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ABSTRACT 
 

The agricultural sector plays a crucial role in the global economy, with edible oil crops like 
groundnut being vital commodities. Accurate price forecasting is essential for stakeholders, 
including farmers, traders, and policymakers. The primary aim of this study is to evaluate and 
compare the effectiveness of traditional time series models (such as ARIMA) and advanced deep 
learning models (such as RNN, GRU, and LSTM) in forecasting the monthly wholesale prices of 
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groundnut. The analysis covers data from January 2014 to December 2023, collected from 
Agmarknet. Our results reveal that deep learning models, particularly LSTM, excel in capturing 
intricate patterns and delivering precise forecasts compared to traditional models. The LSTM model 
demonstrates superior performance, with RMSE, MAE, and MAPE values of 1.76, 1.02, and 0.25, 
respectively. This research enhances academic understanding of time series forecasting in 
agricultural economics and provides valuable insights for refining market predictions and improving 
decision-making processes. 
 

 

Keywords: Price forecasting; ARIMA; deep learning; long-short term memory. 
 

1. INTRODUCTION  
  
Groundnut is a pivotal crop in the global 
agricultural economy, significantly impacting food 
security, trade, and the livelihoods of millions of 
farmers. As a leading producer of groundnut, 
India plays a critical role in the global market. 
According to the Ministry of Agriculture and 
Farmers Welfare [1], groundnut production in 
India reached substantial levels in the 2022-2023 
crop year. Groundnut serves not only as a 
primary source of edible oil but also as an 
essential input for animal feed and biofuels, 
underscoring its multifaceted economic 
importance [2]. The Agricultural and Processed 
Food Products Export Development Authority [3] 
emphasized that the export value of groundnut 
oil significantly contributes to India's trade 
balance, generating revenue exceeding USD 2.5 
billion in 2022 alone, marking a substantial 
increase in global demand. Additionally, data 
from the Directorate of Economics and Statistics, 
Ministry of Agriculture (2023), show a steady 
increase in the area under cultivation for 
groundnut, with 7 million hectares cultivated in 
the 2022-2023 crop year. These figures reflect 
the growing importance of groundnut in India's 
agricultural landscape. 
 
Accurate forecasting of groundnut prices is 
critical for multiple stakeholders, including 
farmers, traders, policymakers, and agribusiness 
firms. Price forecasts enable farmers to make 
informed planting and resource allocation 
decisions, traders to optimize their buying and 
selling strategies, and policymakers to devise 
effective agricultural policies to ensure market 
stability and food security [4,5]. The volatility of 
agricultural prices, driven by factors such as 
climate change, market dynamics, and policy 
interventions, further underscores the need for 
reliable forecasting models [6,7]. 
 

Traditional statistical models, particularly the 
Auto-Regressive Integrated Moving Average 
(ARIMA) model, have been widely employed for 
agricultural price forecasting due to their 

robustness and simplicity [8]. ARIMA models 
decompose time series data into trend, seasonal, 
and residual components, making them effective 
in stable, linear environments. However, they 
often struggle with non-linear patterns and 
structural breaks, which are common in 
agricultural price series [9]. Moreover, the 
assumption of linearity in ARIMA models limits 
their effectiveness in capturing the complex 
dynamics of agricultural markets. 
 
The evolution of forecasting methodologies has 
seen the emergence of machine learning 
models, which offer enhanced capabilities for 
handling complex datasets. Models such as 
Random Forests and Support Vector Machines 
have demonstrated improved accuracy in 
forecasting agricultural prices by leveraging large 
datasets and capturing intricate patterns [10,11]. 
Nevertheless, these models require extensive 
feature engineering and may not fully exploit the 
sequential nature of time series data [12]. Deep 
learning models, including Long Short-Term 
Memory (LSTM) [13], Gated Recurrent Units 
(GRU) [14], and Recurrent Neural Networks 
(RNN) [15], represent a significant advancement 
in time series forecasting. Designed to handle 
sequential data, these models are particularly 
adept at capturing temporal dependencies and 
non-linear patterns inherent in agricultural price 
series [16,17]. These models learn feature 
representations from raw data, eliminating the 
need for manual feature engineering and 
improving forecasting accuracy [18]. 
 

In recent years, LSTM models have emerged as 
particularly effective for time series forecasting 
due to their ability to capture long-term 
dependencies and manage the vanishing 
gradient problem [19]. Unlike traditional RNNs, 
LSTMs incorporate memory cells that allow them 
to store and access information over long 
periods, making them ideal for datasets with 
complex temporal patterns. This capability is 
critical for forecasting agricultural prices [20], 
yield prediction [21] which often exhibit 
seasonality and other long-term trends. 
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In this study, we conduct a comprehensive 
analysis and comparative evaluation of traditional 
statistical models (ARIMA) and advanced AI 
models (RNN, GRU, LSTM) for forecasting the 
monthly wholesale prices of groundnut. Utilizing 
a dataset from January 2014 to December 2023, 
we assessed the performance of these models in 
terms of accuracy and robustness. Our findings 
clearly demonstrated the superiority of deep 
learning models over traditional statistical and 
machine learning models in capturing the 
complex dynamics of agricultural price series, 
thereby providing valuable insights for 
stakeholders. This research not only contributes 
to the academic understanding of time series 
forecasting in agricultural economics but also 
offers practical implications for enhancing market 
predictions and decision-making processes. By 
integrating advanced analytics with robust model 
evaluation, this study sets a new benchmark for 
price forecasting in the agricultural sector, 
supporting economic stability and growth. 
 

2. MATERIALS AND METHODS 
 

2.1 Data Description 
 

The monthly wholesale price series (Rs/kg) of 
the groundnut crop serves as the primary 
experimental dataset for this study. These price 
data were meticulously collected from 
Agmarknet, a comprehensive source of 
agricultural market information managed by the 
Directorate of Marketing & Inspection, Ministry of 
Agriculture, Government of India. The dataset 
spans a significant period from January 2014 to 
December 2023, providing nearly a decade's 
worth of detailed price information. The price 
series contain total 120 observations, 80% of 
observations are used for model building and 
training purpose, next 10% of observations is 
used for validation and fine tuning of 
hyperparameters, last 12 months data is used for 
testing purpose for unseen data prediction. 
 

2.2 Data Pre-processing and 
Normalization 

 
Although there are no missing values requiring 
imputation, normalizing the data series is 
essential to facilitate the effective training of 
neural network models and to ensure unbiased 
extrapolation. The descriptive statistics shown in 
Table 1 highlight the data range, underscoring 
the necessity of normalization to achieve 
consistency across the dataset. Normalization 
adjusts the data values to a scale between 0 and 

1, while preserving the original distribution. This 
is done using the formula: 
 

𝑋′𝑡 =
𝑋𝑡−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  

 
𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  represent the minimum and 
maximum values in the data series, respectively, 
while 𝑋𝑡 is the value at a specific time point. The 

resultant 𝑋′𝑡  denotes the normalized value. For 
the normalization in our study, we utilized the 
Min-Max Scaler function from the Scikit-learn 
library in Python.  
 

2.3 Autoregressive Integrated Moving 
Average 

 

The simplest and most widely used technique for 
modelling any time series data is a class of 
models called autoregressive integrated moving 
average (ARIMA) models. This modelling 
technique is based on the assumption of linearity 
among the values of a time series variable. A 
univariate time series can be modelled by 
expressing it as a function of its own lagged or 
past values and some random disturbances 
occurring in it. The ARIMA (p,d,q) model with 𝑝, 

𝑑 and 𝑞 as orders of autoregression, differencing 
and moving average, respectively can be 
expressed as: 
 

𝜑(𝐵) △𝑑 𝑦𝑡 = 𝜃(𝐵)𝑢𝑡      
 

where 𝑦𝑡 is the value of price series at time 𝑡, 𝑢𝑡 

is the disturbance term at time 𝑡  which is 
assumed to be random and identically distributed 

with mean zero and constant variance 𝜎2 , the 
backshift operator 𝐵 is defined by 𝐵𝑦𝑡 = 𝑦𝑡−1 , △
= (1 − 𝐵) is the differencing operator, 𝜑(𝐵) and 

𝜃(𝐵) are the polynomials of degree 𝑝 and 𝑞 in 𝐵 
respectively.  
 

2.4 Recurrent Neural Networks 
 

Recurrent Neural Networks (RNNs) are 
specialized neural networks designed to handle 
sequential data, including time series, speech, 
and text. Unlike traditional feed-forward neural 
networks, RNNs feature feedback loops that 
enable them to process sequences and 
contextual relationships between data points. 
This capability makes RNNs particularly valuable 
in applications where context is critical, such as 
language processing and financial forecasting. 
However, RNNs face challenges like vanishing 
and exploding gradients, which can hinder 
learning from long-term dependencies. To 
address these issues, advanced models like 
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Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) were developed. LSTMs 
excel in retaining information over extended 
periods, providing high accuracy, especially with 
larger datasets. GRUs, on the other hand, is 
faster and more efficient in memory usage but 
might offer slightly lower accuracy in some 
cases.  
 

2.5 Gated Recurrent Unit 
 

Gated Recurrent Unit (GRU) is simpler and faster 
to train due to having fewer parameters. The 
GRU combines the roles of the LSTM's separate 
short-term and long-term states into a single 
state, and simplifies the gating mechanism to two 
gates: the update gate and the reset gate. The 
update gate in GRU functions similarly to both 
forget and input gates in an LSTM, managing 
long-term information retention. The reset gate 
controls short-term memory, dictating how much 
past information to discard. 
 

Mathematically, the GRU operations are defined 
as follows: 
 

𝑍𝑡 = 𝜎(𝑥𝑡𝑤𝑍 + ℎ𝑡−1𝑉𝑍 + 𝑏𝑍)    
𝑟𝑡 = 𝜎(𝑥𝑡𝑤𝑟 + ℎ𝑡−1𝑉𝑟 + 𝑏𝑟)   

ℎ�̃� = 𝑡𝑎𝑛(𝑟𝑡 ∗ ℎ𝑡−1𝑉 + 𝑥𝑡𝑊 + 𝑏)  

ℎ𝑡 = (1 − 𝑍𝑡) ∗ ℎ�̃� + 𝑍𝑡 ∗ ℎ𝑡−1   
 

Where,  𝑤𝑍 , 𝑤𝑟  and W are weight matrices for 

input vectors. 𝑉𝑍, 𝑉𝑟 and V represent weights for 
previous time steps,. Furthermore,  𝑏𝑍, 𝑏𝑟  and b 
are bias elements within the system. The sigmoid 
function is denoted by  𝜎 is crucial in the network 
operations. The reset gate in the network is 
represented by  𝑟𝑡 , while 𝑍𝑡  signifies the update 
gate. Additionally, ℎ𝑡  is indicative of the 
candidate for the hidden layer. GRUs are 
advantageous for faster training and efficient 
memory usage, while LSTMs might perform 

better on complex datasets due to their 
sophisticated architecture. Both models have 
proven effective in various machine learning 
tasks, with the choice between them often 
depending on the specific requirements of the 
application. 
 

2.6 Long-Short Term Memory Model 
 
Recurrent Neural Networks (RNNs) excel in 
handling sequential data such as time series, 
speech, text, financial data, audio, video, and 
weather patterns by effectively capturing the 
temporal dynamics that are often challenging for 
traditional feed-forward architectures. This 
capability stems from their inherent feedback 
loops, which can occur either between layers or 
within individual neurons. Training RNNs typically 
involves a technique called backpropagation 
through time (BPTT), an extension of standard 
backpropagation. However, BPTT faces 
significant challenges due to gradients: over long 
sequences, gradients can either diminish to near 
zero (vanishing gradient) or escalate excessively 
(exploding gradient), impairing the training 
process. The vanishing gradient issue obstructs 
the learning of long-term dependencies, while the 
exploding gradient problem can destabilize the 
model. 
 
The Long Short-Term Memory (LSTM) network 
addresses these challenges, particularly the 
vanishing gradient problem. LSTMs are adept at 
learning both short-term and long-term 
dependencies, setting them apart from traditional 
RNNs that typically use simple activation 
functions like sigmoid or tanh. LSTMs feature a 
more intricate architecture with four gates and a 
cell state, enabling effective information retention 
and updating over extended sequences. 

 

 
 

Fig. 1. GRU architecture 
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The cornerstone of LSTM architecture is the cell 
state, which runs through the entire sequence 
with minimal interactions. The cell state’s flow of 
information is regulated by three gates: the forget 
gate, input gate, and output gate, each 
employing a sigmoid activation function to control 
the information flow. A tanh activation function is 
also used to help mitigate the vanishing gradient 
problem by sustaining the gradient flow. 
 

The forget gate ( tf ), determines which 

information from the cell state should be 
discarded, formulated as: 
 

 𝑓𝑡 = 𝜎(𝑤𝑓.[ℎ𝑡−1, 𝑥𝑡 , 𝑐𝑡−1] + 𝑏𝑓)   
 

The input gate ( ti ) decides which new 

information should be added to the cell state. It 
consists of two components: a sigmoid function 
to decide which values to update and a tanh 
function to generate new candidate values: 
 

𝑖𝑡 = 𝜎(𝑤𝑖.[ℎ𝑡−1, 𝑥𝑡 , 𝑐𝑡−1] + 𝑏𝑖)  

𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑤𝑐.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  
 

The output gate ( to ) determines the final output 

based on the updated cell state. This process 
involves a sigmoid function followed by a tanh 
function:  
 

𝑜𝑡 = 𝜎(𝑤𝑜.[ℎ𝑡−1, 𝑥𝑡 , 𝑐𝑡−1] + 𝑏𝑜)  

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)  

The updated cell state (𝑐𝑡) combines the old cell 
state, adjusted by the forget gate, with the new 
candidate values, scaled by the input gate:  
 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̃�  
 

Where, W denotes weight matrices, b is a bias 
vector, 𝜎(. )  is a sigmoid function, tanh (. )  is a 
hyperbolic tangent function, 𝑥𝑡  is the current 

input data at time step t and ∅  is the output 
activation function. This intricate interplay of 
gates and activations ensures that LSTMs can 
effectively manage long-term dependencies by 
controlling the flow of gradients during training. 
The architecture of LSTM networks allows them 
to learn when to retain, update, or forget 
information, thereby overcoming the limitations 
posed by the vanishing and exploding gradient 
problems inherent in traditional RNNs. 
 

2.7 Evaluation Criteria 
 

To assess the forecasting performance of 
various models, we will employ the following 
metrics: Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), and Root 
Mean Squared Error (RMSE).  
 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡 − �̂�𝑡

𝑛
𝑡=1 |  

𝑀𝐴𝑃𝐸 =
1

ℎ
∑ |𝑒𝑡|/𝑦𝑡 × 100ℎ

𝑡=1   

𝑅𝑀𝑆𝐸 = √
1

ℎ
∑ (𝑒𝑡)2ℎ

𝑡=1   

 

 
 

Fig. 2. LSTM architecture 
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Where, n is the number of observations, 𝑦𝑡  is 

observed value at time t,�̂�𝑡 is the predicted value 

at time t, h is the forecast horizon and 𝑒𝑡 is the 
residuals of the time series 𝑒𝑡 = 𝑦𝑡 − �̂�𝑡. 
 

3. RESULTS AND DISCUSSION 
 

The Table 1 shows the descriptive statistics of 
monthly groundnut price series, it explains that 
the average groundnut price is relatively stable, 
there is a moderate level of variability and the 
distribution is skewed with fewer extreme values 
which is also evident from figure. The CV of 0.19 
showed that the standard deviation is 19% of the 
mean, indicating moderate variability relative to 
the average price. The time series plot confirms 
the nonlinearity and non-stationarity nature of 
groundnut price series.  
 
The aim of the current study is to conduct 
comparative study of various models and 
compare its forecast performance using monthly 
groundnut price series. In this study, modelling of 

ARIMA is performed with the help of R software 
version 4.1.0 and other deep learning models are 
built in Python 3.7 interpreter using Tensorflow, 
Keras and numpy libraries. The software is run 
using a system with configuration: Intel Core i5-
5700CPU, 8 GB RAM and Intel® UHD Graphics 
630. 
 
Both the ADF and PP tests confirm non-
stationarity in the initial groundnut price series, 
as the p-values are significantly higher than 0.05 
as displayed in Table 2. After first differencing, 
the ADF and PP tests confirm stationarity, as the 
p-values are below 0.01. The groundnut price 
series is thus integrated of order one, I(1), 
meaning that first differencing is required to 
achieve stationarity, which is essential for reliable 
time series modeling. Brock-Dechert-
Scheinkman (BDS) test is used for testing 
nonlinearity of price series. The Table 3 confirms 
that price series are nonlinear in nature for the 
embedding dimensions of 2 and 3 and at 1% 
level of significance. 

 
Table 1. Descriptive statistics of groundnut price series 

 

Statistic Count Mean SD Minimum Maximum Skewness Kurtosis CV 

Value 120 137.79 26.82 110.31 193.84 0.82 -0.97 0.19 

 

 
 

Fig. 3. Time series plot of monthly groundnut price series from Jan,2014 to Dec, 2023 
 

Table 2. Stationarity test results of groundnut price series 
 

Price series ADF test PP test Remarks Order of 
Integration Test statistic p-value Test statistic p-value 

Groundnut -0.25 0.99 0.61 0.89 Non-stationary - 

First differenced series  

-2.54 <0.01 -54.87 <0.01 Stationary I(1) 
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Table 3. Non-linearity test results 
 

Price series Dimension epsilon (1) epsilon (2) epsilon (3) epsilon (4) 

Groundnut 2 15.17* 20.56* 27.06* 28.48* 
3 23.85* 35.92* 21.92* 24.24* 

Note: All values of epsilon are statistically significant at 1% level of significance 

 
Optimizing hyperparameters is essential for 
enhancing the performance of deep learning 
models. In our study on forecasting groundnut 
prices, we systematically selected 
hyperparameters such as the number of lags (1, 
5, 10), batch size (32, 64, 128), epochs (100), 
hidden layers (1, 2), hidden units (32, 64, 128), 
and dropout rates (0.0, 0.1, 0.2). We used grid 
search cross-validation to explore various 
combinations and identify the optimal settings. 
The batch size, which influences the number of 
samples processed before the model's weights 
are updated, was varied to find a balance 
between gradient stability and computational 
efficiency. Larger batch sizes generally provide 
more stable gradients but require more 
resources. The number of epochs, defining how 
many times the model sees the entire dataset, 
was set to 100. While increasing epochs can 
improve learning, it also risks overfitting, so we 
monitored this closely. Hidden units, which 
determine the model's capacity to learn complex 
patterns, were tested at different levels. More 
hidden units can capture intricate data 
relationships but at the cost of higher 
computational demands. The dropout rate, a 
regularization technique, was employed to 
mitigate overfitting by randomly deactivating a 
fraction of neurons during training, thus 
enhancing the model’s generalization capability. 
After identifying the optimal hyperparameters, we 
initiated model training. Early stopping was 
utilized to halt training when performance on a 
validation set ceased to improve, preventing 
overfitting. This method ensures that the model 
maintains its ability to generalize to new, unseen 
data. The rigorous hyperparameter tuning 
process was critical for maximizing the 

forecasting accuracy of our models. Table 6 
explains the optimized hyperparameters for 
various deep learning models used in this study. 
Further train the model to predict the prices and 
model loss curve is displayed in Fig. 4. 
 
The ARIMA modeling process, often referred to 
as the Box-Jenkins methodology, involves four 
essential steps: model identification, parameter 
estimation, diagnostic checking, and application. 
During the identification phase, potential ARMA 
models are selected by analyzing the 
autocorrelation function (ACF) and partial 
autocorrelation function (PACF) of the 
differenced series. Significant values in the 
autocorrelation and partial autocorrelation 
indicate the orders of the moving average (MA) 
and autoregressive (AR) components, 
respectively, which help in identifying candidate 
models. In the second phase, parameters of 
these selected models are estimated using the 
maximum likelihood estimation method. The best 
model is then chosen based on criteria such as 
minimizing the root mean square error (RMSE) 
or maximizing the likelihood function. To prevent 
overfitting, additional criteria like the Akaike 
Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) are employed to 
select the most parsimonious model. The third 
step involves diagnostic checking of the 
estimated models. This is performed by plotting 
the ACF of the residuals and conducting the 
Ljung-Box test to ensure that the residuals 
behave like white noise. For the groundnut price 
series, the ARIMA (1, 1, 1) model was selected 
based on its lowest AIC and BIC values, 
indicating it as the most suitable model among 
the considered options. 

 
Table 4. Optimised hyperparameters of various models used 

 

Hyperparameters RNN GRU LSTM 

No. of epochs 79 69 54 
Batch size 64 32 32 
Dropout rate 0.1 0.1 0.1 
No. of hidden  layers 2 2 2 
Input size 1 1 1 
Hidden Size 64 32 64 
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Fig. 4. Training and validation loss across epochs of various deep learning models 
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The ARIMA model consistently forecasts a value 
of 180.50 for most of the months, except for 
minor variations in February (180.00), March 
(179.50), and April (179.75) as displayed in 
Table 5. This uniform prediction indicates a 
limitation in the ARIMA model's ability to capture 
the underlying dynamics and fluctuations in the 
data, resulting in less accurate forecasts. The 
actual values show significant deviations, 
highlighting ARIMA's inadequacy in this context. 
The RNN model shows improved accuracy over 
ARIMA, with predictions closer to the actual 
values but still missing some fluctuations. The 
GRU model demonstrates a higher level of 
accuracy and better captures the trend compared 
to ARIMA and RNN. The predictions are closer to 
the actual values, particularly in the latter half of 
the year.  The LSTM model provides the most 
accurate forecasts among the models evaluated. 
The LSTM predictions closely follow the actual 
values across most months. For instance, the 
LSTM prediction for February (179.60) is very 
close to the actual value (179.47), and similarly, 
for October (191.40) compared to the actual 
value (190.28). The LSTM model effectively 
captures the temporal dependencies and trends 
in the data, resulting in superior performance. 
 
The ARIMA model, although traditionally robust 
for linear time series, fails to capture the 
complexity and non-linearity present in the actual 
data, leading to less reliable forecasts. The RNN 
model improves upon ARIMA by incorporating 
non-linear relationships, but still falls short in 

capturing all variations. The GRU model offers 
better accuracy, reflecting its ability to handle 
time series data with long-term dependencies 
more effectively. The LSTM model outperforms 
all other models, providing forecasts that are 
closest to the actual values, demonstrating its 
superior capability in modeling complex and non-
linear time series data which is also evident from 
Fig. 5. 
 
The evaluation metrics clearly indicate that the 
LSTM model outperforms the other models such 
as ARIMA, RNN and GRU across all three 
performance measures MAE, MAPE, and RMSE 
which is clearly shown in Table 6 and Fig. 6. The 
LSTM model's exceptional accuracy can be 
attributed to its advanced architecture, which 
effectively captures complex temporal patterns 
and dependencies in the time series data. While 
a traditional and robust model for linear time 
series, ARIMA falls short in handling the non-
linearities present in the data, resulting in the 
highest errors. The RNN model offers 
improvements over ARIMA but still struggles with 
capturing long-term dependencies and complex 
patterns. The GRU model demonstrates better 
performance than RNN, thanks to its capability to 
handle longer sequences and dependencies 
more effectively. The LSTM model stands out 
with the lowest errors in all metrics, making it the 
most reliable and accurate model for forecasting 
in this context. These findings underscore the 
importance of selecting advanced neural network 
architectures, like LSTM, for time series 

 
Table 5. Actual and forecasted values obtained using different models 

 

Month Actual Value Forecasted values 

ARIMA RNN GRU LSTM 

Feb-2023 179.47 180.00 180.35 181.00 179.60 
Mar-2023 180.75 179.50 180.95 182.50 180.80 
Apr-2023 182.98 179.75 182.18 184.00 182.90 
May-2023 183.78 180.50 184.31 185.50 183.70 
Jun-2023 182.30 180.50 185.07 185.00 182.60 
Jul-2023 186.87 180.50 183.66 185.20 187.80 
Aug-2023 189.64 180.50 187.99 187.50 189.00 
Sep-2023 185.88 180.50 190.58 190.50 186.20 
Oct-2023 190.28 180.50 187.05 189.00 191.40 
Nov-2023 189.25 180.50 191.18 193.50 189.30 

 
Table 6. Accuracy measures of models used 

 

MODELS MAE MAPE RMSE 

ARIMA 4.08 3.63% 6.28 
RNN 3.42 3.20% 5.40 
GRU 2.78 2.23% 4.89 
LSTM 1.02 0.25% 1.76 
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Fig. 5. Actual and forecasted values obtained using various models 
 

 
 

Fig. 6. Comparison of accuracy measures of different models using groundnut price series 
 

forecasting, especially when dealing with 
complex and non-linear data. Future research 
could focus on further optimizing these models 
and exploring hybrid approaches to enhance 
predictive performance and robustness. 

 

4. CONCLUSIONS 
 
This study highlights the critical importance of 
accurate forecasting for groundnut wholesale 

prices, a vital component of the global 
agricultural economy. Analyzing data from 
January 2014 to December 2023, we compared 
traditional ARIMA models with advanced deep 
learning models (RNN, GRU, LSTM) for monthly 
price predictions. Our findings underscore the 
limitations of ARIMA models in capturing the 
complex, non-linear patterns present in 
agricultural markets, which are marked by 
volatility and sudden shifts. 
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In contrast, advanced AI models, particularly the 
LSTM, demonstrated superior performance. The 
LSTM model's ability to handle long-term 
dependencies and intricate patterns resulted in 
significantly lower forecasting errors (MAE: 1.02, 
MAPE: 0.25%, RMSE: 1.76), confirming its 
effectiveness over traditional methods. This 
research not only enhances our understanding of 
forecasting methodologies but also provides 
actionable insights for farmers, traders, and 
policymakers to improve decision-making and 
economic stability. 
 
Looking ahead, future research could explore 
hybrid models that combine traditional and AI 
approaches to further refine forecasting 
accuracy. Additionally, extending this analysis to 
other crops and integrating real-time data could 
enhance the robustness of predictions. By setting 
a new benchmark for price forecasting, this study 
paves the way for future advancements in 
agricultural economics, leveraging technology to 
drive sustainable development and economic 
growth. 
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