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Abstract

In this paper, the asymptotic distribution of Fourier ESTAR model (FKSS) proposed by [1],
which was not given in the original paper are derived. Result shows that the asymptotic
distributions are functions of brownian motion, only depends on K and free from nuisance
parameters.
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1 Introduction

In the recent years, a large body of time series literatures that use Fourier approximation of unknown
functional forms have emerged (see [2],[3] and [4]). Moreover, [5] propose Fourier approximation
which is sufficient to approximate a wide range of functional forms, since the advantage of the
Fourier approach to capture the behavior of a deterministic function of unknown form works better
than dummy variable method proposed by [6] irrespective of the breaks are instantaneous or smooth.
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After that, unit root test based on nonlinear deterministic component has been widely concerned.[7]
adopt the Lagrange multiplier methodology by [8] and develop a unit root test using Fourier form
approximation. Similarly, [9] develop a unit root with a Fourier function in the deterministic term
in a Dickey fuller type regression frame work. Furthermore, [10] develop the generalize least square
unit root test proposed by [11] to allow for a Fourier approximation to the unknown deterministic
component.

Considering ESTAR model with Fourier form that capture nonlinear adjustment and structural
breaks well, [1] develop a new tests procedure for unit roots base on ESTAR model with flexible
Fourier form.The main constraints is that [1] failed to give the asymptotic distribution of their
proposed test. However, our main concern in this paper is to derive the asymptotic distribution
of Fourier-ESTAR model(FKSS) proposed by [1]. The corresponding asymptotic distribution are
given in next part. Result show that our derived asymptotic distributions will provides a foundation
for the derivation of complex model with Fourier function, which is uncorrelated with nuisance
parameter.

2 Asymptotic Properties of the Test Statistics

According to [5], a single-frequency Component of a Fourier approximation can mimic a wide variety
of breaks and other types of non-linearity we begin our analysis with a Data generating process
containing only one frequency.

yt = α0 + α1t+ α2 sin(
2πkt

T
) + α3 cos(

2πkt

T
) + vt, (2.1)

vt = ρvt−1 + γvt−1(1− exp(−θv2t−1)) + ϵt. (2.2)

where ϵt ∼ iid(0, σ2), k represent a particular frequency and T is the sample Size

In this study, two step testing procedure are used to derive the asymptotic distribution of the
Fourier-ESTAR model.

Remark 2.1: The deterministic kernel considered in equation(2.1) includes a linear time trend,
but we may also consider the case where only a constant and a Fourier terms are considered; i.e.,
the case where α1 = 0 in equation(2.1).This will be referred to demeaned case in what follows, while
the more general case α1 ̸= 0 will be termed the detrended case.

In the first step, we obtaine the demeaned and detrended series of equation(1) as follows:

Demeaned Case, α1 = 0 :

ṽt = yt − α̂0 − α̂2 sin(
2πkt

T
)− α̂3 cos(

2πkt

T
),

This can be re-written as:

ṽt = yt − Z′
t(θ̂). (2.3)
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where θ = (α0, α2, α3)
′ , θ̂ is the OLS estimate of θ and Zt = (1, sin(

2πkt

T
), cos(

2πkt

T
))′

Detrended Case, α1 ̸= 0 :

ṽt = yt − α̂0 − α̂1t− α̂2 sin(
2πkt

T
)− α̂3 cos(

2πkt

T
),

This can be re-written as:
ṽt = yt − Z′

t(θ̂). (2.4)

where θ = (α0, α1, α2, α3)
′ , θ̂ is the OLS estimate of θ and Zt = (1, t, sin(

2πkt

T
), cos(

2πkt

T
))′

In the second step (section(2.1)) we adopt a Fourier base unit root test (KSS test) with demeaned
or detrended and run the ESTAR-type unit root test.

2.1 KSS test

To construct a fourier base unit root test we use classical KSS unit root. The ESTAR model in
equation(2.2) will be reparametrized with ṽt instead of vt as follows:

ṽt = ρṽt−1 + γṽt−1(1− exp(−θṽ2t−1)) + ϵt. (2.5)

equation(2.5) can be written as:

∆ṽt = ϕṽt−1 + γṽt−1(1− exp(−θṽ2t−1)) + ϵt. (2.6)

Where ϕ = ρ− 1

Following the practice in the literature (e.g. [12] in the context of TAR models and [13] in the
context of ESTAR models), we impose ϕ = 0 in equation(2.6), implying that ṽt follows a unit root
process in the middle regime. we can write equation(2.6) as :

∆ṽt = γṽt−1(1− exp(−θṽ2t−1)) + ϵt. (2.7)

equation (2.7) implies that ṽt follows either a unit root or globally stationary, we consider testing
the null hypothesis that ṽt follow a unit root process given by γ = 0 or θ = 0, against the alternative
that ṽt is nonlinear and globally stationary, i.e θ = 0 with −2 < γ < 0.

Obviously, testing the null hypothesis Ho : θ = 0 in equation(2.7) directly is not feasible, since γ
is not identified under the null hypothesis. See for example [14]. A popular approach to avoid the
presence of nuisance parameters under the null hypothesis is to use a Taylor approximation of the
smooth transition function G(ṽt−1; θ) = 1− exp(−θṽ2t−1) around θ = 0 see [15]. An application of
a first-order Taylor approximation to the ESTAR model leads to the auxiliary equation below:

∆ṽt = δṽ3t−1 + ϵt. (2.8)

The unit root hypothesis is set up by estimating equation(2.8) with OLS and testing the null
H0 : δ = 0 against the alternative H1 : δ < 0 using t-statistics define as:

tkssi =
δ̂

s.e(γ̂)
. (2.9)

where δ̂ is the OLS estimate of δ in equation(2.8), s.e(δ̂) is the corresponding standard error, and
i = (µ, τ) for demeaned and detrended cases respectively.
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To obtained the asymptotic distribution of the Fourier ESTAR model define in equation(2.9), the
following result are needed.

Proposition 2.1.

i
1

T 3/2

T∑
k=1

yt =⇒ σ

1∫
0

W (r)dr = σf1

ii
1

T 5/2

T∑
k=1

tyt =⇒ σ

1∫
0

rW (r)dr = σf2

iii
1

T 3/2

T∑
k=1

sin(
2πkt

T
)yt =⇒ σ

1∫
0

sin(2πkr)W (r)dr = σf3

iv
1

T 3/2

T∑
k=1

cos(
2πkt

T
)yt =⇒ σ

1∫
0

cos(2πkr)W (r)dr = σf4

v
1

T

T∑
k=1

sin(
2πkt

T
) =⇒ 0

vi
1

T

T∑
k=1

cos(
2πkt

T
) =⇒ 0

vii
1

T

T∑
k=1

sin2(
2πkt

T
) =⇒ 1/2

viii
1

T

T∑
k=1

cos2(
2πkt

T
) =⇒ 1/2

ix
1

T 2

T∑
k=1

t sin(
2πkt

T
) =⇒ −1

(2πk)

x
1

T 2

T∑
k=1

t cos(
2πkt

T
) =⇒ 0

xi
1

T

T∑
k=1

cos(
2πkt

T
) sin(

2πkt

T
) =⇒ 0

Theorem 2.1. Under the null hypothesis the t-statistics defined in equation(2.9), for the demeaned
case has the following asymptotic distribution:

tF−kss
µ =⇒

1∫
0

Wµ(k, r)
3dw(r)

(
1∫
0

Wµ(k, r)6dr)1/2
.

where Wµ(k, r) is demeaned Brownian motion defined on r ∈ (0, 1)
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Theorem 2.2. Under the null hypothesis the t-statistics defined in equation(2.9), for the detrended
case has the following asymptotic distribution:

tF−kss
τ =⇒

1∫
0

Wτ (k, r)
3dw(r)

(
1∫
0

Wτ (k, r)6dr)1/2
.

where Wτ (k, r) is detrended Brownian motion defined on r ∈ (0, 1)

The asymptotic distribution of the test-statistics will only depends on K and free from nuisance
parameter.

Proof. See the Appendix.

3 Conclusions

[1] Focus on the potential effect that structural breaks and non-linear mean reversion have on tests
of the Purchasing Power Parity (PPP) hypothesis. They present tests that, far from considering
these two features separately, model both breaks and non-linear adjustment jointly,but the main
constrains is that [1] do not give asymptotic distributions of there test. This article extend the work
of [1] by providing the asymptotic distributions of Fourier-ESTAR model which is not available in
the original paper.
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Appendix

Proof of Proposition:

From Proposition (2.1) under null hypothesis ∆yt = ϵt

i
1

T 3/2

T∑
k=1

yt =⇒ σ

1∫
0

W (r)dr = σf1

ii
1

T 5/2

T∑
k=1

tyt =⇒ σ

1∫
0

rW (r)dr = σf2

The result of (i) and (ii) are standard, (see [16]). from the continuous mapping theorem , we
have:

iii
1

T 3/2

T∑
k=1

sin(
2πkt

T
)yt =⇒ σ

1∫
0

sin(2πkr)W (r)dr = σf3

iv
1

T 3/2

T∑
k=1

cos(
2πkt

T
)yt =⇒ σ

1∫
0

cos(2πkr)W (r)dr = σf4

v
1

T

T∑
k=1

sin(
2πkt

T
) =⇒

1∫
0

sin(2πkr)dr =
1

2πk
(1− cos(2πkr)) = 0

vi
1

T

T∑
k=1

cos(
2πkt

T
) =⇒

1∫
0

cos(2πkr)dr =
sin(2πk)

2πk
= 0

vii
1

T

T∑
k=1

sin2(
2πkt

T
) =⇒

1∫
0

sin2(2πkr)dr =
1

2

1∫
0

(1− cos(4πkr))dr =
1

2
− sin 4πk

4πk
= 1/2

viii
1

T

T∑
k=1

cos2(
2πkt

T
) =⇒

1∫
0

cos2(2πkr)dr =
1

2

1∫
0

(1− sin2(4πkr))dr =
1

2
+

sin 4πk

4πk
= 1/2

ix
1

T 2

T∑
k=1

t sin(
2πkt

T
) =⇒

1∫
0

r sin(2πkr)dr =
sin(2πk)

(2πk)2
− cos(2πk)

(2πk)
=

−1

(2πk)

x
1

T 2

T∑
k=1

t cos(
2πkt

T
) =⇒

1∫
0

r cos(2πkr)dr =
cos(2πk)− 1

(2πk)2
+

sin(2πk)

(2πk)
= 0

xi
1

T

T∑
k=1

cos(
2πkt

T
) sin(

2πkt

T
) =⇒

1∫
0

cos(2πkr) sin(2πkr)dr =
1− cos(4πk)

8πk
= 0

Proof of Theorem 2.1:

Proof. Consider the level of stationarity with Fourier Function. for the demeaned case i.e α1 = 0 in

equation(2.1), by using the OLS residual define in equation(2.6) with Zt = (1, sin(
2πkt

T
), cos(

2πkt

T
)).

define as follows:
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ṽt = yt − Z′
t(θ̂)

where θ = (α0, α2, α3)
′ and θ̂ is the OLS estimate of θ, and ∆yt = ϵt. Let z = (z1, ....zt)

′ and

y = (y1, ...yt)
′ also we define the scalling parameter as Υ = diag[

1√
T
,

1√
T
,

1√
T
] then we have:

Υ(θ̂) = [Υ−1(Z′Z)Υ−1]−1Υ−1Z′Y

from the above equation we show the asymptotic distributon of the demeaned case as follows:

1√
T
ṽt[Tr] =

1√
T
y[Tr] −

1√
T
Z′

[Tr](θ̂)

1√
T
ṽt[Tr] =

1√
T
y[Tr] −

1√
T
Z′

[Tr]Υ
−1[Υ−1(Z′Z)Υ−1]−1Υ−1Z′Y

1√
T
ṽt[Tr] =

1√
T
y[Tr] −

1

T
Z′

[Tr][Υ
−1(Z′Z)Υ−1]−1Υ−1Z′Y

According to central limit theorem each terms is defined as follows:

1√
T
y[Tr] =

1√
T

[Tr]∑
t=1

u[Tr] −→ σW (r)

[Υ−1(Z′Z)Υ−1]−1 =



T

T

1

T

∑T
k=1 sin(

2πkt

T
)

1

T

∑T
k=1 cos(

2πkt

T
)

1

T

∑T
k=1 sin

2(
2πkt

T
)

1

T

∑T
k=1 sin(

2πkt

T
) cos(

2πkt

T
)

1

T

∑T
k=1 cos

2(
2πkt

T
)



−1

by using the proposition define earlier we have:

[Υ−1(Z′Z)Υ−1]−1 −→



1 0 0

1

2
0

1

2



−1

=


1 0 0

2 0

2


Also

T−1Υ−1Z′Y =



1

T 1/2

∑T
k=1 yt

1

T 1/2

∑T
k=1 sin(

2πkt

T
)yt

1

T 1/2

∑T
k=1 cos(

2πkt

T
)yt


−→


σf1

σf3

σf4


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Then we can write that:

1

T
Z′

[Tr]Υ
−1[Υ−1(Z′Z)Υ−1]−1Υ−1Z′Y −→

[
1 sin(2πkr) cos(2πKr)

]

1 0 0

0 2 0

0 0 2




σf1

σf3

σf4


−→

[
σf1 + 2 sin(2πkr)σf3 + 2 cos(2πkr)σf4

]
by combining all the result we obtain the demeaned brownian motion as:

1√
T
ṽt[Tr] =

1√
T
y[Tr] −

1√
T
Z′

[Tr](θ̂)

1√
T
ṽt[Tr] −→ σ[W (r)− f1 − 2 sin(2πkr)f3 − 2 cos(2πkr)f4] ≡ σWµ(kr)

1

σ
√
T
ṽt[Tr] −→ Wµ(kr)

using above results, under the null we can obtain that:

tF−kss
µ −→

1∫
0

Wµ(k, r)
3dw(r)

(
1∫
0

Wµ(k, r)6dr)1/2
.

Proof of Theorem 2.2:

Proof. Consider the level of sattionarity with Fourier Function. for the detrended case i.e α1 ̸= 0 in

equation(2.1), by using the OLS residual define in equation(2.7) with Zt = (1, t, sin(
2πkt

T
), cos(

2πkt

T
)).

define as follows:

ṽt = yt − Z′
t(θ̂)

where θ = (α0, α1, α2, α3)
′ and θ̂ is the OLS estimate of θ and∆yt = ϵt. Let z = (z1, ....zt)

′ and

y = (y1, ...yt)
′ also we define the scalling parameter as Υ = diag[

1√
T
,

1

T 1.5
,

1√
T
,

1√
T
] then we have:

Υ(θ̂) = [Υ−1(Z′Z)Υ−1]−1Υ−1Z′Y

from the above equation we show the asymptotic distributon of the detrended case as follows:

1√
T
ṽt[Tr] =

1√
T
y[Tr] −

1

T
Z′

[Tr][Υ
−1(Z′Z)Υ−1]−1Υ−1Z′Y

following the same procedure discused earlier and according to functional central limit theorem we
have terms as follows:

1√
T
y[Tr] =

1√
T

[Tr]∑
t=1

u[Tr] −→ σW (r)
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[Υ−1(Z′Z)Υ−1]−1 =



T

T

1

T 2

T∑
k=1

t
1

T

∑T
k=1 sin(

2πkt

T
)

1

T

∑T
k=1 cos(

2πkt

T
)

1

T 3

T∑
k=1

t2
1

T

∑T
k=1 t sin(

2πkt

T
)

1

T

∑T
k=1 t sin(

2πkt

T
)

1

T

∑T
k=1 sin

2(
2πkt

T
)

1

T

∑T
k=1 sin(

2πkt

T
) cos(

2πkt

T
)

1

T

∑T
k=1 cos

2(
2πkt

T
)



−1

by using the proposition define earlier we have:

[Υ−1(Z′Z)Υ−1]−1 −→



1
1

2
0 0

1

2

1

3

−1

2πK
0

0
−1

2πK

1

2
0

0
1

2
0

1

2



−1

=
1

k2π2 − 6

48k2π2



2k2π2 − 3

24k2π2

−1

8
−1
8kπ

0

−1

8

1

4

1

4kπ
0

−1

8kπ

1

4kπ

1

24
0

1

8

−1

4

−1

4kπ

k2π2 − 6

24k2π2



=



4k2π2 − 6

k2π2 − 6

−6k2π2

k2π2 − 6

−6kπ

k2π2 − 6
0

−6k2π2

k2π2 − 6

12k2π2

k2π2 − 6

12kπ

k2π2 − 6
0

−6kπ

k2π2 − 6

12kπ

k2π2 − 6

2k2π2

k2π2 − 6
0

6k2π2

k2π2 − 6

−12k2π2

k2π2 − 6

−12kπ

k2π2 − 6
2


=



a11 a12 a13 0

a21 a22 a23 0

a31 a32 a33 0

0 0 0 a44



Also

T−1Υ−1Z′Y =



1

T 1/2

∑T
k=1 yt

1

T 3/2

∑T
k=1 tyt

1

T 1/2

∑T
k=1 sin(

2πkt

T
)yt

1

T 1/2

∑T
k=1 cos(

2πkt

T
)yt


−→



σf1

σf2

σf3

σf4


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Then we can write that:

1

T
Z′

[Tr]Υ
−1[Υ−1(Z′Z)Υ−1]−1Υ−1Z′Y −→

[
1 r sin(2πkr) cos(2πKr)

]


a11 a12 a13 0

a21 a22 a23 0

a31 a32 a33 0

0 0 0 a44





σf1

σf2

σf2

σf3


−→ σ

{
(a11f1 + a12f2 + a13f3) + (a21f1 + a22f2 + a23f3)r

+(a31f1 + a32f2 + a22f3)sin(2πkr) + a44f4cos(2πkr)

}
)

by combining all the result we obtain the detrended brownian motion as:

1√
T
ṽt[Tr] =

1√
T
y[Tr] −

1√
T
Z′

[Tr](θ̂)

1√
T
ṽt[Tr] −→ σ(W (r)− σ

[
(a11f1 + a12f2 + a13f3) + (a21f1 + a22f2 + a23f3)r

+(a31f1 + a32f2 + a22f3)sin(2πkr) + a44f4cos(2πkr)

]
≡ σWτ (kr)

1

σ
√
T
ṽt[Tr] −→ Wτ (kr)

using above results, under the null we can obtain that:

tF−kss
τ −→

1∫
0

Wµ(k, r)
3dw(r)

(
1∫
0

Wµ(k, r)6dr)1/2
.
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