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Abstract 
 

Group Divisible PBIBDs are important combinatorial structures with diverse applications. In this paper, we 
provided a construction technique for Group Divisible (v-1,k,0,1) PBIBDs. This was achieved by using 
techniques described in literature to construct Nim addition tables of order 2n, 2≤n≤5 and 
(k2,b,r,k,1)Resolvable BIBDs respectively. A “block cutting” procedure was thereafter used to generate 
corresponding Group Divisible (v-1,k,0,1) PBIBDs from the (k2,b,r,k,1)Resolvable BIBDs. These procedures 
were streamlined and implemented in MATLAB. The generated designs are regular with 
parameters(15,15,4,4,5,3,0,1);(63,63,8,8,9,7,0,1);(255,255,16,16,17,15,0,1) and (1023,1023,32,32,33,31,0,1). 
The MATLAB codes written are useful for generating the blocks of the designs which can be easily adapted 
and utilized in other relevant studies.   Also, we have been able to establish a link between the game of Nim 
and Group Divisible (v-1,k,0,1) PBIBDs. 
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1 Introduction  
 
A Group Divisible PBIBD is an arrangement of (� = ��;�, � ≥ 2) treatments into � blocks such that each 
block contains �(< �) distinct treatments, each treatment occurs � times and any pair of distinct treatments 
which are first associates occurs together in �� blocks and in �� blocks if they are second associates [1]. 
 
A Group divisible design is PBIBD(2) in which the underlying association scheme is group divisible [2].  
 
A group divisible design is: 
 

(i) Singular if � = �� 
(ii) Semi-regular if � > ��, �� − ��� = 0 
(iii) Regular if � > ��, �� > ��� 

 
Group Divisible PBIBDs are important combinatorial structures that have been extensively studied in literature. 
They have been found useful in the construction of new designs, plant breeding and group testing schemes [3-6]. 
[1] highlighted some authors who have worked on different construction techniques for this design. In addition 
to these works, [7] constructed a Group Divisible Design GDD(6�+ 2,3,4; 2,1) for all positive integers s, using 
mutually orthogonal Latin squares (MOLS) and balanced incomplete block designs (BIBDs). The generalization 
of this result can be found in [8]. 
 
The aim of this paper is to present a procedure for constructing and generating the blocks of Group Divisible 
(� − 1, �, 0, 1) PBIBDs thereby establishing a link between the impartial combinatorial game, Nim and Group 
Divisible PBIBDs. Some definitions are provided below to enhance the flow of the paper.  
 
Definition 1. (Balanced Incomplete Block Design (BIBD)). 
 
A BIBD is a pair (V, B) where V is a v-set and B is a collection of b k-subsets of V (blocks) such that each 
element of V is contained in exactly r blocks and any 2-subset of V is contained in exactly λ blocks. The 
numbers v, b, r, k, and λ are the parameters of the BIBD This definition implies that v is the number of varieties, 
b is the number of blocks, r is the replication number of each variety, k is the size of each block and λ is the 
number of times each pair of varieties appear in the same block [9,10]. 
 
Definition 2. (Resolvable Balanced Incomplete Block Designs (RBIBDs)) 
 
A BIBD is said to be resolvable if its blocks can be partitioned into parallel classes [3,11,12]. 
 

Definition 3. (Partially Balanced Incomplete Block Designs (PBIBDs)). 
 

Let �  be a � -set with a symmetric association scheme defined on it. A PBIBD with �  associate classes 
PBIBD(�) is a design based on the �-set �  with � blocks, each of size �, with each treatment appearing in � 
blocks. Any two treatments that are ��ℎ  associates appear together in �� blocks of the PBIBD (�) . The 
parameters of the PBIBD(�) are �, �, �, �, �� 1 ≤ �≤ �) [2] 
 

1.1 The game of nim 
 

Nim is an impartial combinatorial game that has been extensively studied. The description of the game, its 
variants, mathematical theory including the construction of its addition table are documented in literature 
including [10,13-18] among others. In this paper, we utilized Nim addition tables of order 2�, 2 ≤ � ≤ 5. These 
tables are closed n-nim-regular matrices. This implies that they are Latin squares of side 2�, and their respective 
mutually orthogonal Latin squares (MOLS) can be obtained.  
 

The theory underlying the game of Nim is very important and it has been extended to all impartial combinatorial 
games (under normal play) and several games have been analyzed using the theory. Nim has also been linked to 
lexicographic codes [14,19]. 
 
In the remaining part of the paper, we have the following structure: The methodology is presented in Section 2. 
Results and discussion are in Section 3 while Section 4 is for the Conclusion. 
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2 Methodology  
 

2.1 Theorem 1 [2,20] 
 
Given a (�∗, �∗, �∗, �∗, 1)BIBD, there exists a group divisible PBIBD (�∗ − 1, �∗ − �∗, �∗ − 1, �∗, �∗, �∗ −
1, 0, 1 where �=�∗−1, �=�∗−�∗, �=�∗−1, �= �∗, �=�∗−1, �1=0, �2=1. 
 
We utilized the MATLAB code in [10] to construct Nim addition tables of order 2�, 2 ≤ � ≤ 5  and 
(��, �, �, �, 1)RBIBDs respectively. A “block cutting” procedure described by [3,20] was thereafter used to 
implement Theorem 1 in MATLAB.  
 
2.1.1 MATLAB code for constructing group divisible PBIBD from Nim addition Table of order��, � ≤

� ≤ � 
 
construct Nim addition table ………………………………………………………………………………….1 
generate Mutually Orthogonal Latin Square…………………………………………………………………..2 
construct Group Divisible Designs…………………………………………………………………………….2 

 

construct Nim addition table 
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generate Mutually Orthogonal Latin Square 
 

 
 
construct Group Divisible Designs 
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3 Results and Discussion 
 
The Group divisible PBIBDs obtained for orders 2�  and 2� are presented in Sections 3.1 and 3.2. The blocks 
are numbered using Roman numerals. Results for 2�and 2� are easily generated using the code presented in 
Section 2. 
  

3.1 Group divisible PBIBD from nim addition table of order ��  
 

 
 
The parameters of this design are � = 15, � = 15, � = 4, � = 4,� = 5, � = 3, �� = 0, �� = 1. 
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3.2 Group divisible PBIBD from nim addition table of order �� 
 
I 9 10 11 12 13 14 15 16 VIII 2 10 18 26 34 42 50 58 
II 17 18 19 20 21 22 23 24 IX 3 11 19 27 35 43 51 59 
III 25 26 27 28 29 30 31 32 X 4 12 20 28 36 44 52 60 
IV 33 34 35 36 37 38 39 40 XI 5 13 21 29 37 45 53 61 
V 41 42 43 44 45 46 47 48 XII 6 14 22 30 38 46 54 62 
VI 49 50 51 52 53 54 55 56 XIII 7 15 23 31 39 47 55 63 
VII 57 58 59 60 61 62 63 64 XIV 8 16 24 32 40 48 56 64 
 
XV 2 11 20 29 38 47 56 57 XXII 2 12 22 32 34 44 54 64 
XVI 3 12 21 30 39 48 49 58 XXIII 3 13 23 25 35 45 55 57 
XVII 4 13 22 31 40 41 50 59 XXIV 4 14 24 26 36 46 56 58 
XVIII 5 14 23 32 33 42 51 60 XXV 5 15 17 27 37 47 49 59 
XIX 6 15 24 25 34 43 52 61 XXVI 6 16 18 28 38 48 50 60 
XX 7 16 17 26 35 44 53 62 XXVII 7 9 19 29 39 41 51 61 
XXI 8 9 18 27 36 45 54 63 XXVIII 8 10 20 30 40 42 52 62 
 
XXIX 2 13 24 27 38 41 52 63 XXXVI 2 14 18 30 34 46 50 62 
XXX 3 14 17 28 39 42 53 64 XXXVII 3 15 19 31 35 47 51 63 
XXXI 4 15 18 29 40 43 54 57 XXXVIII 4 16 20 32 36 48 52 64 
XXXII 5 16 19 30 33 44 55 58 XXXIX 5 9 21 25 37 41 53 57 
XXXIII 6 9 20 31 34 45 56 59 XL 6 10 22 26 38 42 54 58 
XXXIV 7 10 21 32 35 46 49 60 XLI 7 11 23 27 39 43 55 59 
XXXV 8 11 22 25 36 47 50 61 XLII 8 12 24 28 40 44 56 60 
 
XLIII 2 15 20 25 38 43 56 61 L 2 16 22 28 34 48 54 60 
XLIV 3 16 21 26 39 44 49 62 LI 3 9 23 29 35 41 55 61 
XLV 4 9 22 27 40 45 50 63 LII 4 10 24 30 36 42 56 62 
XLVI 5 10 23 28 33 46 51 64 LIII 5 11 17 31 37 43 49 63 
XLVII 6 11 24 29 34 47 52 57 LIV 6 12 18 32 38 44 50 64 
XLVIII 7 12 17 30 35 48 53 58 LV 7 13 19 25 39 45 51 57 
XLIX 8 13 18 31 36 41 54 59 LVI 8 14 20 26 40 46 52 58 
 
LVII 2 9 24 31 38 45 52 59 
LVIII 3 10 17 32 39 46 53 60 
LIX 4 11 18 25 40 47 54 61 
LX 5 12 19 26 33 48 55 62 
LXI 6 13 20 27 34 41 56 63 
LXII 7 14 21 28 35 42 49 64 
LXIII 8 15 22 29 36 43 50 57 
 
The parameters of this design are � = 63, � = 63, � = 8, � = 8,� = 9, � = 7, �� = 0, �� = 1. 
 
The Group Divisible PBIBDs constructed via this approach are all regular, that is � > ��  and �� > ��� . A 
summary of the results is presented in Table 1.  
 

Table 1. Parameters of group divisible (� − �, �,�, �)PBIBD obtained via nim addition table 
 

Nim addition 
Table of order �� 

Parameters of the 
(��, �, �, �, �)RBIBD 

Parameters of the group divisible  
(� − �, �,�, �)PBIBD 

�� 16, 20, 5, 4,1 15, 15, 4, 4, 5, 3, 0, 1 
�� 64, 72, 9, 8, 1 63, 63, 8, 8, 9, 7, 0, 1 

�� 256, 272, 17, 16, 1 255, 255, 16, 16, 17, 15, 0, 1 

�� 1024, 1056, 33, 32, 1 1023, 1023, 32, 32, 33, 31, 0, 1 
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4 Conclusion 
 
Group Divisible PBIBDs are important combinatorial structures with applications in diverse fields. In this paper, 
Nim addition tables of order 2� , 2 ≤ � ≤ 5 and (��, �, �, �, 1)RBIBDs respectively were constructed using 
techniques described in [10]. From the (��, �, �, �, 1)RBIBDs, a “block cutting” procedure was used to generate 
corresponding Group Divisible (� − 1, �, 0, 1) PBIBDs. All these procedures were implemented in MATLAB. 
The parameters of the Group Divisible (� − 1, �, 0, 1)  PBIBDs generated are 
(15, 15, 4, 4, 5, 3, 0;(63, 63, 8, 8, 9, 7, 0, 1);(255, 255, 16, 16, 17, 15, 0, 1); and (1023, 1023, 32, 32, 33, 31, 0, 1) 
and they are all regular. The MATLAB codes written are useful for generating the blocks of the designs which 
can be easily adapted and utilized in other relevant studies.   Also, we have been able to establish a link between 
the game of Nim and Group Divisible (� − 1, �, 0, 1) PBIBDs. 
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