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ABSTRACT 
 
Aims: To model the concentration variation of PM2.5 and PM10 in selected locations of Delhi. 
Study Design: ARFIMA-GARCH model. 
Place and Duration of Study: The study was conducted by using daily (24 hour interval) data of 
PM2.5 and PM10 concentration from three air quality monitoring stations of Delhi namely, Narela, 
Okhla Phase II and Pusa. 
Methodology: The ARFIMA model is applied as the mean model and the GARCH model as the 
variance model.  
Results: The selected series are stationary and exhibit the presence of long memory in the mean 
structure. Due to the presence of long memory in mean, the ARFIMA model is applied. The residual 
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series have conditional heteroscedasticity. Hence, the GARCH model is applied as a variance 
model. The fitted models are validated using RMSE, MAE and MAPE. 
Conclusion: The concentration variation of PM2.5 and PM10 followed long memory process in mean 
structure. ARFIMA-GARCH model satisfactorily explained the variation of concentration. 
 

 

Keywords: ARIMA; GARCH; particulate matter; pollution; time series; volatility. 
 

1. INTRODUCTION 
 
The greatest environmental health concern in the 
modern world is exposure to polluted air [1]. 
Particulate matters, or PMs for short, are the air 
pollutants that have the worst effects on human 
health. Particulate matter is a term used to 
describe small solids or liquid droplets that enter 
the human body through the air we breathe and 
may have either anthropogenic or natural      
origins. Particles with a diameter of 2.5 to 10 µm 
(PM10) can penetrate deep inside the lung, 
whereas PM2.5 particles can enter the circulatory 
system after breaching the lung barrier.                  
One of the most current estimates on mortality 
brought on by PMs suggests that, globally,                
fossil fuel-generated PM2.5 is responsible for 
about 8.7 million premature deaths [2]. India is a 
major contributor as well as victim of air pollution 
as it is the third largest emitter of greenhouse 
gases [3] and the fifth largest emitter of PM2.5              
[4]. In reality, according to the World Health 
Organization's Air Quality Guidelines, none of           
the Indian cities have achieved the standard                 
for annual PM2.5 concentration of 5 µgm

−3
 [5].                

Air pollution is India's second-leading cause                  
of mortality and morbidity, after malnutrition                 
[6]. In India, 17.8% of deaths in 2019 were 
attributed to air pollution, with outdoor particulate 
matters responsible for 58.7% of those deaths 
[7].  
 
Out of the fifteen most polluted cities in the world 
with respect to annual average PM2.5 level, ten 
are situated in India and eight of them are 
located in the Delhi-National Capital Region 
(NCR) [8]. According to the 2021 World Air 
Quality Report, New Delhi is the fourth most 
polluted city in the world and the most polluted 
capital city. It has been well documented that 
every year since last few decades the average 
annual PM2.5 concentration in Delhi crosses the 
annual National Ambient Air Quality Standard of 
40 μgm

-3
 (which is eight times higher than the 

WHO’s standard limit) [1]. However, despite the 
adoption of a number of interventions by the 
government agencies, none of the actions 
proved to be effective for Delhi-NCR.  
 

Prediction of future particulate matter levels play 
a crucial role in policy formulation of any country, 
especially those falling under low- and medium-
income group. The present work explores the 
variation in the concentration of PM10 and PM2.5 
at different sites of Delhi having different pollution 
signatures. A proper understanding about the 
concentration of PM10 and PM2.5 and their 
variation over different times of a year can be 
helpful for the policymakers to take proactive 
actions to minimize the hazard. Time series 
modeling approaches are used for the 
concentration variation study. A time series is the 
collection of realizations of any variable over a 
period of time. The most important characteristic 
of a time series is that the successive 
realizations are dependent. The time series 
analysis is pioneered by Box and Jenkins’ [9] 
Autoregressive Integrated Moving Average 
(ARIMA) methodology. In several instances it is 
seen that the realizations of a time series exhibit 
long term dependencies. This phenomenon is 
known as the long memory property. If any time 
series exhibits the long memory property in its 
mean structure, then instead of ARIMA model, 
Autoregressive Fractionally Integrated Moving 
Average (ARFIMA) model [10] is used. The 
potential presence of long memory in a time 
series can be tested using [11] GPH statistic. 
The ARIMA/ARFIMA is a linear model. To 
address the non-linearity of a time series the 
Autoregressive Conditional Heteroscedastic 
(ARCH) [12] and Generalized ARCH (GARCH) 
[13] models can be used as variance model 
along with the ARIMA/ARFIMA model as mean 
model.  
 

2. MATERIALS AND METHODS 
 

2.1 ARFIMA Model 
 

An ARIMA model is represented as ARIMA 
         where  ,   and   represents the order of 
autoregression, integration (differencing), and 
moving average respectively. For a linear 
univariate time series process     , the ARIMA 
process is represented as    
 

                                                (1)  
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where,    is the actual observation and    is the 
error term observed at time   such that 

                   and      are the polynomial 
of lag operator   of order   and   respectively. In 

ARIMA methodology, the order of differencing   
is considered as an integer. The only difference 
of the ARFIMA model is that here   has a 
fractional value. For the ARFIMA models, the 
fractional parameter   lies between -0.5 and 0.5 
[14].  
 

2.2 The ARCH and GARCH Model 
 

A process      is said to have an ARCH (q) 

model if the conditional distribution of      given 
the available information         up to     time 
epoch can be represented as: 
 

                                            (2) 
 

where,    is known as innovation and it is 
independently and identically distributed (IID) 
with zero mean and unit variance. The 
distribution of innovation is data specific. 
 

The conditional variance    for an ARCH (q) is 
represented as 
 

             
  

            

              
 
                                       (3) 

 

For satisfactory model precision, a large number 
of parameters are needed for an ARCH                
model. The GARCH model overcome this 
problem.  
 

The conditional variance of a GARCH (p,q) 
model is defined as  

             
 

 

   

        

 

   

 

 
provided                                (4) 

 
The GARCH (p,q) process is said to be weakly 
stationary if and only if  

 
   

 
        

 
                                       (5) 

 
2.3 Data Description 
 
Data for PM2.5 and PM10 concentration                   
(µg m

-3
) was collected at 24 hours interval                  

from Central Pollution Control Board (CPCB) 
website (https://app.cpcbccr.com/ccr/#/caaqm-
dashboard-all/caaqm-landing/caaqm-
comparison-data) for three Delhi Pollution 
Control Committee (DPCC)-regulated air quality 
monitoring stations situated at Narela, Okhla 
Phase-II and Pusa Road. These three sampling 
locations represent the northern (Narela), central 
(Pusa) and southern (Okhla Phase-II) Delhi. The 
major source of pollution in Narela and Okhla 
Phase-II are industrial emission and that in Pusa 
is vehicular emission. Locations of these three 
weather monitoring stations have been shown in 
Fig. 1. The collected data spanned over the 
period of 01 July 2018 to 31 July 2022 (1492 
datapoints). The whole data set is divided into 
two sets namely model building set and model 
validation set. The last ten observations are used 
for the validation set and the remaining portion 
as the model building set. 

 

 
 

Fig. 1. Map showing the locations of the sampling stations (Narela, Pusa and Okhla Phase-II) in 
Delhi 

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/caaqm-comparison-data
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/caaqm-comparison-data
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/caaqm-comparison-data
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2.4 Validation 
 

The efficacy of model is tested using three error 
functions namely, Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), and Mean 
Absolute Percentage Error (MAPE). These error 
functions are calculated as  
 

       
 

 
         

  
    

 
  

                      (6) 

 

    
 

 
         

 
                                      (7) 

 

     
 

 
 

        

  

 
                                 (8) 

 

where,    is the actual value,     is the predicted 

value and   is the horizon of forecast. 
 

3. RESULTS AND DISCUSSION 
 

The descriptive statistics of PM2.5 and PM10 
concentration for the selected location is given in 
Table 1. It is seen that the mean, median and 
minimum concentration for both the pollutants 
follow Narela > Okhla > Pusa. The maximum 
concentration of PM2.5 follows the same order. 
But the maximum concentration of PM10 follows a 
different order. The PM10 concentration has 
relatively higher S.D. and lower C.V., skewness 
and kurtosis than the concentration of PM2.5 for 
all three locations. Even kurtosis of PM10 at 
Narela is slightly negative. The time plot of PM2.5 

and PM10 concentration is given in Fig. 2. For all 
the three locations, the PM concentration 
remained comparatively high between late-
October to early-January and November was the 
month with highest average PM concentration 
which coincides with the period of densest air, 
least precipitation and, more importantly, this is 
the peak period of crop residue burning in Delhi 
and nearby states such as Haryana, Uttar 

Pradesh and Punjab. Both PM2.5 and PM10 
showed comparatively low concentration 
between early-July to Mid-September. It is during 
this time in a year when the daily PM2.5 and PM10 
concentrations were kept (almost) consistently 
below the safe limits, 60 and 100 µgm

-3
, 

respectively, as prescribed in Indian National 
Ambient Air Quality Standards. August was the 
safest month with respect to PM pollution as in 
this month Delhi receives maximum precipitation, 
which, firstly, makes the air cleaner by bringing 
down the particulate matters with itself and, 
secondly, the moisture reduces the density of air 
thus, making its circulation faster. 
 

The Shapiro-Wilk test [15] is used to determine if 
the selected series are normally distributed. For 
the Shapiro-Wilk test, the null hypothesis is     
The series follows normal distribution; against 
the alternative hypothesis     The series does 
not follow normal distribution.  It is seen that 
(Table 2) none of the selected series follow 
normal distribution at 1% level of significance. 
Hence, we reject the null hypothesis. The 
generalized error distribution (GED) is a                  
robust class of distribution. It is considered that 
all the series follow GED and also the 
innovations. 
 

The stationarity of the time-series data is                 
tested using Augmented Dickey-Fuller (ADF) test 
[16] and Phillips-Perron (PP) test [17]. For ADF 
and PP tests, the null hypothesis is     Unit root 
is present in the time series; against the 
alternative hypothesis     Unit root is not               
present in the time series. From the Table 3, it 
can be seen that for all the selected series                   
both the tests are significant. Hence, we reject 
the null hypothesis. Both the tests confirm        
(Table 3) that all the selected series are 
stationary. 

 
Table 1. Descriptive statistics of PM2.5 and PM10 concentration for the selected locations 

 

Statistics Narela Okhla Pusa 

PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 

Observations 1492 1492 1492 1492 1492 1492 

Mean  112.56 234.64 101.55 214.95 95.07 203.05 

Median  85.35 209.33 68.06 191.86 66.20 188.77 

Minimum 6.62 20.48 6.29 15.52 3.44 9.97 

Maximum 689.1 717.35 601.80 884.8 570.61 726.86 

S.D.  87.63 131.40 90.00 128.90 81.33 120.55 

C.V. (%) 77.85 56.00 88.62 59.97 85.54 59.37 

Skewness 1.55 0.72 1.75 0.93 1.68 0.73 

Kurtosis 3.02 -0.04 3.41 0.8 3.29 0.34 
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Fig. 2. Time plot of PM2.5 and PM10 concentration for the selected locations 
 

Table 2. Test for normality (Shapiro-Wilk test) 
 

Site Narela Okhla Pusa 

Series PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 

Test 
statistic 

0.857 0.950 0.813 0.937 0.832 0.955 

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 

Table 3. Test for stationarity of the selected series 
 

Site Narela Okhla Pusa 

Test PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 

ADF -3.922 
(0.01) 

-4.429 
(0.01) 

-3.654 
(0.03) 

-3.944 
(0.01) 

-3.587 
(0.03) 

-3.829 
(0.02) 

PP -9.686 
(0.01) 

-10.890 
(0.01) 

-9.468 
(0.01) 

-10.307 
(0.01) 

-8.811 
(0.01) 

-9.449 
(0.01) 

p-value is in parenthesis 
 

The statistical dependencies among the 
realizations of a time series can be inspected by 
using the Autocorrelation Function (ACF) and 
Partial Autocorrelation Function (PACF) plots. 
The ACF plots (up to 100 lags) of the selected 
series are given in Fig. 3. From this figure, it can 
be seen that the ACFs are significant for a large 
lags. This is known as the hyperbolic decay of 
ACF. This clearly indicates the presence of long 
memory in the mean structure. Hence, the 
ARFIMA model is applied to the data set, instead 
of the ARIMA model. 

Various orders of autoregression and moving 
average of the ARFIMA          model are 
applied to each series. The residuals are 
obtained and are tested using the ARCH-LM test 
for the potential presence of conditional 
heteroscedasticity. For the ARCH-LM test, the 
null hypothesis is     The ARCH effect is not 
present in the residual series; against the 
alternative hypothesis     The ARCH effect is 
present in the residual series. For each 
instances, the ARCH-LM test is significant. 
Hence, we reject the null hypothesis. After that 
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the GARCH(1,1) model is fitted to the residual 
series and the best performed order of 
autoregression and moving average is chosen 
based on minimum values of                        
Akaike Information Criterion (AIC) and Bayesian 
information Criterion (BIC). The estimated 
parameters of the selected ARFIMA                      
        - GARCH(1,1) models are given in Table 
4. It can be seen that almost all the estimated 
parameters are significant at 1% level of 
significance. The visualization of observed vs. 
fitted values is given in Fig. 4. The residual        

series are tested for the presence variability that 
can be explained further. It is seen that all the 
residual series are white noise (WN). This proved 
that the selected ARFIMA         - GARCH(1,1) 
models are appropriate for forecasting the data 
under study. The forecast efficiency of the 
selected models is validated (Table 5) in the 
model validation set using three error functions 
namely RMSE, MAE and MAPE. It is seen that 
the values of these error functions are within 
permissible limit. Hence, the performances of the 
selected models are satisfactory. 

 

  

  

  
 

Fig. 3. The ACF plots of the selected series 
 

Table 4. Estimate of parameters of the selected models 
 

 Narela Okhla Pusa 

PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 

   Model        
 
 
Variable 

ARFIMA 
(1,  ,2) -
GARCH 
(1,1) 

ARFIMA 
(2,  ,2) -
GARCH 
(1,1) 

ARFIMA 
(1,  ,2) -
GARCH 
(1,1) 

ARFIMA 
(1,  ,2) -
GARCH 
(1,1) 

ARFIMA 
(1,  ,2) -
GARCH 
(1,1) 

ARFIMA 
(2,  ,1) -
GARCH (1,1) 

Mean Model 

Constant 34.770 
(3.622)*** 

103.945 
(12.221)*** 

26.059 
(2.579)*** 

100.803 
(7.831)*** 

34.451 
(  2.702)*** 

126.451 
(4.495)*** 

AR(1) 0.987 
(0.015)*** 

1.411 
(0.009)*** 

0.990 
(0.005)*** 

0.983 
(0.011)*** 

0.988 
(0.005)*** 

1.346 
(0.017)*** 

AR(2)  -0.419 
(0.008)*** 

   -0.356 
(0.005)*** 

MA(1) -0.703 -0.762 -0.598 -0.660 -0.659 -0.930 
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 Narela Okhla Pusa 

PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 

(0.057)*** (0.045)*** (0.013)*** ( 0.032)*** (0.018)*** (0.052)*** 
MA(2) -0.236 

(0.024)*** 
-0.125 
(0.022)*** 

-0.323 
(0.014)*** 

-0.276 
(0.016)*** 

-0.266 
(0.018)*** 

 

  0.459 
(0.131)*** 

0.147 
(0.042)*** 

0.386 
(0.029)*** 

0.485 
(0.055)*** 

0.415 
(0.032)*** 

0.391 
(0.039)*** 

Variance Model 

Constant 12.430 
(4.407)*** 

46.669 
(21.206)** 

17.645 
(4.937)*** 

73.193 
(27.636)*** 

14.947 
(4.476)*** 

62.191 
(21.912)*** 

   0.147 
(0.021)*** 

  0.108 
(0.018)*** 

0.205 
(0.029)*** 

0.161 
(0.027)*** 

0.211 
(0.033)*** 

0.145 
(0.028)*** 

   0.852 
(0.019)*** 

0.891 
(0.017)*** 

0.794 
(0.025)*** 

0.838 
(0.023)*** 

0.788 
(0.028)*** 

0.853 
(0.023)*** 

***p<0.01, **p<0.05, *p<0.10; S.E. is in parenthesis 
 

  

  

  
 

Fig. 4. Observed (marker) vs. fitted (line) of the selected series 
 

Table 5. Forecasting performance of fitted models in model validation set 
 

Site  Model RMSE MAE MAPE (%) 

Narela PM2.5 ARFIMA (1, ,2) -GARCH (1,1) 15.411 14.045 8.268 
PM10 ARFIMA (2, ,2) -GARCH(1,1) 40.290 35.496 6.779 

Okhla PM2.5 ARFIMA (1, ,2) -GARCH (1,1) 16.834 16.045 8.639 

PM10 ARFIMA (1, ,2) -GARCH (1,1) 41.775 39.029 6.428 
Pusa PM2.5 ARFIMA (1, ,2) -GARCH (1,1) 14.677 14.128 7.928 

PM10 ARFIMA (2, ,1) -GARCH (1,1) 50.594 44.329 8.773 
 

4. CONCLUSION 
 

In this paper, an attempt has been made to 
model the variation of PM2.5 and PM10 
concentration for three selected location in Delhi. 

Due to the presence of long memory in mean 
structure, the ARFIMA model is applied as the 
mean model and the GARCH model as the 
variance model. Modeling can be helpful for 
understanding the fluctuation of concentrate of 
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these two pollutants. Apart from the year-round 
measures already in place, the peak period of air 
pollution in Delhi, from late-October to early-
January, demands special attention of 
policymakers. Few of the proactive measures 
that can substantially alleviate the PM-pollution 
are banning the burning of stubbles and 
firecrackers, installation of smog towers, and 
being more stringent about vehicular emissions. 
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