF 15 15.21 ± 1.22 ab 10.03 ± 0.63 a 64.69 ± 4.26 a 
IPA 2502 16.04 ± 0.50 a 11.27 ± 2.41 a  72.30 ± 16.01 a 

Values for n=4 ± standard deviation. Means with the same letter in the column are not significantly different 
(Tukey, P > 0.05). TS: Total sugar, EH: Efficiency conversion of cellulose hydrolysis in glucose 
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The efficiency of conversion of cellulose into 
glucose (EH) after 48 h was not affected by               
the type of sweet sorghum bagasse evaluated 
(Table 5). Values of 61.44%, 66.11%,                   
59.80%, 64.69% and 72.30% were observed for 
467 IPA, SF 11, BR 506, SF 15 and IPA 2502 
cultivars, respectively. EH depends on the 
chemical composition of the lignocellulosic 
substrate, type of pretreatment used, load of 
solids used in the hydrolysis, dose and type of 
enzyme, hydrolysis time and methodology used 
to calculate efficiency. For conditions similar to 
those used in this study, [29] evaluated the 
enzymatic hydrolysis of sweet sorghum bagasse 
pretreated with H2O2 and observed average EH 
of 62.46%.  

 
In the comparison with other types of 
pretreatment used to treat sweet sorghum 
biomass for ethanol production, efficiency of 
conversion of cellulose into glucose similar to 
that shown in this study was observed. [44] used 
steam explosion to pretreat sorghum biomass 
and observed efficiencies between 50% and 90% 
in different process times (5 to 10 min) and 
temperatures (180 to 200°C) using enzymes 
Celuloclast 1.5 at dose of 20 FPU.gsubstrate

-1
 

and Novozyme 188 at dose of 20 IU.gsubstrate
-1

.  

   
In another study, [4] evaluated four types of 
pretreatment for sweet sorghum biomass, like 
ionic liquids, steam explosion, dilute acid and 
lime. The enzymatic hydrolysis conditions were 
10% of substrate, enzyme dose of 20 FPU.g 
substrate and time of 72 h. The maximum 
efficiency of conversion of cellulose into glucose 
was obtained for pretreatment with steam 
explosion with 72%, followed by dilute acid with 
50%, ionic liquids and lime with 40%.  

 
Since no significant difference was observed               
for enzymatic hydrolysis efficiencies for                       
the different sorghum cultivars evaluated, we 
chose to ferment hydrolysate from SF15                   
cultivar, since this cultivar stood out in the                 
juice fermentation analysis. After 7 h of 
fermentation with D. bruxellensis, ethanol 
production was 3.9 gL -1, with volumetric yield of 
0.56 gl-1.h-1 and conversion of glucose into 
ethanol of 0.40. No significant changes in cell 
viability and growth of D. bruxellensis biomass 
were observed.  
 
Fermentation of biomass hydrolysates usually 
leads to low ethanol concentrations in the 
medium, since the initial contents of pretreated 
biomass submitted to hydrolysis are low, 

between 2% and 10%, even maximising the 
enzymatic hydrolysis efficiency, reaching up to 
90%. [37] fermented hydrolysates of sugarcane 
bagasse pre-treated with alkaline H2O2 under 
conditions similar to those of this study         
using Saccharomyces cerevisiae and obtained 
2.5 g L

-1
 ethanol starting from hydrolysate with 

6.5 g L -1 glucose and yield 0.38 g g -1. In another 
study, [45] hydrolysates of Leptochloa fusca L. 
Kunth or Kallar grass was utilised as a substrate 
for ethanol production in simultaneous 
saccharification and fermentation process with 
Kluyveromyces marxianus and at optimum factor 
setting, the substrate conversion efficiency was 
82%.  
 

4. CONCLUSIONS  
 
The results obtained demonstrated that the best 
stage for the harvest of sweet sorghum stalks to 
anticipate harvest is the phase in the soft grain 
stage, which can be extended until the 
physiological maturation of grains. Ethanol 
production from juice was influenced by cultivar, 
and SF 15 cultivar seems to be the most 
promising, which corroborates previous studies 
of our research group. Hydrogen peroxide is 
effective for the pretreatment of all types of 
bagasses from sorghum cultivars evaluated and 
allowed reasonable efficiencies in the enzymatic 
hydrolysis step of biomass. In addition, Dekkera 
bruxellensis showed potential to ferment biomass 
hydrolysates. 
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