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Abstract 
 

The study indicates that we should improve the model by introducing the immigration rate in the model to 
control the spread of disease. An SEIRS epidemic model with Immigration and Vertical Transmission 
and analyzed the steady state and stability of the equilibrium points. The model equations were solved 
analytically. The stability of the both equilibrium are proved by Routh-Hurwitz criteria. We see that if the 

basic reproductive number 0 1R
 then the disease free equilibrium is locally asymptotically stable and if 

0 1R
 the endemic equilibrium will be locally asymptotically stable. 

 
 

Keywords:  Mathematical modeling; immigration rate; vertical transmission; stability analysis; routh-
hurwitz criteria. 

 

1 Intoduction 
 

Mathematical modeling is an important tool to understand and predict the spread of infectious diseases. In 
this process, rate of incidence plays a crucial role. Many infectious diseases in nature transmit through both 
horizontal and vertical modes. For many human diseases such as Hepatitis B, and AIDS, the infected hosts 
stay in a latent period before becoming infectious [1,2,3].  
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Epidemiology is basically a population biology discipline concerned with public health and it is heavily 
influenced by mathematical theory. Study of infectious disease by the means of mathematical modelling 
provides the behaviour of the diseases. Mathematical models can design how infectious diseases progress 
to show the likely outcome of an epidemic and help inform public health issues. Most commonly used 
effective methods to control the spread of disease are vaccination, treatment. The fighting with infectious 
diseases has a long history and great progresses had been achieved, especially during the twenty century. 
First epidemiological model was formulated by Daniel Bernoulli in 1760 for smallpox. More complex 
mathematical studies of deterministic and compartmental epidemic models were undertaken by Kermack 
and Mckendrick. In 1927 Kermack and Mckendrick formulated a well known and well recognized 
deterministic compartment model, to study the outbreak of Black Death in London (1665-1666), and 
outbreak of plague in Mumbai (1906). This model was successful in predicting behavior of outbreaks very 
similar to that observed in recorded epidemics. 
 
Several epidemic models with varying population size are analyzed mathematically by Busenberg, Van den 
Driesscha, Busenberg and Hadeler [4,5,6]. A number of models have been developed in response to various 
different infectious disease [7]. 
 
Hethcote, H.W. [8] showed that solution always approach equilibrium points for an ordinary differential 
equation SIR model thus periodic solution were ruled out. Different types of epidemic models have been 
studied and analyzed by various epidemiologists Trottier [9] proposed a verity of deterministic model of 
infection diseases. In this paper, we have use some terminology mentioned in the paper of Bava et al. [10], 
Michael et al. [11], and Sen et al. [12]. 
 
In this paper, we explore the result of Payal Joshi et al. [13] and consider an SEIRS model by allowing 
recovered hosts to return to the susceptible class (S) with Immigration rate. We analyzed and discussed about 
the stability for the system of differential equations by Routh- Hurwitz criterion and found that the model is 
locally asymptotically stable. 
 

2 Mathematical Model 
 
The total population is divided into four parts as susceptible, exposed (in the latent period), infectious, and 
recovered, with the densities respectively denoted by S(t), E(t), I(t), and R(t). The natural birth and death 
rates are assumed to be identical and denoted by ‘b’. It is also assumed that the total population density is 
constant; S(t)+ E(t)+ I(t)+ R(t)= 1.  
 
The following is a summary of the notation used: 
 
N= Total population 
S=Susceptible 
E= Exposed individuals in the latent period 
I=Infective 
R= Removed with immunity 
δ = Immigration rate 
�=Contact or infection rate 
B= Natural birth rate which identical to death rate  
p= Fraction of infected newborns from the exposed class 
q=Fraction of infected newborns from the infectious class 
ε= Rate at which the exposed individuals become infected 
γ= Rate at which the recovered individuals lose immunity and return to the susceptible class 
R0 = Basic reproduction number 
The model can be described by following system of equations: 
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��
= � − ��� − ��� − ��� − �� + � + δ   

 
��

��
= λIS + pbE + qbI − (ε + b)E      

 
��

��
= �� − ( + �)�                 (2.1) 

 
��

��
= � − �� − �  

 

3 Stability Analysis 
 
From the system of equations (2.1) setting the time derivative of S, E, I, R equals to zero, then  
 
b - IS – pbE – qbI – bS + R+ δ = 0   
 
IS + pbE + qbI – (ε + b) E = 0    
 
E – ( + b) I = 0                                     
 
I – bR - R = 0  
 

After solving we get two equilibrium points E0 (
��δ 

�
, 0, 0, 0) which is the disease free equilibrium points of 

the system and a unique endemic equilibrium points of the system is �∗ = (�∗, �∗, �∗, �∗), where 
 

�∗ =
( + �)

��
�� + � − �� −

���

� + �
� 

 

�∗ =
( + �)��(� + δ)�� − �( + �)(� + � − ��) + �����

��{(� + �)( + �)� − ��}
 

 

 �∗ =
( + �)((� + δ)�� − �( + �)(� + � − ��) + ����)

�{(� + �)(� + �)� − ��}
 

 

�∗ =
��

( + �)�
 

 

and �� =
�(��)(���)

(��δ)��
 is the reproduction number. 

 

4 Mathematical Analysis 
 
4.1 Theorem 
 
If R0< 1, the disease free equilibrium E0 of system (2.1) is locally asymptotically stable and is unstable at R0> 
1.  
 
Proof: The Jacobian Matrix of the system (2.1) is 
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At the equilibrium point E0 (
��δ 

�
, 0, 0, 0), its characteristic equation is 

�

�

−� − Ψ          − ��                       −
�(��δ) 

�
− ��                 �       

   0               �� − (� + �) − Ψ       
�(��δ) 

�
+ ��                    0     

 0                        �                        − (� + �) − Ψ                   0  
        0                        0                                  �                      − � − � − Ψ

�

�
= 0 

 
From four eigen values two is Ψ� = −b, Ψ� = −(b + γ) and other two eigen values is obtained from the 
equation 
 

Ѱ� + ��Ѱ + ��=0 
 
where, 
 
A1 = ( + b) – pb + (+b) 
 

A0 = −�(
�(��δ) 

�
+qb) – ( + b) pb + ( + b) (+b) 

 
it follows that  
 

⟹
�( + �)(� + �)

(� + δ)��
< 1 

 
⟹ R0< 1. 
 
Thus, A0> 0 and A1> 0.  
 
Therefore, all the Eigen values of the characteristic equation (2.3.1) are negative real parts. Hence the 
equilibrium E0 is locally asymptotically stable. 
 

4.2 Theorem 
 
The endemic equilibrium E* of the system (2.1) is locally asymptotically stable. 
 
Proof: The characterstics equation of the jacobian matrix 
 

Ѱ� + ��Ѱ� + ��Ѱ� + ��Ѱ + �� = 0 
 
where,  
 
a3 = ��∗ − �� + � + 4� + 2 
 
a2 = ( + �)� + 2( + �)(2� + ��∗ − �� + �) − ��� + (� + �)(� + ��∗) − �(��∗ + ��) 
 

a1= ( + �)�(2� + ��∗ − �� + �) − 2( + �)(� +  ��∗). ��� − (� + �)� − �(��∗ + ��) 
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a0 = �(� + b)(��∗ + ��) − ( + �)����∗�� + (� + ��∗). ��� − (� + �)�� 
 
By Routh-Hurwitz Criterion, the system is locally stable if  
 
a1> 0, a3> 0, a4> 0 and a1a2a3> a3

2 + a2
1a4. 

 
Thus, E* is locally asymptotically stable. 
 

5 Conclusions 
 
One important goal of mathematical epidemiology is to understand how to control or exterminate diseases. 
Mathematical models are used extensively in the study of epidemiological and ecological phenomena. We 
all know that one of the main issues in the study of behavior of epidemics is the analysis of steady states of 
the model and their stability. If trivial or zero equilibrium is asymptotically stable, then, disease does not 
persist, whatever the initial number of infectives in population. In this paper we have carried out a 
compartment model with Immigration and Vertical Transmission and analyzed the steady state and stability 

of the equilibrium points.and observe that the basic reproduction number R0   plays an important role to 

control the disease. It has been noted that when R 0 1  , the model has locally asymptotically stable and 

when R 0 1  disease is endemic.  
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