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Abstract 
 
The problem of integer factorization is ubiquitous in scientific and engineering applications including the 
challenging task of cryptanalysis. This problem is intractable but might admit real-time hardware 
solutions for small bit sizes. This paper suggests manual and automated scalable solutions for integer 
factorization based on equation solving over big Boolean algebras. The manual solution is illustrated over 
a form of 8-variable Karnaugh maps that is highly regular and modular. This solution covers the problem 
of 6 bits, which includes the problems of 5, 4, and 3 bits as special cases. Moreover, the automated 
solution is implemented, and subsequently its results are presented and discussed briefly. These results 
show the notorious evolution of the temporal and spatial complexities as the number of input bits 
increases. Based on the automated solution, the largest possible hardware circuit obtained via the 
automated solution is to be constructed, verified and tested. Such a hardware implementation (e.g., FPGA 
implementation) could serve as a ready real-time look-up solution not only of the pertinent problem but 
also of all smaller problems. 
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1 Introduction 
 
The problem of integer factorization is ubiquitous in scientific applications, and it is particularly prominent 
in the cryptanalysis of the RSA cryptosystem [1-4]. This problem is intractable, and none of the many 
sophisticated algorithms for solving it has an under-exponential temporal complexity. Currently, there are 
many attempts to handle this problem in real time via hardware solutions. Some of these attempts are 
based on the extension of propositional logic to higher-order logic such as first-order predicate logic. 
These attempts involve Boolean functional synthesis and the utilization of Skolem functions [5-9]. Other 
attempts require the enlargement of two-valued Boolean algebras to a ‘big’ Boolean algebra [10-12], an 
approach to be pursued further herein. Other notable approaches for the hardware solution of integer 
factorization are also available, and continuous innovations in such approaches are being offered with no 
end in sight [13-28]. 
 
Our present paper aims to obtain a hardware solution for integer factorization that is based on solving 
Boolean equations over ‘big’ Boolean algebras [29-52]. However, our solution herein has three advantages 
over earlier solutions, namely: (a) it is general and scalable, (b) it is automated, and (c) it is realizable via 
current hardware technologies such as that of FPGA. Of course, scalability is not absolute. It will reach a 
limit due the bottleneck imposed by time and memory limitations. The solution is pictorially insightful 
thanks to efficient utilization of modern versions of the Karnaugh map [53-62].   

 
The organization of the rest of this paper is as follows. Section 2 modifies our earlier hardware solution for 
integer factorization using Boolean-equation solving [10-12]. The modifications introduced make this 
solution scalable and consequently readily amenable for clear and straightforward algorithmic  
formulation. Section 3 solves the (6, 5, 3) factorization problem, in which a 6-bit integer � is factored as a 
product of a 5-bit integer � and a 3-bit integer � . We solve this problem with the aid of a special                     
form of the 8-variable Karnaugh map (taken from [62, 63]) that has better regularity and modularity             
than other forms of the 8-variable map such as the ones used in [11, 64-68]. Section 4 outlines our 
algorithmic implementation of integer factorization, with a code listing in Matlab given in                   
appendix A. Section 4 also reports typical results obtained by running the given code. Section 5 concludes 
the paper.    
 

2 General Scalable Formulation 
 
We have earlier discussed the problem of factoring an integer � into a product � ∗ � of the two integers � 
and � subject to the constraints (� ≥ �) and (� ≥ �) [10, 11]. For an even bit size of �, say 2�, the bit 
size of � and � are (2� − 1)	���	�, respectively. However, when we multiply � and � of such sizes, we 
produce an � of bit size (2� − 1) + � = 3� − 1. In our earlier work [10, 11], we have forbidden bit sizes 
of � exceeding 2�, a feature that did not allow full scalability for our solution. In our present paper, we 
will temporarily allow bit sizes of � to be (3� − 1), thereby securing full scalability for our solution, in 
the sense that our solution for the 2� problem includes solutions for all smaller valid problem (down to a 
bit size of 3 for �) as special cases. To solve our current problem, in which the triad (�, �, �) has bit sizes 
(2�, 2� − 1, �), we need a multiplication table for the (2� − 1) − ���	� with the � − ���	�, and allow 
entries of the table �(�, �) = � ∗ � to be each of (3� − 1) bits. For convenience, we arrange the input 
domain of this table to render it a Karnaugh-map layout, i.e., to employ a reflected binary coding (grey 
coding) for each of its two dimensions. 
 
The multiplication table constitutes the initial specification for our problem, namely 
 

��(�, �) = 1                                 (1) 
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Where 
 

�� = ⋀ (
(����)
��� X�	ʘ	T�(�, �)) = ⋀ 	X�

��(�,�)(����)
���              (2) 

 
is an ANDing over all the (3� − 1)	 bits �  of � . The XNOR function X�	ʘ	T�(�, �)  equals the 
complemented literal X�� when T�(�, �) = 0 and equals the un-complemented literal X� when T�(�, �) = 1. 
The initial function ��(�, �) is now replaced by the final-specification function (equated to 1) 
 

�(�, �) = 	��(�, �)	I(� > 1)	I(� ≥ �)                (3) 
 
where the symbol I(event) denotes the Boolean indicator for that event, namely 
 

I(event) = �
1						��	�ℎ�	�����	������																			
0						��	�ℎ�	�����	����	���	�����	

�               (4) 

 
The two functions ��(�, �) and �(�, �) are defined as ��:B

���� → B, and	�:B���� → B where B is the 
‘big’ Boolean algebra B = FB(�) , i.e., it is the free Boolean algebra with (3� − 1)  generators 

X(����), X(����) … , X�, ���	X� . This Boolean algebra is of K = 2(����)  atoms and 2�  elements. The 

Boolean equation (1) is now solved by constructing the auxiliary function G(�, �, �) according to the rules 
given or demonstrated in [10, 11, 40, 50-52]. It is straightforward to use  G(�, �, �) to deduce the value of 
Y�(�, �), 0 ≤ � ≤ (2� − 2), ���	Z�, 0 ≤ � ≤ (� − 1)	subject to a consistency condition (to be derived also 
from G(�, �, �)). We do not need to develop G(�, �, �) fully, as we do not need to find the parameters 
associated with atoms that have non-zero X�, 2�	 ≤ � < (3� − 1). This means that we work with the first 
2��  atoms out of the 2(����) atoms. Our solutions will not involve X�, 2�	 ≤ � < (3� − 1) (which are set 
identically zero) and will involve only the first 2� bits (X�, 0	 ≤ � < 2�). 
 
The aforementioned solution for the (2�, 2� − 1, �) problem includes all valid smaller problems down to 
the (3, 2, 2) problem as special cases. The next problem is the (2� − 1,2� − 2, �), which involves � of an 
odd rather than even bit size and its Karnaugh maps are of sizes that are one half  those of the preceding 
(2�, 2� − 1, �)  problem. For this latter problem, �  has an initial odd bit size of (3� − 2) , but only 
(2� − 1) bits are retained at the end. The problem next to this problem is the (2� − 2,2� − 3, � − 1) 
problem. This problem involves � of an even bit size, and its Karnaugh maps are of sizes that are one 
quarter those of the preceding problem. For this problem � has a bit size of (3� − 4) at the outset, which 
reduces to (2� − 2) at the end. 
 

3 Solution of the (6, 5, 3) Problem 
 
Fig. 1 shows a decimal-entered multiplication table for the two integers � = (Y�, Y�, Y�, Y�, Y�)  and 
� = (Z�, Z�, Z�). The table is cast in an 8-variable Karnaugh map layout. For convenience, we depict every 
map column by two decimal values of � = (2�Y� + 2

�Y� + 2
�Y� + 2

�Y� + 2
�Y�) in its cells (0 ≤ � ≤

31). The first value is (2�Y� + 2
�Y� + 2

�Y� + 2
�Y�). It is determined by the four horizontal variables of 

the map, and is valid for cells in which Y� = 0 (cells outside the Y� domain). The second value is equal to 
the previous value augmented by 1 and is valid for cells in which Y� = 1 (cells inside the Y�  domain, 
highlighted by green shading lines). We also depict every two consecutive map rows by a single value of 
�(0 ≤ � ≤ 7), where � = 2�Z� + 2

�Z� + 2
�Z�. Note that the left half of the map in Fig. 1 describes the 

next smaller problem, the (5, 4, 3) problem. The top left quarter of this half depicts the next smaller 
problem, the (4, 3, 2) problem. Finally, the smallest valid problem, the (3, 2, 2) problem, is represented by, 
again, the left half of the previous problem. We use bold boundaries and various shadings to distinguish 
the smaller maps used for the smaller problems in Fig. 1. 
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Table 1. Orthonormal tags used with composite integers less than 64 with multiple factorizations. A 
thick line denotes the lower boundary for the n-bit problem, where n = 3, 4, 5, and 6, respectively 

 

Integer Corresponding atom 
(only atoms with 
������ are retained) 

Multiplicity 
of non-trivial 
factorizations 

Set of orthonormal tags 

12 X��X��X��X��X�X�X��X�� 2 {p�, p��} 
16 X��X��X��X�X��X��X��X�� 2 {p�, p��} 
18 X��X��X��X�X��X��X�X�� 2 {p�, p��} 
20 X��X��X��X�X��X�X��X�� 2 {p�, p��} 
24 X��X��X��X�X�X��X��X�� 3 {p�p�, p�p��, p��} 
28 X��X��X��X�X�X�X��X�� 2 {p�, p��} 
30 X��X��X��X�X�X�X�X�� 3 {p�p�, p�p��, p��} 
32 X��X��X�X��X��X��X��X�� 2 {p��, p���} 
36 X��X��X�X��X��X�X��X�� 4 {p��p��, p��p���, p���p��, p���p���} 
40 X��X��X�X��X�X��X��X�� 3 {p��p��, p��p���, p���} 
42 X��X��X�X��X�X��X�X�� 3 {p��p��, p��p���, p���} 
44 X��X��X�X��X�X�X��X�� 2 {p��, p���} 
45 X��X��X�X��X�X�X��X� 2 {p��, p���} 
48 X��X��X�X�X��X��X��X�� 4 {p��p��, p��p���, p���p��, p���p���} 
50 X��X��X�X�X��X��X�X�� 2 {p��, p���} 
52 X��X��X�X�X��X�X��X�� 2 {p��, p���} 
54 X��X��X�X�X��X�X�X�� 3 {p��p��, p��p���, p���} 
56 X��X��X�X�X�X��X��X�� 3 {p��p��, p��p���, p���} 
60 X��X��X�X�X�X�X��X�� 5 {p��p��p��, p��p��p���, p��p���p��, p��p���p���, p���} 
63 X��X��X�X�X�X�X�X� 2 {p��, p���} 

 

 
 

Fig. 1. The multiplication table for the (6, 5, 3) problem including its (5, 4, 3), (4, 3, 2), and (3, 2, 2) 
sub-problems 

 The table has the layout of an 8-variable Karnaugh map, where every column is topped by two possible decimal 
values for (����������) and every two consecutive rows are labelled by a common decimal value for (������). Map 
entries represent the product (����������) ∗ (������) in decimal. For convenience, composite numbers less than 64 

having multiple factorizations are highlighted in red 
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��(�, �) 

 

Fig. 2. The multiplication table or map for the (6, 5, 3) problem including its (5, 4, 3), (4, 3, 2) and (3, 2, 2) sub-problems 
Map entries represent the product (����������) ∗ (������) in binary (8 bits). This map also represents the initial-specification function ��(�, �) with binary strings understood to 

depict corresponding atoms. The largest entries in the map and its sub-maps (highlighted in green) are 217, 105, 21, and 9, and represent, 11011001, 01101001, 00010101, and 
00001001 or, equivalently; �������������������, ��������������������, ���������������������, and ����������������������. 
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(a) �(� ≥ �) 

 

 
 

(b) �(� > �) 
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(c) �(� > �)	�(� ≥ �) 
 

 
(d) �(�, �) 

Fig. 3. Evolution of the specification function �(�, �)  
A non-zero entry in the �(�, �) map symbolizes a single atom of the 256 atoms of 

��(��, ��, ��, ��, ��, ��, ��, ��). For example, the entry 00111000 (binary for 56) denotes (���������������������) 
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Curtailed �(�, �, �) 

 
Fig. 4. The curtailed auxiliary function for the (6, 5, 3) problem 

 
Fig. 2 is a replica of Fig .1, in which the entries �	 are converted from decimal to 8-bit binary 
representation. The figure can also be understood to represent the initial-specification function ��(�, �) 
provided every string of bits (T�T�T�T�T�T�T�T�)  is understood to indicate the corresponding atom 

(X�
��X�

��X�
��X�

��X�
��X�

��X�
��X�

��). For example, the cell corresponding to � = 31 and � = 7 has an entry of 

31 ∗ 7 = (217)�� = (11011001)� which is understood to represent  X�X�X��X�X�X��X��X�. 
 
Fig. 3 describes the evolution of ��(�, �) into �(�, �). Fig. 3(a) represents the indicator I(� ≥ �), while 
Fig. 3(b) represents the indicator I(� > 1). Fig. 3(c) is the product of Fig. 2, Fig. 3(a), and Fig. 3(b) and 
hence represents �(�, �) . Fig. 4 represents the auxiliary function G(�, �, �) , curtailed to include 
parameters for the pertinent atoms among the 64 atoms in which X� = X� = 0. The transition from the 
specification function �(�, �) to the auxiliary function G(�, �, �) is achieved according to the procedure in 
[10-12,40]. It is accomplished with the aid of Table 1, which identifies sets of orthonormal tags to be 
associated with atoms of multiple appearances in the map of �(�, �) in Fig. 3(d).  Atoms beyond the initial 
64 atoms are ignored in writing the final solution and its consistency condition, which turn out to be 
exactly the same as in Rushdi et al. [11]. For brevity, we have not repeated the logical expressions for the 
outputs �  and the consistency condition in this paper. 
 

4 Algorithmic Implementation of Integer Factorization 
 
Our manual work on integer factorization has to be stopped at the (6, 5, 3) problem. The next larger 
problem (namely, the (7, 6, 4)) has an input domain of 6+4=10 variables and would be considerably 
difficult (albeit, not totally impossible) for a Karnaugh-map treatment. Our solution procedure, on the 
other hand, is algorithmic in nature, and is amenable to coding as a computer program. In fact, we did 
write such a program in Matlab based on the knowledge accumulated throughout the manual solution of 
small problems. The program correctness was verified for the four problems solved manually,                            
namely, the (3, 2, 2), (4, 3, 2), (5, 4, 3) and (6, 5, 3) problems. Fig. 5 outlines the scheme of the                  
manual and automated approaches used herein. The figure also indicates directions for forthcoming work. 
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Fig. 5. An overview of our scheme for handling integer factorization 
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Fig. 6(a). Temporal complexity expressed as computational time versus the number of input bits 
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Fig. 6(b). Snapshots of the evolution of the temporal complexity in Fig. 6(a) as the number of input bits increases 
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Fig. 7(a). Spatial complexity expressed as output file size versus the number of input bits 
 
 



 
 
 

Rushdi et al.; JAMCS, 30(1): 1-22, 2019; Article no.JAMCS.45009 
 
 
 

13 
 
 

 
 

Fig. 7(b). Snapshots of the evolution of the spatial complexity in Fig. 7(a) as the number of input bits increases 
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We plan to try a new automated version using Python on AZIZ (King Abdulaziz University’s super 
computer). The next step is to make an FPGA realization of the largest problem we manage to solve. So 
far, we were able to run the program for the 20-bit problem. The program might be used for larger 
problems as well, but both its execution time and output size are exponentially increasing, as clearly 
indicates by Figs. 6 and 7. The notorious “Curse of Dimensionality” is vividly demonstrated by the 
snapshots in Figs. 6(b) and 7(b) which show the evolution of the temporal and spatial complexities as the 
number of input bits increases. 
 
5. Conclusions 
 
Integer factorization is an intractable problem that might be handled in real time for small problems via 
hardware solution. Such a solution requires the extension of propositional logic to higher-order logics 
(e.g., first-order predicate logic) or the enlargement of two-valued Boolean algebra to a ‘big’ Boolean 
algebra. The paper derives a hardware circuit that factorizes a 6-bit integer � into two integers � and � of 
sizes 5 bits and 3 bits, respectively. The paper demonstrates that the resulting solution of the integer-
factorization problem above includes the solutions of smaller problems as special cases. The paper builds on 
the experience gained in solving the 6-bit problem to design and implement a Matlab program to solve the 
general n-bit problem. The largest possible hardware circuit obtained via the automated solution is to be 
constructed, verified and tested. Such a hardware implementation (e.g., FPGA implementation) serves as a 
ready real-time look-up solution not only of the pertinent problem but also of all smaller problems. 
 
Our contribution in this paper is admittedly a modest one and pertains mainly to a formulation of the 
integer factorization problem as a problem of Boolean equation-solving. This formulation gives a better 
insight into the problem and may provide opportunities to simplify the solution in the future. Our current 
solution method employs a strategy implicitly equivalent to that of a look-up table (albeit, with a more 
efficient enumeration). That is a main reason for the quick growth in the complexity of the solution. 
 
The complexity in our solution comes from two sources. One involves the task of finding the Boolean 
expressions for the solution. This task is slow, but it has to be done once, and only once, for a problem of a 
given size. The other source of complexity is the size of the obtained expressions for the solutions. This is 
repeatedly unavoidable and would make a hardware implementation impractical for large problems due to 
large memory and time requirements. A possible way to reduce the complexity of our solution is to find 
the smallest factor (greater than 1) of the integer to be factorized and then, recursively, find the next factor, 
and so on. 
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APPENDIX A 
 

Integer-Factorization Matlab Code 
test01.m 
 
close all;clear;clc; 
 
nx=6; 
%find n such that nn=2n or nn=2n-1 
 
n=ceil(nx/2); 
 
nz=n; 
ny=nx-1; 
c=zeros(1,2^nx); 
 
d=[]; 
db=[]; 
 
for z=2:2^nz-1 

for y=z:2^ny-1 
if y*z<=2^nx-1 

d=[d;y z y*z 0]; 
c(y*z+1)=c(y*z+1)+1; 

end 
end 

end 
 
ps=getparams(c); 
k=find(c>=2); 
 
for i=1:length(k) 

kk=find(d(:,3)==k(i)-1); 
d(kk,4)=(1:c(k(i)))'; 

end 
 
ybits=mydec2bin(d(:,1),ny); 
zbits=mydec2bin(d(:,2),nz); 
 
for i=1:ny 

ex=['y' num2str(ny-i) '=']; 
k=find(ybits(:,i)==1); 
dd=d(k,:); 
for j=1:size(dd,1) 
txt=''; 
xbits=mydec2bin(dd(j,3),nx); 

for q=1:nx 
txt=[txt 'x' num2str(nx-q)]; 

if xbits(q)==0 
txt=[txt '''']; 
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end 
end 
if dd(j,4)>0 

atom=dd(j,3); 
param=ps{atom+1}{dd(j,4)}; 
txt=[txt ' ' param]; 

end 
if j>1, txt = [ ' + ' txt]; end 

ex=[ex txt]; 
end 

disp(ex); 
end 
 
 
getparams.m 
function ps=getparams(c) 
 
cc=c(c>=2); 
 
nparams=sum(ceil(log2(cc))); 
 
k=1; 
for i=1:length(c) 

if c(i)<=1 
ps{i}=''; 

else 
np=ceil(log2(c(i))); 
nmult=c(i); 
ps{i}=spantree(np,nmult,k); 
k=k+np; 

end 
end 
 
mydec2bin.m 
function y=mydec2bin(x,b) 
 
y=dec2bin(x,b); 
y=double(y)==49; 
y=double(y); 
 
spantree.m 
function pp=spantree(np,nmult,vindex) 
 
%np=3; 
%nmult=5; 
%vindex=27; 
 
tree=[-1 0 0 0 0]; 
 
node=1; 
while true 
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nnodes=size(tree,1); 
nendnodes=sum(tree(:,4)); 

 
if nendnodes>=nmult, break; end 
if tree(node,2)==0 && tree(node,5)<np 

tree(node,4)=0; 
nnodes=nnodes+1; 
newnode=[node 0 0 1 tree(node,5)+1]; 
tree(node,2)=nnodes; 
tree=[tree;newnode]; 
node=nnodes; 

elseif tree(node,3)==0 && tree(node,5)<np 
nnodes=nnodes+1; 
newnode=[node 0 0 1 tree(node,5)+1]; 
tree(node,3)=nnodes; 
tree=[tree;newnode]; 
nendnodes=nendnodes+1; 
node=nnodes; 
if nendnodes>=nmult, break; end 

else 
node=tree(node,1); 

end 
if size(tree,1)>8, break; end 

end 
 
k=find(tree(:,4)==1); 
for i=1:length(k) 

node=k(i); 
pp{i}=''; 
while true 

depth=tree(node,5); 
px=['p' num2str(vindex+depth-1)]; 
pre=tree(node,1); 
if tree(pre,3)==node 

px=[px '''']; 
end 
pp{i}=[px pp{i}]; 
node=pre; 
if pre==1, break; end 

end 
end 
_____________________________________________________________________________________ 

© 2019 Rushdi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 

 
 

 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://www.sciencedomain.org/review-history/27962 


