
Asian Research Journal of Mathematics

Volume 20, Issue 6, Page 15-29, 2024; Article no.ARJOM.114855

ISSN: 2456-477X

Deciding Satisfiability in the Twinkling of
an Eye

Okoh Ufuoma a∗

aDepartment of Mathematics, Southern Maritime Academy, Uwheru, Delta State, Nigeria.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: https://doi.org/10.9734/arjom/2024/v20i6804

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and

additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc
are available here: https://www.sdiarticle5.com/review-history/114855

Received: 01/03/2024

Accepted: 02/05/2024

Original Research Article Published: 07/06/2024

Abstract

The question as to whether a CNF Boolean formula is satisfiable is referred to as Boolean satisfiability
problem (SAT). For decades now, this problem has attracted a great deal of attention. A well-known
algorithm for solving this problem is the DPLL algorithm. However, this algorithm may run in an exponential
(long) time. The great plan embraced in this work is to show how the satisfiability of any CNF Boolean
formula can be decided in a very short time. This is achieved by the modification of the DPLL algorithm and
the introduction of a quick algorithm.

Keywords: SAT; satisfiable; satisfiability rules; quick algorithm; DPLL approach.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

*Corresponding author: E-mail: okohufuoma@yahoo.com; cyrusmaths@gmail.com;

Cite as: Ufuoma, Okoh. 2024. “Deciding Satisfiability in the Twinkling of an Eye”. Asian Research
Journal of Mathematics 20 (6):15-29. https://doi.org/10.9734/arjom/2024/v20i6804.

https://doi.org/10.9734/arjom/2024/v20i6804
https://www.sdiarticle5.com/review-history/114855


Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

1 Introduction

There are a number of applications in mathematics, computer science and engineering where we must consider
the following problem: Given a CNF Boolean formula, say f = (A+B)(A+C)(B+C)(B+C), we need to show
whether or not the formula is satisfiable [1]. This problem which is known as Boolean satisfiability problem
(SAT) has attracted increasing attention in recent times.

A more important and trying problem is that of deciding SAT in polynomial (short) time P . The millennium
problem of P versus NP is one of the most significant unresolved problem in computer science. The set of
decision problems denoted P (polynomial) is a collection of problems that are resolvable in polynomial time
and the set of decision problems symbolized NP (nondeterministic polynomial) is the collection of problems for
which a solution can be verified in polynomial time. If a decision problem can be verified in polynomial time,
can the problem be solved in polynomial time? This question which was proposed by the illustrious American
computer scientists Cook and Levin about forty years ago is famous and well-known as P versus NP .

Cook proved that SAT is NP-complete. SAT was the first problem demonstrated to be NP-complete and opened
the door to showing other problems that are members of the set of NP-complete problems [2].

Attempts to show that SAT is in P led to the invention of various techniques. Baker, Gill, and Solovay
demonstrated that with respect to some oracles, P = NP whereas with respect to others, P 6= NP [3]. Aaronson
and Wigderson demonstrated that algebrizing technique is incapable of resolving the barrier problem of P versus
NP . They claimed that the solution to the problem is in opening the Boolean formula wide enough in order to
probe the formula in some deeper way for further progress [4].

About 1960, Davis, Putname, Longemann, Loveland, and others investigated the SAT problem, and their basic
algorithm which runs in exponential (long) time is called DPLL algorithm [5],[6], which is one of the most
commonly used algorithms. Its ideas have been closely imitated.

I wish to point out rather very carefully what the chief goal of this work is, for if the reader does not apprehend
that objective thoroughly, he will be unable to utilize what value the work may have. It is not a work directed
to those whose cardinal interest lie outside SAT [7, 8]. It supposes throughout a complete familiarity with every
fact of satisfiability. Its principal focus embraces the possibility that some portions of it may be comprehensible
and even interesting to those who are unfamiliar with it. But I must insist that any value of this sort which this
work may possess is purely incidental. The need to decide SAT in a short time and that need alone has been
considered in composing this work. The chief goal of this work is therefore to show how SAT can be decided
in the twinkling of an eye and this is achieved by modifying the DPLL algorithm and furnishing a quick algorithm.

The limits of this work will permit no exhaustive discussion of SAT. Of necessity some things must be omitted
which it might be desirable and helpful to consider. There is no room for any unnecessary idea. Neither is there
any occasion to set forth the detailed historical development of satisfiability. However interesting and profitable
this might be, we have no place for it [9, 10].

Our endeavour will be to demonstrate how to decide SAT as fast as the speed of light. We shall try to go at once
to the heart of the work and grasp the steps required to quickly test the satisfiability of CNF Boolean formulas.

This work in its manner of presentation is better adapted to the use of Academics. The rest of it is divided
into six sections. Section 2 is concerned with notation and definitions of terms used in the work. Section 3
concerns itself with the modification of the DPLL algorithm to decide SAT. The 4th section introduces a means
of transforming sums of CNF formulas into a single CNF formula. Section 5 deals with a new algorithm for
deciding SAT. Section 6 provides rules of satisfiability require to simplify CNF formulas. Section 7 introduces a
quick algorithm which gives the steps needed to decide SAT in a very short time.

16



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

2 Definitions, Notations and Laws

Boolean Algebra is that branch of Algebra in which the relations of truth values are investigated by representing
them by symbols or letters which may be either 0 or 1. It is customary in this Algebra to use the phrase logical
values as synonymous with truth values and this meaning will be attached to the phrase throughout the present
work.

Any letter used to represent an unspecified logical value is termed a Boolean variable. In Boolean algebra,
the logical operations of addition +, multiplication · and negation − are performed on the Boolean variables. A
Boolean variable or its negation is a literal. Any expression built up from Boolean variables, say A,B,C, . . .
or A1, A2, A3, . . . and the Boolean values 0 and 1 is called a Boolean expression. For instance A + B is a
Boolean expression comprising two variables A and B or two literals A and B.

The logical assumptions which are taken to be true without proof are called Boolean axioms. Theorems used
to simplify Boolean expressions are known as Boolean theorems. Some special axioms and theorems are
stated as follows.

1. Addition law:

A1: 0 + 0 = 0

A2: 0 + 1 = 1

A3: 1 + 0 = 1

A4: 1 + 1 = 1

2. Multiplication law:

A5: 0 · 0 = 0

A6: 0 · 1 = 0

A7: 1 · 0 = 0

A8: 1 · 1 = 1

3. Annulment Law:

T1: 1 + A = 1

T2: A · 0 = 0

4. Identity Law:

T3: 0 + A = A

T4: A · 1 = A

5. Idempotent Law:

T5: A + A = A

T6: A ·A = A

6. Double Negation Law:

T7: A = A

7. Complement Law:

T8: A + A = 1

T9: A ·A = 0

17



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

As in ordinary algebra, the following laws hold in Boolean algebra: commutative and associative laws for addition
and multiplication, distributive laws both for multiplication over addition and for addition over multiplication.

The logical sum of literals on distinct variables is called a clause. A clause with only one literal is referred to
as a unit clause. The literals of a clause can be written in increasing order as in

A1 + A4 + A7

or in alphabetical order as in

B + C + F .

A Boolean formula is a logical expression defined over Boolean variables. A Boolean assignment to a set
of Boolean variables is the set of logica values assigned to the variables in other to evaluate a Boolean formula.
A satisfying Boolean assignment for a Boolean formula is an assignment such that the Boolean formula
evaluates to logic 1. If the Boolean variables associated with a Boolean formula can be assigned logical values
such that the formula turns out to be logic 1, then we say that the formula is satisfiable. If it is not possible to
assign such values, then we say that the formula is unsatisfiable.

We will be interested in Boolean formulas in a certain special form, the conjunctive normal form; it is the
generally accepted norm for SAT solvers because of its simplicity and usefulness. A conjunctive normal form
CNF is a multiplication of clauses. A K-CNF is a CNF in which every clause contains at most K literals. If the
negation of a literal does not appear in a CNF formula, we refer to it as a pure literal. The formula

d1 = (A + B)(A + B + C)(A + B + C)

is a 3-CNF Boolean formula with three variables

A,B,C,

five literals

A,A,B,B,C,

and three clauses

(A + B), (A + B + C), (A + B + C).

The negation of the literal C does not appear in the formula and so C is a pure literal.

The next term in course is the DPLL algorithm. This algorithm (DPLL) is so familiar that we think it
unnecessary to dwell upon it at great length. The algorithm is the most popular complete satisfiability (SAT)
solver. While its worst case complexity is exponential, three rules are applied to speed-up the decision process
[4].

1. Unit Propagation Rule. This rule states that one can set the value of the only unassigned literal of a unit
clause in such a way that the clause is satisfied.

2. Pure Literal Rule. The pure literal rule states that if an unassigned literal appears while its negation does
not, we can set the value of the literal to 1.

3. Splitting Rule. This states that one should choose an assignment of 1 or 0 for a Boolean variable in a
formula, simplify the formula based on that choice, then recursively check the satisfiability of the simplified
formula. If the simplified formula is satisfiable, the original formula is satisfiable, otherwise, the same
recursive check is done assuming the opposite logical value.

For some good remarks on this subject, see the paper [11].

18



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

3 Modification of the DPLL

Based on the DPLL splitting rule already mentioned, we choose a literal say Ak from the initial CNF formula
dk consisting of the variables Ak, Ak+1, . . . , An and assign the logic value 1 to it. The resulting CNF formula is
denoted [dk]Ak=1. Notice the use of the square brackets around dk. In fact, the notation

[dk]Ak=1

indicates that the logic value 1 is to be substituted for the variable Ak in the CNF formula dk. We check if
[dk]Ak=1 is satisfiable; if this is the case, the initial CNF formula dk is satisfiable; otherwise, we do the same
check, assuming the opposite logical value 0. Thus, we see that by the DPLL spliting rule, the initial CNF
formula dk is split into two simpler CNF formulas, [dk]Ak=1 and [dk]Ak=0. Hence, the original or initial formula
dk is satisfiable if either [dk]Ak=1 or [dk]Ak=1 or both are satisfiable.

In set theory, the set that consists of all elements belonging to either set A or set B or both is called the union
of A and B, denoted as A + B. Thus the statement either [dk]Ak=1 or [dk]Ak=1 or both are satisfiable implies
the new Booleam formula

dk+1 = [dk]Ak=0 + [dk]Ak=1 (3.1)

is satisfiable. It follows that if dk+1 is satisfiable, then dk is satisfiable, and if dk+1 is unsatisfiable, then dk
is unsatisfiable. Thus the problem of satisfying dk is equivalent to the problem of satisfying dk+1. Since the
number of variables of dk+1 is smaller than that of the variables of dk by one, deciding the satisfiability of dk+1

will be easier than deciding the satisfiability of dk.

In the following instance we show how to derive the new formula d2 from the original CNF formula d1.

Example 3.1. Given the CNF formula

d1 = (A1 + A2)(A1 + A3)(A2 + A3)

find dk+1.

Letting A1 = 1 gives

[d1]A1=1 = (1 + A2)(1 + A3)(A2 + A3)

which becomes

[d1]A1=1 = (A2 + A3).

Setting A1 = 0 gives

[d1]A1=0 = (0 + A2)(0 + A3)(A2 + A3)

which becomes

[d1]A1=0 = (A2)(A3)(A2 + A3).

Hence, we get
d2 = [d1]A1=1 + [d1]A1=0

= (A2 + A3) + A2 A3(A2 + A3).

The recursive formula dk+1 is the sum of two CNF formulas. If it can be transformed to a CNF formula, we will
be able to recursively reduce the number of variables of dk easily and continuously until the satisfiability of dk
becomes decidable, employing the unit propagation and pure literal rules.

The next section will be devoted to a method of transforming the sum of two CNF formulas into a single CNF
formula.

19



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

4 Transforming Sum of CNFs to a Single CNF

I shall here invent a technique for transforming the sum of two CNF formulas to a Single CNF formula. Let
f1, f2, . . . , fp and g1, g2, . . . , gn be clauses. Then

f1f2 · · · fp + g1g2 · · · gq = (f1 + g1)(f1 + g2) · · · (f1 + gq)(f2 + g1)(f2 + g2) · · · (f2 + gq)

· · · (fp + g1)(fm + g2) · · · (fp + gq).

For what purpose were all mathematical theorems before they can be employed in mathematics but to convince,
in terms not to be misunderstood, the readers of their soundness. A mathematical proposition then would be
vain without the demonstration of its validity. Hence, I shall prove this novel theorem to convince the reader of
its truth.

Proof.

f1f2 · · · fp + g1g2 · · · gq

= f1f2 · · · fp + g1g2 · · · gq

= f1f2 · · · fpg1g2 · · · gq

= (f1 + f2 + · · ·+ fp)(g1 + g2 + · · ·+ gq)

= f1(g1 + g2 + · · ·+ gq) + f2(g1 + g2 + · · ·+ gq) + · · · fp(g1 + g2 + · · ·+ gq)

= f1g1 + f1g2 + · · ·+ f1gq + f2g1 + f2g2 + · · ·+ f2gq + · · ·+ fpg1 + fpg2+· · ·+ fpgq

= (f1 + g1)(f1 + g2) · · · (f1 + gq)(f2 + g1)(f2 + g2) · · · (f2 + gq) · · · (fp + g1)(fp + g2) · · · (fp + gq).

With this transformation theorem, the Boolean formula dk+1, the sum of the two CNF formulas, [dk]Ak=1 and
[dk]Ak=0, can be transformed into a single CNF formula. We proffer an instance to show how it may be applied.

Example 4.1. Transform the sum of CNF formulas

d2 = (A2 + A3)(A3 + A4) + A2(A3 + A4)(A2 + A3 + A4)

into a single CNF formula.

By the Transformation Theorem 4, we have

d2 = (A2 + A3 + A2)(A2 + A3 + A3 + A4)(A2 + A3 + A2 + A3 + A4)(A3 + A4 + A2)

(A3 + A4 + A3 + A4)(A3 + A4 + A2 + A3 + A4)

= (A2 + A3)(A2 + A3 + A4)(A2 + A3 + A4)

= (A2 + A3)(A2 + A3 + A4).

Now to transform

f1f2 · · · fp + g1g2 · · · gq

to a single CNF formula using Theorem 4, the maximum number of possible combinations fi + gj for i = 1
to p and j = 1 to q is pq. Consequently, the Transformation Technique proposed here requires at most O(n2)
operations.

20



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

5 A New Algorithm for Deciding SAT

We will now look at a new algorithm for solving SAT. This algorithm involves the continuous reduction of the
original or initial CNF Boolean formula into a smaller and smaller CNF Boolean formulas until logic 1 or 0
emerges.

Given the CNF Boolean formula
d1 = F (A1, A2, . . . , An)

take the following steps to decide the satisfiability of d1.

1. Set k = 1.

2. Set dk+1 = [dk]Ak=1 + [dk]Ak=0.

3. Express dk+1 in CNF using Theorem 4.

4. If dk+1 = 0, print “d1 is unsatisfiable”and stop.

5. If dk+1 = 1, print “d1 is satisfiable ”. Otherwise, go to step 6.

6. Set k = k + 1 and return to step 1.

In what follows we proffer instances of the way in which the new procedure proposed can be employed.

Example 5.1. Decide the satisfiability of the Boolean formula

d1 = (A1 + A2)(A1 + A3)(A2 + A3).

We begin with the recurring formula

dk+1 = [dk]Ak=1 + [dk]Ak=0.

Putting k = 1, we have

d2 = [d1]A1=1 + [d1]A1=0

= (A2 + A3) + (A2)(A3)(A2 + A3)

= (A2 + A3 + A2)(A2 + A3 + A3)(A2 + A3 + A2 + A3)

= (A2 + A3).

Next, putting k = 2, we get
d3 = [d2]A2=1 + [d2]A2=0

= (A3) + (1)

= 1.

The fact that d3 = 1 suggests that d2 and hence d1 are satisfiable.

Example 5.2. Decide the satisfiability of the Boolean formula

d1 = (A1 + A3)(A1 + A2 + A3)(A1 + A2 + A3)(A1 + A3)(A1 + A3).

We begin with the recurring formula

dk+1 = [dk]Ak=1 + [dk]Ak=0.

Setting k = 1 gives
d2 = [d1]A1=1 + [d1]A1=0

= (A3)(A3) + (A2 + A3)(A2 + A3)(A3)

= (A3)(A2 + A3)(A2 + A3).

21



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

Next, letting k = 2, we obtain
d3 = [d2]A2=1 + [d2]A2=0

= (A3)(A3) + (A3)(A3)

= 0.

The logical value of d3, as we have seen, is 0. This means that the CNF Boolean formula d3 is unsatisfiable.
The implication of this is that the original CNF Boolean formula d1 is unsatisfiable.

6 Satisfiability Rules

I am not unaware that in undertaking to discuss rules of satisfiability, I am entering into a large and extensive
subject, one which when fully considered in all its parts is sufficient to fill a large volume.

6.1 More terms

Given a 2− CNF formula of n variables, the maximum number of clauses it can have is well-known as m =
2n(n− 1). The algorithm mentioned in the previous section reduces the number of variables in the order

n, n− 1, n− 2, . . . 0.

Each clause of the resulting CNF formulas is a 2-clause. It follows that no step will have clauses the number of
which will exceed m. Hence 2− SAT can be solved in a short (polynomial) time.

Some instances of 3-SAT take long time to decide using the aforementioned algorithm because they blow up
exponentially before getting to the last steps of the algorithm. It will require the introduction of more terms
in order to unravel the mysteries surrounding 3-SAT. We have mentioned that the literals of a variable are the
alternative forms of it, namely negated and unnegated literals. A negated literal of a variable is one with a bar
over the variable. Examples include A,B,A1, etc. An unnegated literal of a variable is one without a bar over
the variable. Examples are A,B,A1, etc.

We shall now speak of three sorts of clauses which are of great significance in deciding 3− SAT. These are as
follows:

1. Negated-literal clause,

2. Unnegated-literal clause, and

3. Mixed-literal clause.

A clause possessing only negated literals is termed negated-literal clause. Clauses without any negated literal are
termed unnegated-literal clauses. A mixed-literal clause is one containing both negated and unnegated literals.
Thus, the clauses (A+D +E), (A+B +D) and (B +C +D) are respectively negated-literal, unnegated-literal
and mixed-literal clauses.

6.2 Satisfiability rules

We shall now use these terms in giving rules which will be of great aid in simplifying CNF formulas and identifying
satisfiable ones.

Rule 0: Replace (C + X)(C + X) with C where C is a clause and X is a variable.
Rule 1: (Unit-propagation rule) Delete from the given CNF formula every unit clause.
Rule 2: (Pure-literal rule) Delete from the given CNF formula every clause containing pure literals.
Rule 3: A CNF formula containing only unnegated-literal clauses is satisfiable. For instance, the CNF formula

(A + D + E)(A + E + G)(B + C + E).

22



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

is satisfiable. This is seen at once when we apply the pure-literal rule.

Rule 4: A CNF formula containing only negated-literal clauses is satisfiable. For instance, the CNF formula

(A + D + E)(A + E + G)(B + C + E)

is satisfiable. This is reached when we apply the pure-literal rule.

Rule 5: A CNF formula containing only mixed-literal clauses is satisfiable. Two satisfying assignments of such
formula are those in which all the variables are assigned the same truth value.

For instance, the CNF formula
(A + D + E)(A + D + G)(B + C + E)

is satisfiable. Two satisfying assignments of this formula are

{(A = 1, B = 1, C = 1, D = 1, E = 1, G = 1), (A = 0, B = 0, C = 0, D = 0, E = 0, G = 0)}.

Rule 6: A CNF formula without any negated-literal clause is satisfiable. A satisfying assignments of such
formula is that in which all the variables are assigned truth value of 1.

For instance, the CNF formula
(A + D + E)(A + D + G)(B + C + E)

is satisfiable and has the satisfying assignment of

{(A = 1, B = 1, C = 1, D = 1, E = 1, G = 1)}.

Rule 7: A CNF formula lacking unnegated-literal clauses is satisfiable. A satisfying assignment of such formula
is that in which all the variables are assigned the truth value of 0.

For instance, the CNF formula
(A + D + E)(A + D + G)(B + C + E)

is satisfiable and has the satisfying assignment of

{(A = 0, B = 0, C = 0, D = 0, E = 0, G = 0)}.

Rule 8: A CNF formula having both negated-literal and unnegated-literal may be satisfiable or unsatisfiable.

Rule 9: Let f0 be a given CNF formula and fL a CNF formula caved from f0 and consisting of all clauses
containing the variable L. Suppose the given formula contains a negated-literal clause containing L. If there
is no mixed-literal clause having the literal L as the only unnegated literal in the clause, then in f0 replace fL
with [fL]L=0

L=1 to form the new CNF formula f0L. This rule is used to eliminate negated-literal clauses from f0.

Rule 10: Let f0 be a given CNF formula and fL a CNF formula caved from f0 and consisting of all clauses
containing the variable L. Suppose the given formula contains an unnegated-literal clause containing L. If there
is no mixed-literal clause having the literal L as the only negated literal in the clause, then in f0 replace fL with
[fL]L=0

L=1 to form the new CNF formula f0L. This rule is used to eliminate unnegated-literal clauses from f0.

7 Quick Algorithm for Satisfiability Decision

In this section we furnish an algorithm which will help to decide any instance of 3−SAT in a short time. This
quick algorithm employs the satisfiability rules mentioned in the previous section. It goes thus.

Given the CNF formula f0 with one negated-literal clause and one unnegated-literal clause, take the following
algorithmic steps to decide quickly its satisfiability.

23



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

1. Simplify f0 using satisfiability rules 0, 1 and 2.

2. Search f0 for the negated-literal clause C.

3. Search for clauses which contains a literal of a variable v in C as the only unnegated literal.

4. If no such clause is found, then eliminate v from f0 by replacing the CNF formula fv containing v with
[fv]v=0

v=1. The resulting formula lacks negated-literal clauses and so it is satisfiable. Hence f0 is satisfiable.

5. If f0 has such a clause, then search f0 for the unnegated-literal clause C.

6. Search for clauses which contain a literal of a variable u in C as the only negated literal.

7. If no such clause is found, then eliminate u from f0 by replacing the CNF formula fu containing u
with [fu]u=0

u=1. The new CNF formula obtained has no unnegated-literal clause and so is satisfiable.
Consequently, f0 is satisfiable.

8. If there exists such a clause, then turn to a clause that contains a literal of the variable v in C as the
only unnegated literal. Identify a variable w in the clause but not in C and eliminate that variable from
f0 by replacing fw with [fw]w=0

w=0.

9. Set the resulting CNF formula equal to f0 and recommence the algorithmic process.

This algorithm can be extended to cases where there are many negated-literal and unnegated-literal clauses.

The following instances shall instruct the reader of the beauty of the above algorithmic steps for reaching
satisfiability decision in a very short time.

Example 7.1. Decide the satisfiability of

f0 = (A + C + D)(A + D + E)(A + E + F )(B + D + E)(B + C + F )(C + D + F ).

If f0 is satisfiable, then it is possible to transform it to a formula without negated-literal clauses. The negated-
literal clause in f0 is

(A + E + F ).

Our goal is to eliminate it from f0 and to achieve this goal, we begin with the search for clauses in which the
literal A of the variable A in (A + E + F ) is the only unnegated literal. No such clause is found and so we
proceed to the elimination of the clause (A + E + F ) by eliminating the variable A from f0. Now

fA = (A + C + D)(A + D + E)(A + E + F )

We eliminate A:
[fA]A=0

A=1 = (C + D)(D + E) + (E + F )

which becomes
[fA]A=0

A=1 = (C + D + E + F ).

Replacing fA in f0 with [fA]A=0
A=1 gives rise to the new CNF formula

f0A = (C + D + E + F )(B + D + E)(B + C + F )(C + D + F ).

Since f0A lacks negated-literal clauses, we conclude that f0A and hence f0 are satisfiable.

Let us find a satisfying assignment of f0. A satisfying assignment of f0A is

(B = 1, C = 1, D = 1, E = 1, F = 1).

This is a partial satisfying assignment of f0. Applying this to f0 gives f0 = A. Setting A = 1 gives a satisfying
assignment of

(A = 1, B = 1, C = 1, D = 1, E = 1, F = 1).

24



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

Example 7.2. Decide the satisfiability of

f0 = (A + B + D)(A + B + E)(A + C + E)(B + C + D)(B + D + E)(C + D + E).

The formula consists of clauses of the three kinds, namely negated-literal, unnegated-literal and mixed-literal
clauses. If this formula is satisfiable, then it will be possible to transform its expression to an expression which
lacks negated-literal clauses.The formula consists of only one negated-literal clause, viz

(A + C + E).

We consider the first literal A. We search the clauses of f0 for the alternative form of this literal, that is the
unnegated literal A. In particular we search for a clause which contains A as the only unnegated literal. There
exists such clause in f0 and is

(A + B + E).

We cannot therefore eliminate the variable so as to eliminate (A + C + E) since the elimination will lead to
another negated-literal clause. We therefore turn to consider the next literal C of (A + C + E). We cannot
eliminate clauses of the variable C because there is a clause in which the literal C is the only unnegated literal,
namely (B + C + D). Finally, we look into the things of the last literal E in (A + C + E). We cannot eliminate
the clauses of the variable E because of the presence of (B + D + E) in which E is the only unnegated literal.
In order to solve this problem, let us return to the already mentioned clause (A + B + E) in which A is the
only unnegated literal. We wish to eliminate this clause to give room to the elimination of the negated-literal
clause (A + C + E) without the emergence of another negated-literal clause. To achieve this we consider the
elimination of the variable B in (A+B+E) as this variable is not found in the negated-literal clause. Therefore
we compute

[fB ]B=0
B=1 = (A + D) + (A + E)(C + D)(D + E) = (A + D + E).

We replace fB in f0 with [fB ]B=0
B=1 and obtain the new CNF formula

f0B = (A + D + E)(A + C + E)(C + D + E).

We notice that E is a pure literal and setting it to logic 1 gives f0B = 1. Hence we conclude that the given
formula f0 is satisfiable.

Let us find a satisfying assignment of f0 as it is satisfiable. Now

(A = 1, C = 1, D = 1, E = 1)

is a satisfying assignment of f1 and hence a partial assignment of f0. Applying this assignment to f0 gives

f0 = (1)(1)(1)(1)(B)(1) = B.

In the rest instances we shall ignore the step of finding a satisfying assignments.

Example 7.3. Decide the satisfiability of

f0 = (A + B)(A + C)(A + D)(A + C)(B + C)(B + C)(B + D)(B + D)(C + D).

There are two negated-literal clauses in f0, (A+D) and (B +C). There are however clauses containing A,B,C
and D in which each literal is the only unnegated literal. We turn to the three unnegated-literal clauses (A+B),
(B + C) and (C + D). There are clauses having A,B,C or D as the only negated literals. We cannot therefore
directly eliminate the negated-literal or unnegated-literal clauses from f0. Let us eliminate (A+B) and (B+C)
by eliminating variable B. This gives the new CNF formula

f0B = (A + C)(A + D)(C + D)(C + D)(A + D)(A + C).

The unnegated literal in f0B are (A + D) and (C + D). There is no clause of D wherein the literal is the only
negated literal. If we eliminate the variable D from f0B , we shall get a formula without any unnegated-literal
clause. It thus follows that f0 is satisfiable.

25



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

Example 7.4. Decide the satisfiability of

f0 = (A + C + D)(A + E + F )(A + E + F )(B + E + F )(B + D + F )(C + D + E)(C + E + F )(D + E + F ).

Searching f0 for negated-literal clauses, we get two; (A+E +F ) and (B +D +F ). The literal that occurs most
in these clauses is F . Now we search f0 for a clause in which the literal F is the only unnegated literal. There
is no such clause and we turn to the elimination of variable F from f0. Hence

F=0
F=1 = (A + E)(B + E)(C + E) + (A + E)(B + D)(D + E)

= (A + B + D + E)(A + D + E)(B + D + E)(B + C + D + E)(C + D + E).

We replace fF in f0 with [fF ]F=0
F=1 and get the new CNF formula

f0F = (A + B + D + E)(A + D + E)(B + D + E)(B + C + D + E)(C + D + E)(A + C + D)(C + D + E).

This formula has no negated-literal clauses and so we reach the conclusion that f0F and hence f0 are satisfiable.

Example 7.5. Decide the satisfiability of

f0 = (A + D + E)(A + D + F )(A + C + F )(A + E + F )(B + E + F )(B + C + D)(B + D + E)

(C + D + F )(C + D + E)(D + E + F )(D + E + F ).

The formula contains two negated-literal clauses, (B + D + E) and (D + E + F ). There are clauses wherein
B,D,E, F are the only unnegated literals. So we turn to the unnegated-literal clauses in f0, (A + D + E) and
(D + E + F ). There are no clauses wherein the literal F is the only negated literal. We therefore eliminate
(D + E + F ) by eliminating variable F . This being done gives the new CNF formula

f0F = (A + D + E)(A + D + E)(A + C + E)(A + B + C + E)(A + C + D + E)(A + D + E)

(C + D + E)(A + D + E)(B + C + D)(B + D + E)(C + D + E).

This is simplified to

f0F = (A + E)(A + D + E)(A + B + C + E)(A + C + D + E)(D + E)(B + C + D)(B + D + E)(C + D + E).

This formula contains one negated-literal clause, (B + D + E), and is satisfiable because the literal B of the
variable B in (B + D + E) has no clause in the formula in which it is the only unnegatd literal. Hence f0 is
satisfiable.

Example 7.6. Let us take up the task of deciding the satisfiability of

f0 =(A + C + D)(A + C + H)(A + C + F )(A + D + E)(B + C + H)(B + C + F )(C + E + G)

(D + F + H)(D + E + G)(E + G + H)(E + F + H)(F + G + H).

There are two negated-literal clauses in f0: (A + D + E) and (D + E + G). There are clauses in which only
the literals A,D,E and G are unnegated, viz (A + C + H), (D + F + H), (E + F + H), and (F + G + H). To
eliminate these clauses, we only have to eliminate the variable H since it is common to them. Thus we have

[fH ]H=0
H=1 = (B + C + D + F )(B + C + E + G)(B + C + E + F )(B + C + F + G).

This replaces fH in f0 and we obtain the new formula

f0H =(B + C + D + F )(B + C + E + G)(B + C + E + F )(B + C + F + G)(A + C + D)(A + C + F )

(A + D + E)(B + C + F )(C + E + G)(D + E + G).

We now eliminate first A:
[fA]A=0

A=1 = (C + D) + (C + F )(D + E) = 1.

26



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

When this replaces fA in f0H , we get the new formula

f0HA =(B + C + D + F )(B + C + E + G)(B + C + E + F )(B + C + F + G)(B + C + F )

(C + E + G)(D + E + G).

There remains the negated-literal clause (D + E + G) to be removed. No clause contains the literal D of the
variable D in the negated-literal clause as the only unnegated literal. Therefore, the elimination of variable D
from f0HA will give rise to a CNF formula without any negated-literal clause. Thus the original formula f0 is
satisfiable.

Example 7.7. Decide the satisfiability of

f0 =(A + G + H)(A + G + H)(A + D + H)(B + E + F )(B + D + F )(B + E + G)

(B + D + H)(C + E + H)(C + D + G)(D + F + G)(D + E + H)(D + E + G)

(F + E + H)(F + G + H)(F + G + H).

In f0 there are two negated-literal clauses, namely (B+D+H) and (D+E+H). There are clauses in which the
literals B,D,E and G are the only unnegated literals. So we turn to the unnegated-literal clauses (A+G+H),
(B + E + F ) and (C + E + H).

We consider first (A + G + H). There is no clause in f0 in which the literal A is the only negated literal. Thus
we eliminate (A + G + H) from f0 by replacing fA with [fA]A=0

A=1, viz

f0A =(D + G + H)(B + E + F )(B + D + F )(B + E + G)(B + D + H)(C + E + H)

(C + D + G)(D + F + G)(D + E + H)(D + E + G)(F + E + H)(F + G + H)

(F + G + H).

Next, we consider (B+E+F ). There is no clause in f0A in which only the literal B is negated. So, we eliminate
(B + E + F ) by eliminating B from f0A. We get the new CNF formula

f0AB =(D + E + F + H)(D + F + H)(D + E + G + H)(D + G + H)(C + E + H)(C + D + G)

(D + F + G)(D + E + H)(D + E + G)(F + E + H)(F + G + H)(F + G + H).

There remains only one unnegated-literal clause, viz (C +E +F ). There is no clause in f0AB in which only C is
negated. It is thus possible to satisfy f0 since by eliminating C from f0AB we get a CNF formula without any
unnegated-literal clause. The formula f0 is therefore satisfiable.

Example 7.8. Decide the satisfiability of

f0 = (A + B)(A + C)(A + B)(A + C)(B + C)(B + C).

There is a negated-literal clause in f0, (B + C). There are however clauses containing B or C as the only
unnegated literal. We turn to the unnegated-literal clause (B +C). There are clauses having B or C as the only
negated literal. We cannot directly eliminate the negated-literal or unnegated-literal clause in f0. Let us return
to the negated-literal clause (B + C). To eliminate it, we have to eliminate the clause in which literal B is the
only unnegated literal. This clause is (A + B) and to eliminate it we only have to eliminate variable A which is
not in the unnegated-literal clause:

[fA]A=0
A=1 = (B + C)(B + C).

Replacement of fA with [fA]A=0
A=1 in f0 gives

f0A = (B + C)(B + C)(B + C)(B + C) = 0.

It thus follows that f0 is unsatisfiable.

27



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

Example 7.9. Decide the satisfiability of

f0 = (A + B + C)(A + D)(A + E)(B + D)(B + E)(C + D)(C + E)(D + E)

The negated-literal clauses of f0 are (A + B + C) and (D + E).

We consider the first negated-literal clause. There is no clause of f0 in which the literal A of the variable A
in the negated-literal clause is the only unnegated clause. We therefore eliminate the negated-literal clause by
eliminating variable A:

[fA]A=0
A=1 = (D)(E) + (B + C) = (B + C + D)(B + C + E).

This replaces fA in f0 and a new CNF formula emerges:

f0A = (B + C + D)(B + C + E)(B + D)(B + E)(C + D)(C + E)(D + E).

We proceed to the consideration of the second negated-literal clause. The literals D and E of the respective
variables D and E in this clause have clauses in which they are the only unnegated literals. These clauses are
(B + C + D) and (B + C + E).

It is clear that the variable B in these clauses is not in the negated-literal clause. Let us therefore eliminate
these two clauses by eliminating B from f0A:

B=0
B=1 = (D)(E) + (C + D)(C + E)

= (C + D)(C + D + E)(C + D + E)(C + E)

= (C + D)(C + E).

Hence,

f0AB = (C + D)(C + E)(C + D)(C + E)(D + E).

Again, the literals D and E of the respective variables D and E in (D + E) have clauses in which they are the
only unnegated literals. These are (C + D) and (C + E). Since the variable C in (C + D) and (C + E) is not
in (D + E), let us eliminate it in order to eliminate (C + D) and (C + E):

C=0
C=1 = (D)(E) + (D)(E)

= (D)(E).

It follows then that

f0ABC = (D)(E)(D + E) = 0.

and hence f0 is unsatisfiable.

Gladly would we continue this delightful subject, but our general plan forbids more instances.

8 Conclusion

This work modified the well-known DPLL algorithm for deciding SAT and furnished an algorithmic method of
reaching a decision in a very short time. Numerous examples were given to show vividly how the method is
employed.

28



Ufuoma; Asian Res. J. Math., vol. 20, no. 6, pp. 15-29, 2024; Article no.ARJOM.114855

Acknowledgement

I am particularly grateful to Agun Ikhile for his financial support and helpful suggestions at the last moment of
the revision of the work.

Special thanks to the Editor and reviewers for their immense comments which were a guidance during the
revision of the work.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Mironov, Ilya; Zhang, Lintao. Biere, Armin; Gomes, Carla P. (eds.). ”Applications of SAT Solvers to
Cryptanalysis of Hash Functions”. Theory and Applications of Satisfiability Testing — SAT 2006. Lecture
Notes in Computer Science. Springer. Mathematics Handbook for Science and Engineering, Springer, New
York, 2006, 5th ed; 2006.

[2] Cook SA. The complexity of theorem proving procedures, Proceedings of the 3rd Annual ACM Symposium
on Theory of Computing. 1971;151-158.

[3] Baker TP, Gill J, Solovay R. Relativizations of the P=?NP question, SIAM Journal on Computing.
1975;4(4):431-442.

[4] Aaronson S, Wigderson A. Algebrization: a new barrier in complexity theory. in STOC. 2008;731–740.

[5] Aho, Alfred V, Hopcroft, John E, Ullman, Jeffrey D. The Design and Analysis of Computer Algorithms.
Addison-Wesley. Theorem 10.40.; 1974.

[6] Davis M, Logemann G, Loveland D. Communications of the ACM. 1962;5:394–397.

[7] Ufuoma O. Boolean Subtraction and Division with Application in the Design of Digital Circuits. Journal
of Engineering Research and Reports. 2021 Apr 24;20(5):95-117.
DOI: 10.9734/JERR/2021/v20i517316

[8] Rajendra P. Fundamentals of electrical engineering. Prentice-Hall of India.

[9] Rajaraman, Radhakrishnan. Introduction to digital computer design. PHI Learning Pvt. Ltd.

[10] Henryk Greniewski, Krystyn Bochenek, Romuald Marczyński. Application of Bi-elemental Boolean algebra
to electronic circuits. Studia Logica: An International Journal for Symbolic Logic. T. 1955;2:7-76.

[11] Okoh U., A Novel, Efficient and Generalised Approach to Boolean Satisfiability, Journal of Engineering
Research and Reports, Volume 26, Issue 3, Page 91-103, 2024; Article no.JERR.110430 ISSN: 2582-2926.

————————————————————————————————————————————————————–
© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under
the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address
bar)
https://www.sdiarticle5.com/review-history/114855

29

http://creativecommons.org/licenses/by/4.0
https://www.sdiarticle5.com/review-history/114855

	Galley proof_2024_ARJOM_114855 - Copy.pdf (p.1)
	Galley proof_2024_ARJOM_114855.pdf (p.2-15)
	Introduction
	Definitions, Notations and Laws
	Modification of the DPLL
	Transforming Sum of CNFs to a Single CNF
	A New Algorithm for Deciding SAT
	Satisfiability Rules
	More terms
	Satisfiability rules

	Quick Algorithm for Satisfiability Decision
	Conclusion


