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Abstract

This paper falls within the framework of mathematical modelling and that of numerical analysis.
The analysis to be developed through this paper deals with three Neumann boundary value
problmes: one pure, one modified and the other with conduction term for the Poisson equation.
We introduced Dirichlet and Neumann problems with conduction valuables to prove the
continuity in comparison with conduction term of the Neumann problem. We demonstrated the
existence and uniqueness of the modified Neumann problem. For simplicity and concreteness, it
was appropriate to choose the finite element and classical methods to find the numerical and the
explicit solutions, respectively so that numerical simulations were implemented in Scilab.
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1 Introduction

Let Ω be a bounded domain in RN , N > 1, with boundary ∂Ω,
f ∈ L2(Ω), g ∈ L2(∂Ω), η is the exterior normal to the boundary ∂Ω.

We shall consider the following three Neumann boundary value problems: one pure, one modified
and the other with conduction term for the Poisson equation to develop our analysis.

The Pure Neumann boundary value problem for the Poisson equation [1]{
−∆u = f in Ω

∂u
∂η

= g on ∂Ω
(1.1)

where ∂u
∂η

=
∑n
i=1

∂ui
∂xi

ηi and η = (ηi)16i6n, does not admit a unique solution because if u is a

solution, u + c (c constant) still solution. On the other hand, the Modified Neumann boundary
value problem for the Poisson equation [2]{

−∆u+ u = f in Ω
∂u
∂η

= g on ∂Ω
(1.2)

admits a unique solution that we will prove by the Lax-Milgram theorem.

We shall introduce the homogeneous Dirichlet problem with conduction term and unhomogeneous
Neumann problem with conduction term those will be valuable to prove the continuity in comparison
with conduction term of the solution of the following Neumann boundary value problem with
conduction term for Poisson equation [3]{

−∇ · (σi∇ui) = f in Ω
∂ui
∂η

= g on ∂Ω
(1.3)

where σi ∈ R, (i = 1, 2) represents the term of conduction of the model.

The aim of this paper is to prove the existence, uniqueness, continuity and to find the exact and
numerical solutions of the above problems. The resolution algorithm and the implementation of
numerical simulations depend on the type of the solution and requiere a search of the exact solution.
For simplicity and concreteness, it will be appropriate to use the one-dimensional Pure Neumann
boundary value problem for the Poisson equation. Then, the finite element method and the classical
method shall be developed to find the exact and numerical solutions so that numerical simulations
will be implemented in Scilab. The analysis to be presented through the paper makes a strong use
of the results and arguments of [4, 1, 2, 5, 6, 7, 8, 9, 10].

The organization of the paper is as follows. The homogeneous Dirichlet problem and the unhomo-
geneous Neumann problem with conduction term will be presented for developping the continuity
analysis of problem (1.3). A variational formulation will be presented to demonstrate the existence
and uniqueness of the problem (1.2). The one-dimensional Pure Neumann boundary value problem
for the Poisson equation will be solved numerically and analytically by using the finite element
method and the classical method, respectively. Finally using those exact and numerical solutions,
numercial simulations will be implemented in Scilab.
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2 Continuity of the Solution u of Modified Neumann
Problem with Respect to σ

We first prove the continuity of the solution of the following homogeneous Dirichlet problem with
conduction term {

−σi∆ui = f in Ω

ui = 0 on ∂Ω
(2.1)

A variational formulation of the problem (2.1) is written as

∫
Ω

σi∇ui∇vdΩ =

∫
Ω

fvdΩ ∀ v ∈ H1
0 (Ω)

For i = 1 ∫
Ω

σ1∇u1∇vdΩ =

∫
Ω

fvdΩ (2.2)

For i = 2 ∫
Ω

σ2∇u2∇vdΩ =

∫
Ω

fvdΩ (2.3)

By substracting (2.3) from (2.2) we get∫
Ω

(σ1∇u1 − σ2∇u2)∇vdΩ = 0

which can also be written∫
Ω

σ1∇(u1 − u2)∇vdΩ + (σ1 − σ2)

∫
Ω

∇u2∇vdΩ = 0 (2.4)

Let v = u1 − u2 ∈ H1
0 (Ω), the equality (2.4) becomes∫
Ω

σ1∇(u1 − u2)2dΩ + (σ1 − σ2)

∫
Ω

∇u2∇(u1 − u2)dΩ = 0

∫
Ω

σ1|∇(u1 − u2)|2dΩ 6 |σ1 − σ2|
∫

Ω

|∇u2||∇(u1 − u2)|dΩ

σ1‖u1 − u2‖2H1
0 (Ω) 6 |σ1 − σ2|‖u2‖H1

0 (Ω)‖u1 − u2‖H1
0 (Ω)

‖u1 − u2‖H1
0 (Ω) 6

|σ1 − σ2|
σ1

‖u2‖H1
0 (Ω) (2.5)

Otherwise ∫
Ω

σ2∇u2∇vdΩ =

∫
Ω

fvdΩ

|
∫

Ω

σ2∇u2∇vdΩ| = |
∫

Ω

fvdΩ|∫
Ω

|σ2∇u2∇v|dΩ 6
∫

Ω

|fv|dΩ

Applying Cauchy-Schwartz inequality [5, 10], we have

σ2‖∇u2‖L2(Ω)‖∇v‖L2(Ω) 6 ‖f‖L2(Ω)‖v‖L2(Ω)
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σ2‖u2‖H1
0 (Ω)‖v‖H1

0 (Ω) 6 C‖v‖L2(Ω)

By applying the inclusion of standards in H1(Ω) and L2(Ω) [5, 10] we have

‖u2‖H1
0 (Ω) 6

MC

σ2

So (2.5) becomes

‖u1 − u2‖H1
0 (Ω) 6

|σ1 − σ2|
σ1σ2

MC

‖u1 − u2‖H1
0 (Ω) 6 K

|σ1 − σ2|
σ1σ2

(with K = MC) (2.6)

So if σ1, σ2 > µ > 0 with µ fixed, that is to say

σ1σ2 > µ2 ⇒ 1

σ1σ2
6

1

µ2
;

The inequality (2.6) becomes

‖u1 − u2‖H1
0 (Ω) 6

K

µ2
|σ1 − σ2|

Which proves the continuity of u

[µ,+∞[ −→ H1
0 (Ω)

σ 7−→ uσ

In the following we use the above result to prove the continuity of the solution of the problem (1.3)
Weak form of the problem (1.3) is written as

∫
Ω

∇ui∇vdΩ =
1

σi

∫
Ω

fvdΩ +

∫
∂Ω

gvdσ ∀ v ∈ H1(Ω)

For i = 1 ∫
Ω

∇u1∇vdΩ =
1

σ1

∫
Ω

fvdΩ +

∫
∂Ω

gvdσ (2.7)

For i = 2 ∫
Ω

∇u2∇vdΩ =
1

σ2

∫
Ω

fvdΩ +

∫
∂Ω

gvdσ (2.8)

By making the difference of (2.7) and (2.8) we get∫
Ω

(∇u1 −∇u2)∇vdΩ =

(
1

σ1
− 1

σ2

)∫
Ω

fvdΩ

∫
Ω

∇(u1 − u2)∇vdΩ =

(
1

σ1
− 1

σ2

)∫
Ω

fvdΩ (2.9)

Let v = u1 − u2 ∈ H1(Ω), the problem (2.9) becomes∫
Ω

∇(u1 − u2)2dΩ =
σ2 − σ1

σ1σ2

∫
Ω

fvdΩ

Using the semi-norm

|
∫

Ω

∇(u1 − u2)2dΩ| = |σ2 − σ1

σ1σ2

∫
Ω

fvdΩ|
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∫
Ω

|∇(u1 − u2)2|dΩ 6 |σ2 − σ1

σ1σ2
|
∫

Ω

|fv|dΩ

And applying the Cauchy-Schwartz inequality

‖u1 − u2‖2H1(Ω) 6 |
σ2 − σ1

σ1σ2
|‖f‖L2(Ω)‖u1 − u2‖L2(Ω)

‖u1 − u2‖L2(Ω) 6 B‖u1 − u2‖H1(Ω)

We then obtain

‖u1 − u2‖H1(Ω) 6 NB
|σ2 − σ1|
σ1σ2

‖u1 − u2‖H1(Ω) 6 L
|σ1 − σ2|
σ1σ2

(L = NB) (2.10)

So if σ1, σ2 > µ > 0 with µ fixed, that is to say

σ1σ2 > µ2 ⇒ 1

σ1σ2
6

1

µ2
;

The inequality (2.10) becomes

‖u1 − u2‖H1(Ω) 6
L

µ2
|σ1 − σ2|

Which proves the continuity of the solution u of Neumann’s problem with conduction term with
respect to σ that is to say

[µ,+∞[ −→ H1(Ω)

σ 7−→ uσ

2.1 Existence and Uniqueness of the Solution of the Modified Neumann
Problem

We will use the Modified problem (1.2) to prove the existence and uniqueness of the solution u
using the Lax-Milgram theorem [5, 10].

f ∈ L2(Ω)⇒ −∆u+ u ∈ L2(Ω)

∆u ∈ L2(Ω)

u ∈ H1(Ω)

Let
V = H1(Ω) which is a Hilbert space.

We now find the variational formulation of the problem (1.2)

Let
v ∈ H1(Ω)

Let us multiply the first equality of (1.2) by v and integrate over Ω∫
Ω

−∆u.vdΩ +

∫
Ω

u.vdΩ =

∫
Ω

f.vdΩ

Using Green’s formula we have∫
Ω

∇u.∇vdΩ−
∫
∂Ω

∂u

∂η
.vdσ +

∫
Ω

u.vdΩ =

∫
Ω

f.vdΩ
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∫
Ω

∇u.∇vdΩ−
∫
∂Ω

g.vdσ +

∫
Ω

u.vdΩ =

∫
Ω

f.vdΩ∫
Ω

∇u.∇vdΩ +

∫
Ω

u.vdΩ =

∫
∂Ω

g.vdσ +

∫
Ω

f.vdΩ

By setting

a(u, v) =

∫
Ω

∇u.∇vdΩ +

∫
Ω

u.vdΩ

and

L(v) =

∫
∂Ω

g.vdσ +

∫
Ω

f.vdΩ

We then obtain
a(u, v) = L(v)

Let us check the continuity of a since its bilinearity is trivial

|a(u, v)| = |
∫

Ω

∇u.∇vdΩ +

∫
Ω

u.vdΩ|

|a(u, v)| 6
∫

Ω

|∇u.∇v|dΩ +

∫
Ω

|u.v|dΩ

Using the Cauchy-Schwartz inequality

|a(u, v)| 6 (

∫
Ω

|∇u|2dΩ)
1
2 .(

∫
Ω

|∇v|2dΩ)
1
2 + (

∫
Ω

|u|2dΩ)
1
2 .(

∫
Ω

|v|2dΩ)
1
2

|a(u, v)| 6 ‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖u‖L2(Ω)‖v‖L2(Ω)

So that
|a(u, v)| 6 ‖u‖H1(Ω)‖v‖H1(Ω) + ‖u‖L2(Ω)‖v‖L2(Ω)

And applying the Poincar inequality [5, 8]

‖u‖L2(Ω) 6 c1‖u‖H1(Ω)

‖v‖L2(Ω) 6 c2‖v‖H1(Ω)

Then
|a(u, v)| 6 ‖u‖H1(Ω)‖v‖H1(Ω) + c1c2‖u‖H1(Ω)‖v‖H1(Ω)

|a(u, v)| 6 (1 + c1c2)‖u‖H1(Ω)‖v‖H1(Ω)

|a(u, v)| 6 c‖u‖H1(Ω)‖v‖H1(Ω)

with
c = 1 + c1c2

Hence a is continuous.

Let us check the continuity of L since its linearity is trivial

|L(v)| = |
∫
∂Ω

g.vdσ +

∫
Ω

f.vdΩ|

|L(v)| 6
∫
∂Ω

|g.v|dσ +

∫
Ω

|f.v|dΩ

6
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Using the Cauchy-Schwartz inequality we have

|L(v)| 6 (

∫
∂Ω

|g|2dσ)
1
2 (

∫
∂Ω

|v|2dσ)
1
2 + (

∫
Ω

|f |2dΩ)
1
2 (

∫
Ω

|v|2dΩ)
1
2

|L(v)| 6 ‖g‖L2(∂Ω)‖v‖L2(∂Ω) + ‖f‖L2(Ω)‖v‖L2(Ω)

Since
f ∈ L2(Ω)⇒ ‖f‖L2(Ω) 6 k1

g ∈ L2(∂Ω)⇒ ‖g‖L2(∂Ω) 6 k2

So
|L(v)| 6 k2‖v‖L2(∂Ω) + k1‖v‖L2(Ω)

According to the continuity of the trace function on H1(Ω): u 7−→ γu |∂Ω= u
such as

‖γu‖L2(∂Ω) 6 c‖u‖H1(Ω)

We have
|L(v)| 6 ck2‖v‖H1(Ω) + k1‖v‖L2(Ω)

And using Poincar inequality then

|L(v)| 6 ck2‖v‖H1(Ω) + αk1‖v‖H1(Ω)

|L(v)| 6 (ck2 + αk1)‖v‖H1(Ω)

|L(v)| 6 k‖v‖H1(Ω)

with
k = ck2 + αk1

Hence L is continuous.

Let us check if a is H1(Ω)-elliptical
By setting u = v

a(u, u) =

∫
Ω

∇u2dΩ +

∫
Ω

u2dΩ

We have
a(u, u) = ‖u‖2H1(Ω)

Hence a is coercive.

Proprerties being verified according to the Lax-Milgram theorem there exists u ∈ H1(Ω)

unique such as a(u, v) = L(v) and ‖u‖H1(Ω) 6
‖L‖
α

.

2.2 Numerical Resolution of the Problem

We will use the finite element method of Lagrange type P1 to solve the following one-dimensional
pure Neumann problem for the Poisson equation.{

−u′′ = f in ]0, 1[= Ω

u′(0) = α, u′(1) = β, α, β ∈ R
(2.11)

with the weak form ∫
Ω

u′v′dx =

∫
Ω

f.vdx− αv(0) + βv(1), ∀ v ∈ H1(Ω)

7
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Let (xj)j=0,...,N+1 be a subdivision of ]0, 1[ such that

0 = x0 < x1 < ... < xN+1 = 1.

Suppose the uniform step be given by h = xj+1 − xj .
We define the approximation space H1(0, 1) by

Vh = {v ∈ C(0, 1)|v|[xj ,xj+1] ∈ P1, ∀ j = 0, ..., N}.

The approximation of the variationnal formulation (2.11) is to find uh ∈ Vh such that

∀ vh ∈ Vh,

∫
Ω

u′hv
′
hdx =

∫
Ω

fvhdx+ βvh(1)− αvh(0) (2.12)

Vh being a vector subspace of H1(0, 1) we can therefore define a canonical basis (φ0, ..., φN+1) such
that:

uh ∈ Vh ⇒ uh(x) =

N+1∑
i=0

uiφi(x)

vh ∈ Vh ⇒ vh(x) =

N+1∑
j=0

vjφj(x)

So

u′h(x) =

N+1∑
i=0

uiφ
′
i(x)

And

v′h(x) =

N+1∑
j=0

vjφ
′
j(x)

Which amounts to finding uh(x0), ..., uh(xN+1) such as: ∀i = 0, ..., N + 1∫ 1

0

(
N+1∑
i=0

uiφ
′
i(x)

)(
N+1∑
j=0

vjφ
′
j(x)

)
dx =

∫ 1

0

f

(
N+1∑
j=0

vjφj(x)

)
dx+ β

N+1∑
j=0

vjφj(1)− α
N+1∑
j=0

vjφj(0)

Which implies

N+1∑
i=0

N+1∑
j=0

∫ 1

0

(φ′i(x)φ′j(x))uivjdx =

N+1∑
j=0

∫ 1

0

(fφj(x)) vjdx+ β

N+1∑
j=0

vjφj(1)− α
N+1∑
j=0

vjφj(0)

N+1∑
i=0

(∫ 1

0

φ′i(x)φ′j(x)dx

)
ui =

∫ 1

0

fφj(x)dx+ βφj(1)− αφj(0), ∀ 0 6 j 6 N + 1

N+1∑
i=0

aijui =

∫ 1

0

fφj(x)dx+ βφj(1)− αφj(0), ∀ 0 6 j 6 N + 1

With

aij =

∫ 1

0

φ′i(x)φ′j(x)

∀ i = 0, ...N + 1 we define the φi fonctions by:

φi(x) =


x−xi−1

h
if x ∈ [xi−1, xi]

0 else
xi+1−x

h
if x ∈ [xi, xi+1]

8
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We notice that we have

φi(1) = φi(xN+1) =

{
1 if i = N + 1

0 else

and

φi(0) = φi(x0) =

{
1 if i = 0

0 else

We then define bh ∈ RN+2 by

(bh)i =


∫ xi+1

xi−1
fφi(x)dx if 1 6 j 6 N∫ x1

0
fφ0(x)dx− α if i = 0∫ xN+1

xN
fφN+1dx+ β if i = N + 1

By taking Uh = (uh(x0), ..., uh(xN+1))T ∈ RN+2, we get that Uh is a solution of
aijUh = bh, where aij ∈ R(N+2)×(N+2) is the rigidity matrix

We have

a00 =

∫ 1

0

φ′0(x)φ′0(x)dx =

∫ x1

x0

1

h2
dx =

1

h

a(N+1)(N+1) =

∫ 1

0

φ′N+1(x)φ′N+1(x)dx =

∫ xN+1

xN

1

h2
dx =

1

h

aii =

∫ 1

0

φ′i(x)φ′i(x)dx =

∫ xi

xi−1

(
1

h

)(
1

h

)
dx+

∫ xi+1

xi

(
− 1

h

)(
− 1

h

)
dx =

2

h
(if i 6= 0 and i 6= N+1)

ai−1i =

∫ 1

0

φ′i−1(x)φ′i(x)dx =

∫ xi

xi−1

(
− 1

h

)(
1

h

)
dx = − 1

h2
(xi − xi−1) = − 1

h

aii+1 =

∫ 1

0

φ′i(x)φ′i+1(x)dx =

∫ xi+1

xi

φ′i(x)φ′i+1(x)dx+

∫ xi+2

xi+1

φ′i(x)φ′i+1(x)dx

=

∫ xi+1

xi

(
− 1

h

)(
1

h

)
dx = − 1

h

Then matrix form is

1

h


1 −1 0
−1 2 −1

. . .
. . .

−1 2 −1
0 −1 1




u0

u1

...
uN
uN+1

 =


∫ 1

0
fφ1(x)dx− α∫ 1

0
fφ2(x)

...∫ 1

0
fφn(x)dx+ β

 (2.13)

The matrix aij is self-adjoint and positive. Indeed, for all (vi) ∈ RN+2, we have

< aijv, v >=
1

h


v0 − v1

−v0 + 2v1 − v2

...
−vN−1 + 2vN − vN+1

−vN + vN+1




v0

v1

...
vN
vN+1
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< aijv, v >= 1
h [(v0 − v1) v0 + (−v0 + 2v1 − v2) v1 + · · · + (−vN−1 + 2vN − vN+1) vN + (vN+1 − vN ) vN+1]

=
1

h
[(v0 − v1)v0 + (vN+1 − vN )vN+1 + (−v2 + 2v1 − v0)v1 + · · · + (−vN+1 + 2vN − vN−1)vN ]

=
1

h

[
(v0 − v1)v0 + (vN+1 − vN )vN+1 +

N∑
i=1

(−vi+1 + 2vi − vi−1)vi

]

=
1

h

[
(v0 − v1)v0 + (vN+1 − vN )vN+1 +

N∑
i=1

(vi − vi+1)vi + (vi − vi−1)vi

]

=
1

h

[
(v0 − v1)v0 + (vN+1 − vN )vN+1 +

N∑
i=1

(vi − vi+1)vi +

N−1∑
i=0

(vi+1 − vi)vi+1

]

=
1

h

[
(v0 − v1)v0 +

N∑
i=1

(vi − vi+1)vi +

N−1∑
i=0

(vi+1 − vi)vi+1 + (vN+1 − vN )vN+1

]

=
1

h

[
N∑

i=0

(vi − vi+1)vi +

N∑
i=0

(vi+1 − vi)vi+1

]

=
1

h

N∑
i=0

(v
2
i − 2vivi+1 + v

2
i+1)

=
1

h

N∑
i=0

(vi − vi+1)
2 > 0

On the other hand, aij is not defined because aijv.v = 0 if and only if
vi = vi+1 , ∀ i = 0, ..., N .

During the numerical simulation for the calculation of the second member bh we will use a quadrature
formula including the trapezoidal formula.

2.3 Analytical Resolution of the Problem

We will try to solve the one-dimensional Neumann problem by using the classical method of
resolution. To avoid the trivial difficulty of determining the constants in the Modified Neumann
problem for the Poisson equation, we will add the condition of Dirichlet u(1) = β. Hence we have
the following problem {

−u′′(x) = f(x)

u′(0) = α , u(1) = β, α, β ∈ R.
(2.14)

Consider f(x) = 5π2 cos(πx)

We have
d

dx

(
du(x)

dx

)
= −f(x)⇒ dY

dx
= −5π2 cos(πx);

Y = −5π sin(πx) + c1;

Then
du(x)

dx
= −5π sinπx+ c1

Hence
u(x) = 5 cos(πx) + c1x+ c2.

Determine c1 and c2. After manipulation we obtain{
c1 = α

c2 = 5 + β − α

10
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Hence the exact solution of problem (2.14) is

u(x) = 5 cos(πx) + (x− 1)α+ 5 + β, α, β ∈ R. (2.15)

2.4 Numerical Simulations

The aim here is to represent on the same graph the solutions (2.15) and (2.13) exact and numerical,
respectively, taking into account the number of points N and of step h of the finite element method
in order to converge the two solutions. This simulation will be implemented in Scilab.
Fig. 1 illustrates the exact solution (2.15) for α = β = 1.

Fig. 1. Representation of the exact solution

By fixing N = 5 in (2.13), we have attempted to vary the step h of the method to verify the
numerical convergence of numerical solution of (2.13) on the exact solution of (2.15). (See Fig. 2)

• Taking h = 0.001, we notice that the two solutions exact and numerical respectively converge
very fast numerically (See Fig. 2a).

• Taking h = 0.01, we notice that at the beginning both exact and numerical solutions
respectively tend to distance themselves and then converge and finally move away (See Fig.
2b), which is explained by slow numerical convergence.

In Fig. 3, we fixed N = 10.

• Taking h = 0.001, we notice that the convergence between the exact and the numerical
solution is the almost numerically the same, which is explained by the strong numerical
convergence (Fig. 3a).

• Taking h = 0.01, we notice that the exact and numerical solutions, respectively converge
almost everywhere numerically. (See Fig. 3b).

The finite element method requieres a very large number of points N and a very good choice of step
h of the method to ensure the convergence of the numerical solution (2.13) to the exact solution
(2.15) numerically.
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(a) (b)
Fig. 2. Representation of the exact and numerical solutions for N = 5

(a) (b)

Fig. 3. Representation of the exact and numerical solutions for N = 10

3 Conclusion et perspectives

In this work, we solve numerically the Neumann problem for the Poisson equation by presenting
the three problems of Neumann.

We first showed the continuity of the solution of the Neumann problem with conduction term
with respect to σ. According to what exists in the literature, we think we are the first to prove
this continuity. Then we showed the existence and uniqueness of the modified Neumann problem
by applying the Lax-Milgram theorem. Then we solved numerically the one-dimensional Pure
Neumann problem using the finite element method and showed that its rigidity matrix is self-
adjoint and positive. To solve analytically this problem we have added the Dirichlet condition to
this problem because the determination of constants is difficult. Finally, we used these results to
make numerical simulations to compare the numerical convergence of both exact and numerical
solutions, respectively. In the future we will inverstigate the theoretical convergence of the Pure
Neumann model and expensive to solve the problem in higher dimension (2 or 3).
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