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Abstract 
 
In this paper we generate a new family of odd point ternary non-stationary interpolating 
subdivision schemes by using Lagrange identities. It is to be observed that the limiting ellipse, 
generated by proposed schemes compared to the existing non-stationary interpolating schemes, 
has less deviation from being an exact ellipse. The proposed non-stationary schemes are 
asymptotically equivalent to converging stationary schemes [1,2,3,4,5,6]. The performance and 
comparison of the schemes are verified by examples. 

Keywords: Subdivision, interpolation, non-stationary, smoothness, tension control, conics    
reproduction 

 

1 Introduction 
 
Subdivision defines a curve or surface from an initial control mesh by recursive refinement. 
Starting with the coarse control points �� = ���� | 	 ∈ ℤ�, recursive application of the subdivision 
rule �� defines a new set of points �� = ���� | 	 ∈ ℤ�, which can be written as 
 �� = ��. . . ����,    � ∈ ℤ�. 
 
A subdivision scheme is said to be stationary if �� is the same regardless of �; otherwise it is 
called non-stationary [7]. The important schemes for applications should allow controlling the 
shape of the limit curve and being capable of reproducing families of curves widely used in 
Computer Graphics, such as conic sections and polynomials. Effectiveness of subdivision 
algorithms, their flexibility and ease make them appropriate for many relative computer graphics 
applications. 
 
Here we present brief survey of existing literature. Jena et al. [7] proposed a 4-point binary non-
stationary interpolating scheme. This scheme reproduces elements of the linear space spanned by �1, �	�����, cos�����. Beccari et al. [8] proposed a non-stationary uniform tension controlled 
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interpolating 4-point scheme with a single tension parameter having �  continuity. Daniel and 
Shunmugaraj [9] presented 3-point �  stationary and non-stationary schemes. They also proposed �! non-stationary approximating scheme in [10] and 4-point ternary interpolating non-stationary 
scheme [11] spanned by �1, �	�����, cos�����. Beccari et al. [12] proposed 4-point ternary non-
stationary interpolating scheme with tension control. They proposed the shape controlled ternary 
interpolatory subdivision in [13]. Further they presented the interpolating and approximating 
univariate subdivision by a unified framework [14]. Conti et al. [15] proposed approximating to 
interpolatory non-stationary subdivision schemes with the same generation properties. In [16], 
they also design interpolatory subdivision schemes by solving Bezout-like polynomial equations. 
Conti and Romani [17] presented algebraic conditions on non-stationary subdivision symbols for 
exponential polynomial reproduction. Charina et al. [18] proposed reproduction of exponential 
polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix. 
Siddiqi and Younis [19,20] proposed 3-point ternary non-stationary approximating subdivision 
scheme and 4-point quaternary interpolating non-stationary subdivision scheme, respectively. 
Garnier [21] determined the characteristic elements for proper conic defined by three weighted 
points. He also proposed algorithms to represent an arc of central conic building. Garnier et al. 
[22] proposed iterative subdivisions for the construction of arcs, ellipses and hyperbolas in the 
Euclidean affine plane and mass points. Druoton et al. [23] constructed Dupin cyclide 
characteristic circles using non-stationary Iterated Function Systems. Furthermore, there are some 
other well known schemes [11,24,25,26] in the literature suitable for generating basic shapes in 
computer graphics. 
 
Note that the existing non-stationary ternary interpolating schemes are the counterpart of existing 
stationary schemes (without parameter) but our proposed schemes are non-stationary counterpart 
of existing parametric stationary schemes. This property gives advantage to control the shape of 
the limit curve than the schemes without parameter.  
 
We compare the existing non-stationary ternary schemes, suitable to generate ellipse, with the 
proposed schemes by the following strategy: 
 

• Introduce deviation error function 
• Refine initial control polygon with 4, 5 and 6 initial control points by different non-

stationary schemes to generate ellipse 
• Compute deviation error and compare the results. 

 
We conclude that the limiting ellipse to be an exact ellipse, generated by the proposed scheme, has 
less deviation error as compared with the limiting ellipse produced by the different non-stationary 
ternary schemes. 
 
This paper is organized as follows. In Section 2, we construct some results which are useful for 
Section 3. In Section 3, we present odd point non-stationary ternary interpolating schemes 
providing the user with a tension parameter that, when increased within its range of definition, can 
generate continuous limit curves showing considerable variations. Section 3 also provides the 
convergence of proposed interpolating schemes. Section 4 is devoted for comparison and 
conclusion. 
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2 Preliminaries 
 
Given a set of control points �� = ���� ∈ ℝ ∶ 	 ∈ ℤ� at level 0, a ternary subdivision scheme for 
designing curves generates recursively a new set of control points ��� = ���� � ∶ 	 ∈ ℤ� at the �� + 1�%& level by a subdivision rule: 
 ���� = ' (�)*+� ���+∈ℤ ,    	 ∈ ℤ. 
 
The set of coefficients (� = �(�� ∶ 	 ∈ ℤ� determines the subdivision rule at level � and is termed 
as the mask at � -th level. If the mask (�  is independent of � , the subdivision scheme �,-  
corresponding to the mask (� is called stationary otherwise it is called non-stationary. 
 
Theorem 2.1. [Equation (2.1), [24]] Two ternary schemes �,-  and �.-  are asymptotically 
equivalent if 

'/�,- − �.-/
∞

∞

�1 < ∞, 
where 

/�,-/
∞

= 3(� 4'5(*�� 5, '5(*�� � 5,   �∈ℤ '5(*��!� 5 �∈ℤ  �∈ℤ 6. 
 
The proof of the following theorem is exactly similar by [11] to the proof given in (Theorem 8, 
[24]). 
 
Theorem 2.2. Let �,-  and �, be two asymptotically equivalent subdivision schemes having finite 
masks of the same support. Suppose �,-   is non-stationary and �, is stationary. If �, is �7 and 

' 37�/�,- − �,/
∞

∞

�1� < ∞, 
 
then the non-stationary scheme �,-  is �7. 
 
Deslauriers and Dubuc [1] presented the idea to construct subdivision schemes using Lagrange 
interpolation. Here we also use Lagrange polynomial to construct non-stationary schemes. First 
we define Lagrange fundamental polynomials of degree 2� − 2 and 2� − 3, for any integer � ≥1, corresponding to nodes ��+�)�;) �;) 

 and ��+�)�;) �;)!  respectively, 

                <=>!;)!��� = ∏ =)=@=>)=@;) =@1)�;) �,=>A=@ ,    �7 = −�� − 1�, −�� − 2�, … , �� − 1�,          (2.1) 

 
and 
 

    <=>!;)*��� = C � − �+�7 − �+
;) 

=@1)�;)!�,=>A=@
,    �7 = −�� − 2�, −�� − 3�, … , �� − 1�.                     �2.2� 
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By using algebraic operations, we get following expressions: 

D 1<=>!;)! E *F = �GH�IGH�JIGK�!JJIGJ�HGJM>��IGH�!�) �IGM>GH�;)=>) �!�;�=>) �! ,      (2.3)         

 
   

  D!1<=>!;)* E *F = �GH�IGH�JIGN�!JJIGO�HGJM>��IGK�!�) �IGM>GH�;)=>) �!�;�=>)!�! = PHPK.                                                     (2.4)    

     
 
Further, for �7 = −� + 1 in (2.3), we get       
          D* = <);� !;)! E *F = �) �GIQH�*;)*�!*JIGJ�;) �!�!;)!�!.                                              (2.5) 

 
 Furthermore, we have 
   R* = D − D! = �) �M>�*;)*�!*JIGJ�;) �!�;)=>) �!�;�=>) �!.      (2.6)  

   S=> = TH)TKTJ = PJTJ.                                                                                                        (2.7)   

 
For more detail, we may refer to [6]. By perturbing expression �2.4� and (2.7) with sine function 
we get     
 

    SV;,=> = WXYE ZHJ-QHFWXYE ZKJ-QHF ,                                                                                                            (2.8)      

 

   S[;,=>=  
WXYE ZJJ-QHF
WXYE \JJ-QHF ,                                                                                                            (2.9)  

 
where �7 = −� + 2, . . . , � − 1 and � ≥ 1 is any integer.            
 

3 (2n-1)-Point Ternary Interpolating Scheme 
 
In this section, we present general explicit formulae to construct the mask of �2� − 1� −point 
ternary interpolating subdivision scheme.  
 
Given � ≥ 2, the mask of following (2� − 1� −point ternary interpolating scheme 
 

  ]�*�) �� = ∑ _)=>�,!;) ���=>�;) =>1)�;) � ,�*�� = ��� ,                                     �*�� �� = ∑ _=>�,!;) ���=>� ,;) =>1)�;) �
`       (3.1)         

 
can be generated by  
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] _);� �,!;) = WXYE aJ-QHFWXYE HJ-QHF ,         b < 1,                                                                                 
           _=>�,!;) =  SV;,=> + S[;,=>b,       �7 = −� + 2, … , � − 1,                                                  `(3.2) 

 
where SV;,=>  and S[;,=> are defined by (2.8) and (2.9).  
 
Examples: 
 
Substituting � = 2 in (3.1) and (3.2), we get new 3-point ternary interpolating scheme with free 
parameter b 
                                                    �*�) �� = _ �,*��) � + _��,*��� + _) �,*��� � ,  
 �*��� = ��� ,                                                         
                                    �*�� �� = _) �,*��) � + _��,*��� + _ �,*��� � ,                                                      

        (3.3) 
 
where 
 

_) �,* = sin E e*-QHFsin E  *-QHF, 
 

_��,* = sin E !*.*-QHFsin E  *-QHF − sin E !f.*-QHFsin E  f.*-QHF b 

 
and 
 

_ �,* = sin E  *.*-QHFsin E  *-QHF + b. 
 
Substituting � = 3 in (3.1) and (3.2), we get new 5-point ternary interpolating scheme with free 
parameter b 
             �*�) �� = _!�,g��)!� + _ �,g��) � + _��,g��� + _) �,g��� � + _)!�,g���!� ,  
      �*��� = ��� ,                                                                                                                                             
  �*�� �� = _)!�,g��)!� + _) �,g��) � + _��,g��� + _ �,g��� � + _!�,g���!� ,                                             (3.4) 
 
where 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(1), 133-152, 2014 
 
 

138 
 

_)!�,g = sin E e*-QHFsin E  *-QHF , 
_) �,g = sin E  *-QH h− gi − 4bjFsin E  *-QHF  , 

_��,g = sin E  *-QH h!�!k + 6bjFsin E  *-QHF  , 
_ �,g = sin E  *-QH h �!k − 4bjFsin E  *-QHF   

 
and 
 

_!�,g = sin E  *-QH h− mi + bjFsin E  *-QHF  . 
 
Remark 3.1. The sum of weights of the scheme (3.3) tends to one as � → ∞. 
 

ξ
o = _) �,* + _��,* + _ �,* = sin E e*-QHFsin E  *-QHF + sin E !*.*-QHFsin E  *-QHF − sin E !f.*-QHFsin E  f.*-QHF b + sin E  *.*-QHFsin E  *-QHF + b. 

 
This implies 
 

ξ
o = sin E e*-QHFsin E  *-QHF + sin E !*.*-QHFsin E  *-QHF − 2b cos p 19. 3�� r + sin E  *.*-QHFsin E  *-QHF + b. 

 

Using the inequalities sin ( ≥ ( cos ( for 0 ≤ ( ≤ u!,  WXY , ≥  , for 0 ≤ ( ≤ u!, we have 

 

ξo ≥ e*-QH cos E e*-QHF *-QH + !*.*-QH cos E !*.*-QHF + *-QH − 2b cos p 19. 3�� r +  *.*-QH cos E  *.*-QHF + *-QH + b. 
 
This implies 
 

ξ
o ≥ b cos E b3�� F + p23r cos p 23. 3�� r − 2b cos p 19. 3�� r + p13r cos p 13. 3�� r + b. 

 
Thus ξo ≥ 1 when � → ∞. 
 

Again, using inequalities csc ( ≤  , vwW , for 0 ≤ ( ≤ u! , sin ( ≤ ( for 0 ≤ ( ≤ u!,  we have 
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ξ
o ≤ e*-QH *-QH cos E  *-QHF + !*.*-QH *-QH cos E  *-QHF − 2b cos p 19. 3�� r +  *.*-QH *-QH cos E  *-QHF + b. 

 
This implies 

ξ
o ≤ bcos E  *-QHF + 23cos E  *-QHF − 2b cos p 19. 3�� r + 13cos E  *-QHF + b. 

 
 
Thus ξo ≤ 1 when � → ∞. So ξo = 1 for � → ∞. 
 
Similarly, the sum of weights of the scheme (3.4) tends to one as � → ∞. 
 
3.1 Convergence of 3- and 5-Point Ternary Schemes 
 
Here first we prove some lemmas by using following inequalities:- 
 WXY ,WXY . ≥ ,.  for 0 < ( ≤ x < u! , ( csc ( < x csc x  for 0 < ( < x < u!  and cos ( < WXY ,,   (or csc ( < , vwW ,) for 0 < ( < u!. Then with the help of these lemmas we will show that proposed non-

stationary schemes are asymptotically equivalent to existing stationary schemes. 
 
Lemma 3.1. 
 
For 3-point non-stationary scheme (3.3) following inequalities hold: 
 �	� ω ≤ _) �,* ≤ evwWE HJ-QHF 
 �		� 

!* − 2b ≤ _��,* ≤ !*vwWE HJ-QHF − !evwWE Hy.J-QHF 
 �			� 

 * + b ≤ _ �,* ≤  *vwWE HJ-QHF + b. 
 
Proof. We present the proof of �	� and the proof of �		� and �			� are similar. Note that 
 sin E e*-QHFsin E  *-QHF ≥ e*-QH *-QH = b. 
 
Again consider 
 sin E e*-QHFsin E  *-QHF ≤ b3�� csc p 13�� r ≤ e*-QH *-QH cos E  *-QHF = bcos E  *-QHF. 
This proves �	�. 
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From Lemma 3.1, we get following lemma. 
 
 
Lemma 3.2. 
 

For scheme (3.3) with b = −  * + z, for z ∈ E!f ,  *F, we have 

 �	� −  * + z ≤ {) �,* ≤ )HJ�|vwWE HJ-QHF 
 �		� 

m* − 2z ≤ {��,* ≤ NJ)!|vwWE HJ-QHF 
 �			� z ≤ { �,* ≤ |vwWE HJ-QHF. 
 
Lemma 3.3. 
 
For scheme (3.3) following inequalities also hold: 
 �	� 5_) �,* − ω5 ≤ C� E  *K-F 

 �		� ~_��,* − E!* − 2ωF~ ≤ C E  *K-F 

 �			� ~_ �,* − E * + ωF~ ≤ C! E  *K-F 

 
where constants ��, �  and �! are independent of �. 
 
Proof. The inequality �	� can be proved by using �	� of Lemma 3.1: 
 

5_) �,* − ω5 = b �1 − cos E  *-QHFcos E  *-QHF � ≤ b �2 sin! E !  *-QHFcos E  *-QHF � ≤ p14r � 2b3!��! cos E  *-QHF�. 
 
This implies 
 5_) �,* − ω5 ≤ p 13!�r p b18 cos�1�r ≤ �� p 13!�r. 
 
The proofs of �		� and �			� are similar. 
 
From Lemma 3.3, we get following lemma. 
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Lemma 3.4. 
 

For scheme (3.3) with b = −  * + z, for z ∈ E!f ,  *F, following inequalities hold: 

 �	� ~_) �,* − E−  * + zF~ ≤ C� � E  *K-F 

 �		� ~_��,* −  Em* − 2zF~ ≤ C�  E  *K-F 

 �			� 5_ �,* − z5 ≤ C� ! E  *K-F 

 
where constants ���, ��  and ��! are independent of �. 
 
Remark 3.2. From �	�-�			� of Lemma 3.4, we observe that 
 _) �,* → −  * + z, _��,* →  m* − 2z  and _ �,* → z,  as � → ∞. 
 

This means that the mask of the scheme (3.3) with b = −  * + z, for z ∈ E!f ,  *F converge to the 

mask of the scheme [4]. 
 

Similarly, it is to be mentioned that for � = 2, b = ( where ( = x −  * , b = −  f, b = −  * + z 

and b = −  * + z in (3.1), (3.2) and by proving/using similar inequalities like in Lemma 3.1 and 

Lemma 3.3, we get non-stationary counter part of stationary schemes of [2,3,4,6] respectively.  
  

Theorem 3.5. The proposed 3-point non-stationary scheme (3.3) with b = −  * + z, z ∈ E!f ,  *F is � . 
Proof. We claim that 
 

' 3�/�,- − �,/
∞

< ∞,∞

�1�  

 
where 
 

/�,- − �,/
∞

= 3(� �'5(�)*+� − (�)*+5 ∶ 	 ∈ 0, 1, 2+∈ℤ �. 
 

From scheme �,- defined by (3.3) with b = −  * + z and scheme �, of [4] 

 

' 3�∞

�1� /�,- − �,/
∞

= ' 3�∞

�1� ��_) �,* − p− 13 + zr� + �_��,* − p43 − 2zr� + 5_ �,* − z5�. 
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From �	� of Lemma 3.4, it follows that 
 

' 3� �_) �,* − p− 13 + zr� ≤ ' 3���� p 13!�r∞

�1�
∞

�1� < ∞. 
Similarly from �		� and �			� of Lemma (3.4), we see that other terms are also less than ∞. Hence ∑ 3�/�,- − �,/

∞
< ∞.∞�1�  Since stationary scheme of [4] is �  therefore by Theorem 2.2, 

proposed scheme (3.3) with b = −  * + z is � . 

 
Now we will discuss the continuity of 5-point scheme (3.4). For this first we will prove the 
following lemmas. Proof of these lemmas are similar to the proof of Lemmas 3.1-3.4. 
 
Lemma 3.6. 
 
For 5-point non-stationary scheme (3.4), following inequalities hold: 
 �	� ω ≤ _)!�,g ≤ evwWE HJ-QHF 
 �		� − gi − 4b ≤ _) �,g ≤ − gi vwWE �J-QHF − mevwWE OKNJ.J-QHF 
 �			� 2027 + 6b ≤ _��,g ≤ 2027cos E !*-QHF + 6bcos E g!m*.*-QHF 

 �	�� 1027 − 4b ≤ _ �,g ≤ 1027 − 4b cos p 20243. 3�� r 

 ��� − mi vwWE �J-QHF + b ≤ _!�,g ≤ − mi + b. 
 
From Lemma (3.6), we get following lemma: 
 
Lemma 3.7. 
 

For scheme (3.4) with b = mi + z, for z ∈ E− g �i , − k �!F, we have 

 

�	�  481 + z ≤ _)!�,g ≤  mi + zcos E  *-QHF 

 �		� − k!k − 4z ≤ _) �,g ≤ ) �K�)m|vwWE HJ-QHF 
�			� 2827 + 6z ≤ _��,g ≤ !i!k + 6zcos E  *-QHF 
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�	�� 1481 − 4z ≤ _ �,g ≤  mi − 4zcos E  *-QHF                                                                                                                      
 ��� z ≤ _!�,g ≤ |vwWE HJ-QHF. 
Lemma 3.8. 
 
For scheme (3.4) following inequalities also hold: 
 �	� 5_)!�,g − ω5 ≤ g� E  *K-F 

 �		� ~_) �,g − E− gi − 4bF~ ≤ g E  *K-F 

 �			� ~_��,g − E!�!k + 6bF~ ≤ g! E  *K-F 

 �	�� ~_ �,g − E �!k − 4bF~ ≤ g* E  *K-F 

 ��� ~_!�,g − E− mi + bF~ ≤ gm E  *K-F 

 
Where constants g�, g , g!, g* and gm are independent of �. 
 
From Lemma 3.8, we get following lemma. 
 
Lemma 3.9. 
 

For scheme (3.4) with b = mi + z, for z ∈ E− g �i , − k �!F, following inequalities hold: 

 �	� ~_)!�,g − E  mi + zF~ ≤ ǵ� E  *K-F 

 �		� ~_) �,g − E− k!k − 4zF~ ≤ ǵ E  *K-F 

 �			� ~_��,g − E!i!k + 6zF~ ≤ ǵ! E  *K-F 

 �	�� ~_ �,g − E mi − 4zF~ ≤ ǵ* E  *K-F 

 ��� 5_!�,g − z5 ≤ ǵm E  *K-F 

Where constants ǵ�, ǵ , ǵ!, ǵ* and ǵm are independent of �. 
 
Remark 3.3. It is to be noted that for negative values of b, the trigonometric inequalities does not 
affect the proof of our main Lemma 3.3 and Lemma 3.8. 
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Remark 3.4. From �	� − ��� of Lemma 3.9, we observe that the mask of scheme (3.4) with b =mi + z, z ∈ E− g �i , − k �!F converge to the mask of the scheme �, of [4]. 

 _)!�,g →  mi + z, _) �,g →  − k!k − 4z, _��,g →  !i!k + 6z,  _ �,g →   mi − 4z and _!�,g → z,  as � → ∞. 
Similarly, for � = 3 , b = g!m*,  b =  mi + z  and b =  mi + z  in (3.1), (3.2) and using similar 

inequalities as in Lemma 3.6 and Lemma 3.8, the proposed (3.4) scheme becomes non-stationary 
counterpart of the 5-point stationary schemes of [3,4,6] respectively. 
 

Theorem 3.10. The proposed 5-point non-stationary scheme (3.4) with b =  mi + z,  for z ∈E− g �i , − k �!F is �!. 

Proof. From scheme �,- defined by (3.4) with b =  mi + z, for z ∈ E− g �i , − k �!F and scheme �, 

of  [4] 
 

' 3!�∞

�1� /�,- − �,/
∞

= ' 3!�∞

�1� � �_)!�,g − p  481 + zr� + �_) �,g − p− 727 − 4zr� +  �_��,g − p2827 + 6zr� + �_ �,g − p1481 − 4zr�
+ 5_!�,g − z5�. 

 
By using inequalities �	� − ��� of Lemma 3.9, we see that ∑ 3!�∞�1� /�,- − �,/

∞
< ∞. Since 

stationary scheme of [4] is �! therefore by Theorem 2.2, proposed scheme (3.4) is �!. 
 
Remark 3.5. Relation with DD schemes: The proposed non stationary ternary interpolating 
schemes are counter part of stationary DD schemes [1]. 
 

• From Lemma 3.1 and Lemma 3.3 with b = 0 and � → ∞, we get 2-point ternary DD 
interpolating scheme. 

• For b = 0  and � → ∞  in Lemma 3.6 and Lemma 3.8, we get 4-point ternary DD 
interpolating scheme. Similarly, we get other DD ternary schemes. 

 

4 Comparison and Conclusion 
 
First we generate conic sections by using proposed schemes then we present comparison among 
proposed and existing non-stationary interpolating schemes. If the initial control points are chosen 
as values at equidistant points of a function ���� ∈ ��(��cos�D��, sin�D���, 0 < D < �, then the 
limit function of the scheme is the original function. In particular, if the initial control points are 
equidistance points and lie on a circle or an ellipse, the scheme generates a circle or an ellipse 
respectively. 
 

Numerical Examples: Here we take the set of equidistant points ��� = E( cos E!�u� F , x sin E!�u� FF, 	 = 0, 1, 2, … , �, � ≥ 4, as control points of initial control polygons of proposed 3-, 5-point non-
stationary schemes. For ( = 2, b = 1,  limiting curves generated by 3-, 5-point schemes are 
ellipses shown in Fig. 1(a) and 1(b). It is observed that for large values of b limit curves generated 
by proposed 3-point scheme passes near the initial control polygon whereas for small values of b 
limit curves generated by proposed 5-point scheme passes near the initial control polygon as 
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shown in Fig. 1(a) and 1(b). 
 
Analogously, by choosing a set of equidistant points from the parabolic equation ��! = 4(�� for a = 1 and hyperbolic equation E=K,K − �K.K = 1F where a = 3, b = 2 then limit curve is parabola and 

hyperbola as shown in Fig. 2(a) and 2(b). 
 
Comparison: In following, we numerically compare the exactness of limiting ellipses generated 
by different non-stationary subdivision schemes by using following function. 
 �� = 53(������ − 3	������5,                                                                                  (4.1) 
 
Where 
  ��� = ����� + ��! + �����! + ����� − ��! + �����!,     for      x! ≡ (! − �!                             (4.2) 

 
where ( = 2, x = 1 are semi-major and semi-minor axis respectively and  ���  are control points 
generated by subdivision scheme at �-th level of iteration for � ≥ 0. If the initial control points ��� 
lie on the ellipse then of course �� will be zero. If �� = 0 for sufficiently large � then its mean 
scheme produce exact ellipse. If �� ≠ 0 then ��� do not lie on same ellipse. Since �� measures the 
maximum deviation of limiting ellipse from being an exact ellipse therefore we can present 
comparison among different limiting ellipses generated by proposed and existing non-stationary 
schemes. 
 
By taking four, five and six initial control points, we first generate limiting ellipses by proposed 3-
, 5-point and existing non-stationary schemes of [7,8,11,12,13,26] then we compute deviation 
error �� . Deviation of proposed 3-, 5-point ternary non-stationary interpolating schemes is 
calculated at parametric values -0.1122, 0.0228, respectively. 
 

• In case of 4 initial control points: Limiting ellipses produced by different non-stationary 
are shown in Fig. 3(a-e) while deviation errors in graphical form are shown in Fig. 5(a) 
and Fig. 5(b). 

• In case of 5 initial control points: Limiting ellipses are depicted in Fig. 3(f-j) while 
graphical representations of deviation errors are shown in Fig. 5(c) and 5(d). 

• In case of 6 initial control points: Limiting ellipses are painted in Fig. 4(a-e) while 
graphical representation of deviation errors are shown in Fig. 5(e) and 5(f). 

 
Deviation error in limiting ellipses, produced by different schemes with 4, 5 and 6 initial control 
points, in tabular form are shown in  Table 1. From these figures and table it is clear that the 
limiting ellipses to be an exact ellipses, generated by proposed scheme, have less deviation 
compare to the limiting ellipses produced by the schemes of [7,8,11,12,13,26]. 
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Table 1.  Comparison of deviation error (D. Error) with existing non-stationary 
interpolating schemes: Here � represents the number of initial points of control polygon 

 
Schemes N D. Error N D. Error N D. Error 
4-point binary [7,8,26] 
3-point ternary [26] 
4-point ternary [11] 

4 
4 
4 

0.18501 
0.30308 
0.20160 

5 
5 
5 

0.20398 
0.44910 
0.20399 

6 
6 
6 

0.05910 
0.17196 
0.06478 

4-point ternary [12] 
4-point ternary [13] 
3-point proposed 
5-point proposed 

4 
4 
4 
4 

0.19510 
0.20165 
0.18957 
0.08104 

5 
5 
5 
5 

0.20365 
0.20409 
0.19579 
0.04937 

6 
6 
6 
6 

0.06219 
0.06483 
0.05865 
0.01106 

 
4.1 Conclusion and Future Work 
 
By using Lagrange identities we construct new families of univariate, ternary, non-stationary 
interpolating subdivision schemes for curve design with a single tension parameter which enable 
the scheme to produce more precise result. The proposed schemes are non-stationary counterpart 
of the stationary schemes [1,2,3,4,5,6] so the parametric ranges of continuity of proposed non-
stationary schemes are same as of the counter stationary schemes. Fig. 1 illustrates that the 
proposed scheme gives great flexibility to geometric designers for the creation of smooth curves 
according to their own requirements by choosing appropriate value of parameter. 
 
Here are some tips for future work proposed by the anonymous referee: Let {�  and { be two 
curves defined on [0,1]. Let S = {��1� = �−2, 2�  and   = { �0� = �2,2� , the components of 
tangent vector to {�(resp. { ) at A (resp. B) is (1, 1) (resp. (1, -1)). Is it easy to compute a 
subdivision of the conic which realizes a ¡ −blend between these two curves using proposed 
method in this article? Is it possible to choose a circular arc to blend these curves? If someone 
wants to subdivide a hyperbola arc, could someone have an end point on a branch and the other 
end point on the other branch? Articles [21,22,23] might help to find the answers of above 
questions. 
 

            
                           (a) Scheme (3.3)                                                  (b) scheme (3.4) 
 

Fig. 1. (a) Shows the increase in tightness of the curve with increasing ¢ and (b) Shows the 
increase in tightness of the curve with decreasing ¢. 
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                                 (a)                                                                                 (b) 

 
Fig. 2. Represents parabola and hyperbola by proposed 3-, 5-point non-stationary 

interpolating schemes after two iterations . 
 

 
(a) [7,8,26]                                     (b) [26]                                   (c) [11] 

  

 
            (d) Scheme (3.3)                       (e) scheme (3.4)         
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(f) [7,8,26]                                 (g) [26]                                   (h) [11] 

         

                                                              
             (i) Scheme (3.3)                         (j) scheme (3.4)    

 
Fig. 3. (a) and (f) Shows the ellipse produced by non-stationary binary schemes of [7,8,26], 
(b), (g), (c) and (h) show the ellipse produced by non-stationary ternary schemes of [26,11], 

(d), (i), (e) and (j) show the ellipse produced by proposed 3-, 5-point non-stationary 
interpolating schemes respectively 

 

 
                  (a) [7,8,26]                                     (b) [26]                                   (c) [11]
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           (d) Scheme (3.3)                       (e) scheme (3.4)    
 

Fig. 4. (a) Shows the ellipse produced by non-stationary binary scheme of [7,8,26], (b) and 
(c) show the ellipse produced by non-stationary ternary scheme of [26,11], (d) and (e) show 
the ellipse produced by proposed 3-, 5-point non-stationary ternary interpolating schemes 

respectively 
 

 
                        (a) 4 initial points                                                 (b) 4 initial points 
 

       
                         (c) 5 initial points                                                 (d) 5 initial points              
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                         (e) 6 initial point                                                       (f) 6 initial point 
 

Fig. 5. Graphs show the deviation of proposed and existing non-stationary interpolating 
schemes 
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