

Uttar Pradesh Journal of Zoology

Volume 45, Issue 12, Page 89-101, 2024; Article no.UPJOZ.3517 ISSN: 0256-971X (P)

Annotated Check List of Ichthyofaunal Diversity in the Freshwater Tidal Stretch Along the Gosthani Estuary, Bheemunipatnam, East Coast of India

P. Jaya ^a, K. Rama Rao ^{a*}, N. Surya ^a, M. Babu Rao ^a, M. Balaji ^a and M. Ramakrishna ^a

^a Department of Zoology/ Fisheries, Dr. V. S. Krishna Govt. Degree and PG College (A), Visakhapatnam, Affiliated to Andhra University, Andhra Pradesh, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.56557/upjoz/2024/v45i124108

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://prh.mbimph.com/review-history/3517

Original Research Article

Received: 07/04/2024 Accepted: 14/05/2024 Published: 21/05/2024

ABSTRACT

The present study found 60 fish species belonging to 20 orders, 38 families, and 54 genera in the Gosthani estuary between May 2023 and April 2024. The fishes were brought to the lab and placed in glass jars before being preserved in a 9-10% formalin solution. The fish were identified at the species level using keys specific to the Indian subcontinent fish. Perciformes accounted for 35% of highest was observed in the total population. The recorded piscine species was met by the following orders: Clupeiformes (10%), Siluriformes (83.3%), Beloniformes, Tetraodontiformes, and Cypriniformes (each with 5.00%). Anguilliformes, Carangiformes, Mugiliformes, Cichiliformes, and Scombriformes each had 3.33%, while Anabantiformes, Moroniformes, Acanthuriformes,

Cite as: Jaya, P., Rao, K. R., Surya, N., Rao, M. B., Balaji, M., & Ramakrishna, M. (2024). Annotated Check List of Ichthyofaunal Diversity in the Freshwater Tidal Stretch Along the Gosthani Estuary, Bheemunipatnam, East Coast of India. UTTAR PRADESH JOURNAL OF ZOOLOGY, 45(12), 89–101. https://doi.org/10.56557/upjoz/2024/v45i124108

^{*}Corresponding author: Email: drkarriramarao@gmail.com;

Elopiformes, Gonorynchiformes, Synbranchiformes, Gobiiformes, Istiophoriformes, and Spariformes each had 1.66%. According to the IUCN (2024) threatened taxa in the current investigation, 65.00% of the 60 species are least concerned (LC), followed by 23.33% that are not evaluated (NE), 5.00% that are data deficient (DD), and 3.33% that are near threatened (NT) or vulnerable (VU).In the current study, ichthyofaunal diversity reported to habitation environment was observed in marine and brackish water fish species (76.66%), while brackish water and freshwater were inhabited (55.00%) in the Gosthani estuary.

Keywords: Ichthyofauna; trophic level; habitat; threatened taxa; IUCN.

1. INTRODUCTION

India's east and west coasts are rich in estuaries and brackish water. According to the Government of India (2000), "total brackish water resources are expected to reach 1.44 million hectares. Andhra Pradesh is divided into nine districts and has a 974-kilometer-long coastline and a continental shelf size of 33,227 square "The majority of India's large kilometers". estuaries are located along the east coast, with fewer estuaries on the west coast. The nation has 14 large, 44 medium, and 162 small rivers that flow into the sea through several estuaries. Major estuaries are mostly found in the Bay of Bengal, where some of the country's most important seaports are located. The state has over 2.0 lakh hectares of brackish water and 27,500 hectares of mangrove swamps. Pulicat Lake, which covers 77,000 hectares, is the region's most important brackish water lake. The Godavari estuary system spans 330 km2. Estuaries support freshwater life forms, marine life forms, and eventually brackish water species that can exist in water of varied salinity. Furthermore, in the upper reaches, this ecosystem will support pure freshwater forms, euryhaline forms in the middle parts, and stenohaline mouth". forms at the (www.wikipedia.com).

The National Bureau of Fish Genetic Resources (NBFGR) database in Lucknow lists 2,508 native finfish species, with 1,518 from the marine environment, 113 from brackish water, and 877 from freshwater settings. Clupeids, mullets, catfish, perches, and prawns. Mugil cephalus makes up a substantial portion of the estuary fisheries. Fishing reduces the abundance of a dominant consumer (Consumer 4), increases the amount of its prey (Consumer 3), and decreases the abundance of Consumer 3's prey. Depending on the complexity of the food web, organisms in a feeding chain are divided into three or more trophic levels. A trophic level in a food chain denotes an organism's position in its

environment. Primary producers, consumers, and detritivores are all instances of these roles. The most evident relationship between body size and food web structure is the trophic interaction hierarchy, which predicts that a predator's trophic rank would increase with size. Georgios Vagenas et al. [1]. investigated "the trophic patterns of the Balkan biodiversity hotspot's freshwater fish fauna and compared the nutritional requirements of different species. The trophic level of the analyzed fish species ranged from 2.0 to 4.5, which is within the expected range for freshwater ecosystems, demonstrating the presence of both top predators and primary consumers. The fish species in the current study are classed as herbivorous (2.0-2.5), omnivore (2.5-3.5), and carnivorous (3.5-4.5) according to their trophic level".

"The different contributions of dominant species in each habitat resulted in variances in assemblage structures. The fish assemblage in the freshwater zone was dominated by common freshwater species, whereas marine juveniles were closely linked to the estuarine ecology. Estuary weirs have a unique impact on fish assemblages because they disturb the link between freshwater and estuarine fish populations, as well as the migratory success of regional fish fauna". Joo Myun et al. [2]. "The classified estuarv may be into three hydrogeomorphic zones based on the period of year in which it is inundated by tidal fluctuations: subtidal, intertidal, and supratidal. Tidal freshwater environments vary from riverine regions largely due to tidally induced physical phenomena such as extended water residence durations, variable water levels, and altering current velocities and directions. variations in a mixohaline setting are mostly induced by variations in salinity and particle suspended matter concentration. Tidal freshwater reaches are important locations for physical, chemical, and biological processes that can drastically alter riverine intake before it reaches the freshwaterseawater interface" [3]. The present study

thoroughly investigated the entire number of fish that are biologically synonymous with the Gosthani estuary. This report provides firsthand information on ichthyofaunal diversity.

2. METHODOLOGY

Fish samples were taken from the Gosthani estuary (17.8961° N, 83.4545° E) between April 2023 and March 2024 (Fig. 1). The samples were obtained by fishermen using a seine net, bag net, cast net, gill net, scoop net, drag net, stake net, trap net of varied mesh size, hooks, and line while fishing. Freshly caught fish were properly cleaned and photographed. These fish were transported to the laboratory and placed in glass jars before being preserved in a 9-10% formalin solution [4]. The fish were identified at the species level using keys for Indian subcontinent fish. The species were identified largely using morphometric and meristematic features. Talwar, P. K. & Kacker, R. [5] Barman, R.P. [6] Day, F [7] Jayaram K.C. [8] Munro, I. S. R [9] Nath, P. and Dey, S.C [10] Talwar P.K. and Jhingran A.G. [11] Froese, R. and D. Pauly [12]. Fischer, W. and G. Bianchi [13]. The IUCN [14] conservation status of the fish species has been listed.

3. RESULTS AND DISCUSSIONS

The current study identified the presence of 60 fish species belonging to 20 orders, 38 families, and 54 genera collected from the Gosthani estuary from April 2023 to March 2024. A list of fishes were compiled in the current study, including their order, family, genus, species, environment, trophic level, and IUCN status. The species that have been listed are displayed in 1, together with the number and Table percentage composition of families, genera, and species in each order under consideration in the study. The order Perciformes current represented the majority of the observed species, with 35%. This was complied with by the (10%), following orders: Clupeiformes Siluriformes (83.3%), Beloniformes, Tetraodontiformes, and Cypriniformes (each with Anguilliformes, Carangiformes, 5.00%). Mugiliformes, Cichiliformes, Scombriformes Anabantiformes, each with 3.33%, and Moroniformes, Acanthuriformes, Elopiformes, Gonorynchiformes, Synbranchiformes, Gobiiformes, Istiophoriformes, Spariformes each with 1.66%. In the present investigation recorded genera out of 54, the percentage was observed of Perciformes was highest with 33.33%,

followed by Clupeiformes 9.25%. Siluriformes 7.40%. Beloniformes. Tetraodontiformes. with 5.55%. Carangiformes. Cypriniformes Mugiliformes, Cichiliformes, Scombriformes with 3.70% and Anguilliformes, Anabantiformes, Acanthuriformes, Elopiformes, Moroniformes, Gonorynchiformes, Synbranchiformes, Gobiiformes, Istiophoriformes, Spariformes each The recorded 38 with 1.85%. families, Perciformes was highest with 26.31%, followed by the homogeneous percentage was recorded in Siluriformes and Tetraodontiformes each with 7.89%. Clupeiformes and Beloniformes with 5.26%. Anauilliformes. Anabantiformes. Acanthuriformes, Carangiformes, Elopiformes, Gonorynchiformes, Mugiliformes, Cypriniformes, Synbranchiformes, Cichiliformes, Gobiiformes, Istiophoriformes, Scombriformes and Spariformes each with 2.63% Table 2, Fig. 2, 3 and 4. The similar study was observed by Harati and Rama Rao [15] conducted "a detailed analysis of piscine diversity revealed a total of 97 species of fresh water, estuary and marine fish belonging to 26 orders, 53 families, and 85 genera, collected three landing locations for the first time. In the present investigation, recorded genera out of 85, the homogeneous percentage was observed of Perciformes and Siluriformes had the highest with 11.76%, followed by Acanthuriformes, Cypriniformes". Abhishek et al., [16] a detailed study "analysed of piscine diversity revealed a total of 63 species of fresh water, estuary andmarine fish belonging to 13 orders and 37 families in Sasihithlu Estuary". Fullontona et al., [17] recorded "a total of 87fish species belonging to 51 families inside the estuarine part of the Panchupada River during the survey period". Bassoucalingam et al., [18] 36 species. with identified Actinoptervaii dominating in this estuary. Clupeiformes was the highest-ranking of the five orders found at Giriyampeta Estuary. Ghosh et al., [19] constituted the percentage of Perciformes were more than 45% of the total fish species recorded, while contributions the of Cypriniformes, Clupeiformes, Siluriformes and Pleuronectifor in Subarnarekha Estuary. Bijukumar, and Sushama. [20] recorded 112 ichthyofaunal species belonging of 14 orders, 53 families and 80 genera. The estuary characterised by high saline water almost throughout the year was dominated by marine species. The commercial fisheries was supported mainly by marine and estuarine forms. The reported family and genus under order Perciformes of ichthyofaunal diversity is highest taxonomic number and percentages recorded from the Gosthani estuary. Ramanujam et al., [21] studied ichthyofaunal diversityof the Adyar Wetland complex, Tamil Nadu, southernIndia. Mukherjee et al. [22] a total of 64 fish species belonging to 11 orders, 38 families and 53 genera were iden-tified in estuarine River of Indian Sundarbans.

In the current study ichthyofaunal diversity reported to the habitation locations were observed in marine and brackish water fish species (76.66%), and brackish water and freshwater occupied (55.00%) in the Gosthani estuary Table 3, Fig. 5. The similar study was observed by Harati and Rama Rao (2023) in marine and brackish water, and brackish water and freshwater occupied equal numbers (34.02%) and marine, brackish water, and freshwater (30.92%) it is deviated to present observation. In the present study ichthyofaunal diversity are classified as herbivorous (2.0-2.5), omnivore (2.5-3.5), and carnivorous (3.5-4.5) based on their trophic level. The omnivores have a highest percentage of 33 (55.00%), followed by

the carnivorous 23 (38.33%). and the herbivorous 4 (6.66%) Table 3. Fig. 6. A similar study was observed by Harati and Rama Rao [15] reported the highest number of omnivores are 50.51%, followed by the carnivorous 39.17%, and the herbivorous 10.30% at Kalingapatnam In the current study, the most estuarv. documented consumption of fish species was commercial (66.6%), followed by minor commercial (28.3%), aquarium and game fish (18.3%), highly commercial (16.6%), public aquarium (8.3%), and bait fish (6.6%) Rama Rao et al., [23] reported the omnivores have a highest percentage of 22 (46.81%), followed by the carnivorous 16 (34.04%), and the herbivorous 09 (19.14%) in Gosthani River. Chicharo et al. [24] investigated the increased salinity in the upper estuary, which allowed marine species to colonize a region that was formerly freshwater. further reducing habitat for indigenous freshwater species in the Guadiana River's downstream basin. During the low-inflow year, planktivorous and omnivorous fish populations decreased while carnivorous fish populations increased.

Fig. 1. Sampling places at Gosthani estuary (17.8961° N, 83.4545° E)

SI.	Order/Family	Scientific name	Common name	Habitat	Trop	ohic	Human usage	IUCN
no			la d'an an attle d'a al		leve		C ick and a second social	status
1	Anguillidae/ Anguilliformes	Angullia bengalensis	Indian mottled eel	Marine; freshwater; brackish;	3.8	±0.7	aquaculture: game fish	NI
2	Anguillidae/ Anguilliformes	Anguilla bicolor	Indonesian shortfin eel	Marine; freshwater; brackish	3.6	±0.50	Fisheries: minor commercial	NT
3	Chanidae/ Anabantiformes	Channa punctata	Spotted snakehead	Freshwater; brackish;	3.8	±0.70	Fisheries: commercial; aquaculture: commercial; aquarium	LC
4	Belonidae /Beloniformes	Strongylura strongylura	Spottail needlefish	Marine; Brackish;	4.2	±0.73	Fisheries: commercial	NE
5	Belonidae/ Beloniformes	Xenentodon cancila	Freshwater garfish	Freshwater; Brackish;	3.9	±0.62	Fisheries: minor commercial; aquarium	LC
6	Drepaneidae/ Moroniformes	Drepane longimana	Concertina fish	Marine; Brackish	3.7	±0.34	Fisheries: minor commercial; aquarium: commercial	NE
7	Hemiramphidae/ Beloniformes	Hyporhamphus limbatus	Congaturi halfbeak	Marine; Freshwater; Brackish	3.1	±0.1	Fisheries: minor commercial	LC
8	Leiognathidae/ Perciformes	Deveximentum insidiator	Pugnose ponyfish	Marine; Brackish;	2.8	±0.27	Fisheries: commercial	NE
9	Leiognathidae/ Perciformes	Eubleekeria splendens	Splendid ponyfish	Marine; Brackish	2.9	±0.38	Fisheries: commercial	LC
10	Leiognathidae/ Perciformes	Gazza minuta	Toothpony	Marine; Brackish	4.2	±0.0	Fisheries: commercial	LC
11	Scatophagidae/ Perciformes	Scatophagus argus	Spotted scat	Marine; Freshwater; Brackish	3.0	±0.35	Fisheries: aquaculture: commercial; aquarium	LC
12	Carangidae/ Carangiformes	Caranx ignobilis	Giant trevally	Marine; brackish	4.2	±0.4	Fisheries: commercial; aquaculture: game fish	LC
13	Carangidae/ Carangiformes	Trachinotus carolinus	Florida pompano	Marine; brackish	3.5	±0.6	Fisheries: highly commercial; aquaculture: game fish:	LC
14	Cichlidae/ Cichliformes	Oreochromis mossambicus	Mozambique tilapia	Freshwater; brackish	2.2	±0.0	Fisheries: highly commercial; aquaculture: game fish:	VU
15	Cichlidae/ Cichliformes	Etroplus suratensis	Pearlspot	Freshwater; Brackish	2.9	±0.26	Fisheries: commercial; aquaculture: aquarium:	LC
16	Dorosomatidae/ Clupeiformes	Konosirus punctatus	Dotted gizzard shad	Marine; brackish	2.9	±0.24	Fisheries: minor commercial	LC

Table 1. Taxa of ichthyofauna at Gosthani estuary

Java et al.: Uttar Pradesh J. Zool.	vol. 45. no. 12. pp. 8	39-101. 2024: Article no.UPJOZ.3	517

SI. no	Order/Family	Scientific name	Common name	Habitat	Trophic level	Human usage	IUCN status
17	Dorosomatidae/ Clupeiformes	Hilsa kelee	Keele shad	Marine, freshwater, brackish.	2.9 ±0.33	Fisheries: highly commercial; bait:	LC
18	Dorosomatidae/ Clupeiformes	Sardinella fimbriata	Fringescale sardinella	Marine, Brackish	2.7 ±0.30	Fisheries: commercial	DD
19	Engraulidae/ Clupeiformes	Stolephorus indicus	Indian anchovy	Marine, Brackish	3.6 ±0.0	Fisheries: minor commercial; bait	LC
20	Engraulidae/ Clupeiformes	Stolephorus commersonnii	Devis anchovy	Marine, Brackish	3.1 ±0.20	Fisheries: commercial	DD
21	Megalopidae/ Elopiforms	Megalops cyprinoides	Indo-pecific tarpon	Marine, Freshwater, Brackish water	3.5 ±0.1	Fisheries: minor commercial; Aquaculture	LC
22	Gobiidae/ Gobiiforms	Glossogobius giuris	Tank gobi	Marine, Brackish, Freshwater,	3.7 ±0.2	Fisheries: minor commercial; aquaculture	LC
23	Chanidae/ Gonorynchiformes	Chanos chanos	Milk fish	Marine, Brackish Freshwater,	2.4 ±0.20	Fisheries: highly commercial; aquaculture	LC
24	shyraenidae/ Istiophoriforms	Sphyraena obtusata	Obtuse barracuda	Marine, Brackish	4.5 ±0.4	Fisheries: commercial; gamefish	NE
25	Mugilidae/ Mugiliforms	Mugil cephalus	Grey mullet	Marine ,fresh water, brackish water	2.5 ±0.17	Fisheries: highly commercial; aquaculture	LC
26	Mugilidae/ Mugiliforms	Planiliza macrolepis	Large scale mullet	Marine, Brackish, fresh water	2.6 ±0.26	Fisheries: commercial; aquaculture	LC
27	Mullidae/ Perciformes	Parupeneus indicus	Indian goat fish	Marine, Brackish.	3.5 ±0.37	Fisheries: commercial; gamefish	LC
28	Ambassidae/ Perciformes	Ambassis nalua	Scalloped perchlet	Marine, Brackish, fresh water	3.4 ±0.4	-	LC
29	Ambassidae/ Perciformes	Parambassis ranga	Indian glassy fish	fresh water, brackish	3.5 ±0.32	Fisheries: subsistence fisheries; aquarium: commercial	LC
30	Gerreidae/ Perciformes	Gerres filamentous	Whip fin silver biddy	Marine, fresh water, brackish	3.3 ±0.2	Fisheries: minor commercial	LC
31	Gerreidae/ Perciformes	Gerres subfasciatus	Common silver bell	Marine, Brackish	3.3 ±0.3	Minor commercial	LC
32	Lutjanidae/ Perciformes	Lutjanus argentimaculatus	Mangrove red snapper	Marine; freshwater; brackish	3.6 ±0.5	Fisheries: commercial; aquaculture: commercial; game fish	LC
33	Ambassidae/ Perciformes	Chanda nama	Elongate glass- perchlet	Freshwater; brackish	3.6 ±0.54	Fisheries: minor commercial; aquarium: public aquariums	LC
34	Latidae/	Lates calcarifer	Barramundi	Marine; freshwater; brackish	3.8 ±0.60	Fisheries: highly commercial;	LC

Jaya et al.; Uttar Pradesh J. Zool., vol. 45, no. 12, pp. 89-101, 2024; Article no.UPJOZ.3517

SI. no	Order/Family	Scientific name	Common name	Habitat	Trophic level	Human usage	IUCN status
	Perciformes					aquaculture: game fish; aquarium	
35	Lutjanidae/ Perciformes	Lutjanus indicus	Striped snapper	Marine; freshwater; brackish	3.8 ±0.6	_	NE
36	polynemidae/ Perciformes	Eleutheronema tetradactylum	Fourfinger threadfin	Marine; freshwater; brackish	4.1 ±0.5	Fisheries: highly commercial; aquaculture:	NE
37	polynemidae/ Perciformes	Leptomelanosoma indicus	Indian threadfin	Marine; brackish	3.9 ±0.67	Fisheries: commercial; game fish	NE
38	Leiognathidae/ Perciformes	Karalla dussumieri	Dussumieri ponyfish	Marine, Brackish	3.2 ±0.38	Fisheries: commercial	NE
39	Leiognathidae/ Perciformes	Leiognathus equulus	common ponyfish	Marine, Freshwater, Brackish Water	3.0 ±0.40	Fisheries: minor commercial; aquaculture: commercial	LC
40	Leiognathidae/ Perciformes	Nuchequula nuchalis	Spotanape ponyfish	Marine, Brackish	3.0 ±0.25	Gamefish: yes	NE
41	Terapontidae/ Perciformes	Terapon jarbua	Jarabua terapon	Marine, Freshwater, Brackish Water	3.9 ±0.5	Fisheries: minor commercial; aquaculture:	LC
42	Muliidae/ Perciformes	Upeneus vitlatus	yellow stripped goat fish	Marine, Brackish	3.6 ±0.0	Fisheries: minor commercial	LC
43	Sciaenidae/ Perciformes	Johnius coitor	coiter crocker	Marine, Brackish, Freshwater	3.4 ±0.4	Fisheries: commercial	LC
44	Trachiuridae/ Scombriformes	Trichiurus lepturus	Largehead hairtail	Marine; brackish	4.4 ±0.4	Fisheries: highly commercial; gamefish	LC
45	Ariidae/ siluriformes	Arius arius	Threadfin sea catfish	Marine; brackish	3.5 ±0.37	Fisheries: commercial	NE
46	Ariidae/ siluriformes	Arius maculatus	Spotted catfish	Marine; freshwater; brackish; demersal;	3.4 ±0.46	Fisheries: commercial	NE
47	Heteropneustidae/Sil uriformes	Heteropneustes fossilis	signing cat fish	Freshwater, Brackish water	3.6 ±0.3	highly commercial; aquaculture: commercial	LC
48	sparidae/ spariformes	Acanthopagrus latus	Yellowfin seabream	Marine; freshwater; brackish	3.8 ±0.43	Aquaculture: commercial	DD
49	Terapontidae/ Tetradontiformes	Chelonodon patoca	Milkspotted puffer	Marine; freshwater; brackish	3.1 ±0.40	Fisheries: minor commercial	LC
50	Tetradontidae/ Tetradontiformes	Leiodon cutcutia	Ocellated pufferfish	Freshwater; brackish	3.3 ±0.2	Fisheries: of no interest	LC
51	Tricanthidae/ Tetradontiformes	Triacanthus biaculeatus	Short-nosed tripodfishTripod fish	Marine, Brackish	2.8 ±0.29	Fisheries: minor commercial	NE

Jaya et al.; Uttar Pradesh J. Zool., vol. 45, no. 12, pp. 89-101, 2024; Article no.UPJOZ.3517

SI. no	Order/Family	Scientific name	Common name	Habitat	Trophic level	Human usage	IUCN status
52	Sciaenidae/ Acanthuriformes	Leiostomus xanthurus	Spot crocker	Marine, Brackish	3.2 ±0.1	Fisheries: commercial; bait: occasionally	LC
53	Cyprinidae/ Cypriniformes	Cyprinus carpio	common carp	Freshwater, Brackish	3.1 ±0.0	Fisheries: highly commercial; aquaculture: commercial;	VU
54	Cyprinidae/ Cypriniformes	Puntius sophore	pool barb	Freshwater, Brackish	2.6 ±0.1	Aquarium: public aquariums	LC
55	Cyprinidae/ Cypriniformes	Systomus sarana	olive barb	Freshwater, Brackish	2.9 ±0.2	Fisheries: commercial; aquarium	LC
56	Trichiuridae/ Scombriformes	Lepturacanthus savala	Savalai heirtail	Marine, Brackish	4.3 ±0.76	Fisheries: commercial	NE
57	Aridae/ siluriformes	Arius jella	Blockfin sea cat fish	Marine, Brackish	3.5 ±0.37	Fisheries: commercial	NE
58	Bagridae/ siluriformes	Mystus cavasius	Gangetic mystus	Freshwater, Brackish	3.4 ±0.4	Fisheries: commercial	LC
59	Dorosomatidae/ Clupeiformes	Tenualosa ilisha	Hilsa shad	Marine, Freshwater, Brackish water	2.9 ±0.29	Fisheries: minor commercial; aquaculture: experimental	LC
60	Mastacembelidae/ Synbranchiformes	Mastacembelus armatus	Zig-zag eel	Freshwater, Brackish water	2.8 ±0.27	Fisheries: commercial; aquarium	LC

S.No	Orders	% of families in an	% of genera in an	% of species in
		order	order	an order
1	Anguilliformes	2.63	1.85	3.33
2	Anabantiformes	2.63	1.85	1.66
3	Beloniformes	5.26	5.55	5.00
4	Moroniformes	2.63	1.85	1.66
5	Perciformes	26.31	33.33	35.00
6	Acanthuriformes	2.63	1.85	1.66
7	Carangiformes	2.63	3.70	3.33
8	Elopiformes	2.63	1.85	1.66
9	Gonorynchiformes	2.63	1.85	1.66
10	Mugiliformes	2.63	3.70	3.33
11	Siluriformes	7.89	7.40	8.33
12	Tetraodontiformes	7.89	5.55	5.00
13	Cypriniformes	2.63	5.55	5.00
14	Synbranchiformes	2.63	1.85	1.66
15	Cichiliformes	2.63	3.70	3.33
6	Clupeiformes	5.26	9.25	10.00
17	Gobiiformes	2.63	1.85	1.66
8	Istiophoriformes	2.63	1.85	1.66
19	Scombriformes	2.63	3.70	3.33
20	Spariformes	2.63	1.85	1.66

Table 2. Taxa percentage composition of families, genera and species of fishes under various orders

Table 3. Trophic levels and habitat of ichthyofaunal species at Gosthani estuary

	Trophic level			Habitat
Herbivorous	Omnivorous	Carnivorous	Brackish water &	Brackish water &
(2.0–2.5)	(2.6–3.5)	(3.6–4.50	Marine	Freshwater
6.66	55.00	38.33	76.66	55.00

Fig. 2. Taxa of various orders

According to IUCN [14] status in the present investigation, out of 60 species contributed to 65.00% are least concern (LC), followed by

23.33% not evaluated (NE), 5.00% are data deficient (DD), 3.33% are near threaten (NT) and vulnerable (VU) Table 4. Fig 7. Harati and Rama

Rao [15] reported to majority of the species are under Least Concerned species IUCN [14] status the ichthyofaunal diversity were recorded in the current investigation at Kalingapatnam estuary. Abhishek et al. [16] reported 48 species belonged to Least Concern (LC) category, two species be -longed Data Deficient (DD) and 10 species belonged to Not Evaluated (NE) category in Sasihithlu Estuary. Mohanty et al., [25] accounted of faunal characteristics for 129 commercially important species is provided. The checklist also documents 48 threatened species and 103 species under different categories of conservation status in Chilika Lake, Odisha. Fullontona et al. [17] Out of 87 species that are reported to Least Concerned species (37) category, followed by Not Assessed (32).Two species reported here are found to be in Vulnerable, while 04 species be long to Near Threatened category, according to IUCN Red list status at Panchupada estuary, Odisha. The threatened piscine species position were mentioned by Rama Rao [26] Gotta Barrage at Hiramandalam, Rama Rao, and Ramachandra Rao. [27] Narayanapuram Anicut at Nagavali River [28].

Table 4. Percentage composition of IUCN (2024) threatened species status

IUCN (2024)	NT	LC	DD	NE	VU
No. of species	2	39	3	14	2
% contribution	3.33	65.00	5.00	23.33	3.33

Human usage	commercial	minor commercial	highly commercial	aquarium	bait	game fish	public aquarium
% composition	66.6	28.3	16.6	18.3	6.6	18.3	8.3

Table 5. The percentage composition of fishery usage at various levels

Fig. 3. Taxa composition

Fig. 4. Trophic levels

Jaya et al.; Uttar Pradesh J. Zool., vol. 45, no. 12, pp. 89-101, 2024; Article no.UPJOZ.3517

Fig. 5. Fishery usage

4. CONCLUSION

The study thoroughly investigated the entire number of fish that are biologically synonymous

with the Gosthani estuary. This report provides firsthand information on ichthyofaunal diversity. The different contributions of dominant species in each habitat resulted in variances in assemblage structures. The fish assemblage in the freshwater zone was dominated by common freshwater species, whereas marine juveniles were closely linked to the estuarine ecology.

DECLARATION

The methodology was collaboration between both authors, KRR and VH, who contributed to the completion of this work and also carried out the morphometric, meristic, trophic level, and IUCN status analyses of the wild fish. The final manuscript was read and approved by both writers.

ETHICAL APPROVAL

This study was conducted according to international ethical standards set by the Institutional Animal Care and Use Committee.

ACKNOWLEDGEMENTS

The author would like to thank to the Commissioner, Commissionerate of Collegiate Education, Andhra Pradesh, Dean, Andhra University, TDR-HUB and Principal Dr. I. Vijaya Babu, Dr. V. S. Krishna Govt. Degree college, Visakhapatnam for providing necessary facilities.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Georgios Vagenas, Anthi Oikonomou, Paraskevi K. Karachle, Olga Petriki, Maria Th. Stoumboudi. Trophic Patterns of Freshwater Fish across the Balkan Biodiversity Hotspot. Water. 2022;14:1112; 1-13.
- Joo Myun Park, Ralf Riedel, Hyun Hee Ju, Hee Chan Choi. Fish Assemblage Structure Comparison between Freshwater and Estuarine Habitats in the Lower Nakdong River, South Korea. J. Mar. Sci. Eng. 2020;8(7):496.
- Schuchardt B, U Haesloop, M. Schirmer. The tidal freshwater reach of the Weser estuary: Riverine or estuarine? Neth J Aqu Eco. 1993;27:215–226.
- 4. Jayaram K. The freshwater fishes of the Indian re-gion. Narendra Publishing House Delhi, India. 1999;551.

- 5. Talwar PK, Kacker R. Commercial Sea fishes of India. The Director, Zoological Survey of India,Calcutta. 1984;1-997.
- Barman RP. Pisces: Freshwater Fishes, In: State Fauna Series 5, Fauna of Andhra Pradesh. Part-I, Z S I. 1993;89– 334:334.
- 7. Day F. The fishes of India; being a natural history of the fishes known to inhabit the seas and fresh waters of India, Burma, and Ceylon. Vol. 1. Jagmander Book Agency, New Delhi. 1994;778.
- 8. Jayaram KC. The Freshwater Fishes of Indian Region Narendra Publication House, New Delhi, 2nd Edition; 2011.
- 9. Munro ISR. The marine and fresh water fishes ofCeylon. Biotech Books, Delhi. 2000;349.
- Nath P, Dey SC. Fish and Fisheries of North Eastern India (Arunachal Pradesh). Narendra Publishing House, Delhi. 2000; 217.
- 11. Talwar PK, Jhingran AG. Inland fishes of India and adjacent countries Oxford andIBH Publishing Co. Pvt. Ltd., New Delhi, Bombay and Calcutta. 1991;1 (2):1158.
- 12. Froese R, D. Pauly (eds.). FishBase; 2023. Available:www.fishbase.org.Electronic version accessed. 01 Oct 2021.
- Fischer W, Bianchi, G. FAO species identifi -cation sheets for fishery purposes: Western IndianOcean (Fishing Area 51). Food and Agricultural Organization of the United Nations. 1984;1–6.
- IUCN The IUCN Red List of Threatened Species. 2024;2021-3. Available:https://www.iucnredlist.org. Accessed on 01 Oct 2023.
- 15. Harathi VK. Rama Rao. Ichthyofaunal diversity in the freshwater tidal stretch along the Kalingapatnam estuary, Srikakulam, Andhra Pradesh, India. Journal of Advanced Zoology. 2023;44(5); 167-178.
- Abhishek Bharadwaj R, Devi Prasad AG. Assessment of Ichthyofaunal Diversity in Sasihithlu Estuary of Dakshina Kannada. J. Fish Sci. 2021;3(01):30-36.
- Fullontona S, S Royb, S R Mohantyb, S Routa, R K Mishraa, Anil Mohapatra. Ichthyofaunal diversity of Panchupada estuary, Odisha, India. Ind J Geo Mar Sci. 2019;49(07):1302-1307.
- Bassoucalingam Kumaran, Sowjanya Naikar Kambala, Jayaraman Nadarajan. Assessment of Ichthyo-faunal Diversity in

Giriyampeta Estuary, Yanam (U.T.of Puducherry), Bulletin of Environment, Pharmacology and Life Sciences. 2012; 19[9]:17-25.

- 19. Ghosh AU, Bhaumik, BB. Satpathy. Fish diversity of Subarnarekha Estuary in relation to salinity. J Inland Fish Soci Ind. 2011;43(1):51–61.
- Bijukumar A, S Sushama. Ichthyofauna of Ponnani Estuary, Kerala. J Mar. Bio. Asso. Ind. 2000; 42(1–2):182–189.
- 21. Ramanujam MK, Devi T. Indra. Ichthyofaunal diversityof the Adyar Wetland complex, Chennai, Tamil Nadu, southernIndia. J Thre Taxa. 2014;6(4): 5613–5635.
- 22. Mukherjee S, A. Chaudhuri, N. Kundu, S. Mitra, S. Homechaudhuri. Comprehensive Analysis of Fish Assemblages in Relationto Seasonal Environmental Variables in an Estuarine River of Indian Sundarbans. Estuaries and Coasts. 2013; 36:192–202.
- Rama Rao K, Jaya P, Prameela J, Shyamala K, Radha S, Sharmila B. Taxonomic Check List of Ichthyofaunal Diversity in Gosthani River at Tagarapuvalasa, Visakhapatnam, Andhra Pradesh, India. Uttar Pradesh Journal of Zoology. 2024;45(10):57–64.

- 24. Chicharo MAL, Chicharo, P. MoraisInterannual differences of ichthyofauna structure of the Guadiana estuary andadjacent coastal area (SE Portugal/SW Spain): Before and after Alqueva dam construction. Estuarine, Coastal and Shelf Science. 2006;70:39–51.
- Mohanty S. K, S.S. Mishra, M. Khan, R.K. Mohanty, A. Mohapatra, K. Ajit. Ichthyofaunal diversity of Chilika Lake, Odisha, India:an inventory, assessment of biodiversity status and comprehensive systematic checklist (1916–2014). 2015; 11(6):1–19.
- 26. Rama Rao K. Ichthyofaunal diversity of Gotta Barrage at Hiramandalam, Vamsadhara River, Srikakulam Dt. Andhra Pradesh, India. International Journal of Zoology Studies. 2023;8(2): 23-28.
- Rama Rao KR, Ramachandra Rao. Ichthyofaunal Diversity of Narayanapuram Anicut at Nagavali River, Srikakulam District of Andhra Pradesh, India. U P J Zoo. 2021;42(19):24-35.
- 28. Ray P, Giridhar MJ, A. Johanson, K. Sivakumar. An overview of the fish diversity and their threats inthe Gowthami-Godavari Estuary in Andhra Pradesh, India. J Thr Tax. 2022;14(8): 21588–21604.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://prh.mbimph.com/review-history/3517