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Abstract

In this paper we generate a new family of odd point termemy-stationary interpolating
subdivision schemes by using Lagrange identities. thh ise observed that the limiting ellipse,
generated by proposed schemes compared to the existingationssty interpolating schemes
has less deviation from being an exact ellipse. The proposed atamaty schemes aie
asymptotically equivalent to converging stationary scheh@s3,4,5,6]. The performance and
comparison of the schemes are verified by examples.
Keywords: Subdivision, interpolation, non-stationary, osthness, tension control, conics
reproduction

1 Introduction

Subdivision defines a curve or surface from an initiaitcd mesh by recursive refinement.
Starting with the coarse control poifts= {f,° | i € Z}, recursive application of the subdivision
rule S, defines a new set of poinf& = {f | i € Z}, which can be written as

f* =S, ..Sof% keL,.

A subdivision scheme is said to be stationar§,ifs the same regardless laf otherwise it is
called non-stationary [7]. The important schemes fgliegtions should allow controlling the
shape of the limit curve and being capable of reproducingliésmf curves widely used in
Computer Graphics, such as conic sections and polymamiEfectiveness of subdivision
algorithms, their flexibility and ease make them appederfor many relative computer graphics
applications.

Here we present brief survey of existing literatur@alet al. [7] proposed a 4-point binary non-
stationary interpolating scheme. This scheme reprodeleesents of the linear space spanned by
{1, sin(ax), cos(ax)}. Beccari et al. [8] proposed a non-stationary uniform tensomtrolled
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interpolating 4-point scheme with a single tension mpatar having:! continuity. Daniel and
Shunmugaraj [9] presented 3-poifit stationary and non-stationary schemes. They also propose
C? non-stationary approximating scheme in [10] and 4-point tgriméerpolating non-stationary
scheme [11] spanned KY, sin(ax), cos(ax)}. Beccari et al. [12] proposed 4-point ternary non-
stationary interpolating scheme with tension control. Theposed the shape controlled ternary
interpolatory subdivision in [13]. Further they presenthd interpolating and approximating
univariate subdivision by a unified framework [14]. Coritiak [15] proposed approximating to
interpolatory non-stationary subdivision schemes with theesgeneration properties. In [16],
they also design interpolatory subdivision schemes by soBémput-like polynomial equations.
Conti and Romani [17] presented algebraic conditions on taiosary subdivision symbols for
exponential polynomial reproduction. Charina et al. [18] progpasproduction of exponential
polynomials by multivariate non-stationary subdivision sok®mwith a general dilation matrix.
Siddigi and Younis [19,20] proposed 3-point ternary non-statip approximating subdivision
scheme and 4-point quaternary interpolating non-stationary subdivisheme, respectively.
Garnier [21] determined the characteristic elementgpfoper conic defined by three weighted
points. He also proposed algorithms to represent an acentfal conic building. Garnier et al.
[22] proposed iterative subdivisions for the construction of, allipses and hyperbolas in the
Euclidean affine plane and mass points. Druoton et al. [@8jstructed Dupin cyclide
characteristic circles using non-stationary Iterateddiion Systems. Furthermore, there are some
other well known schemes [11,24,25,26] in the literature ldeitbor generating basic shapes in
computer graphics.

Note that the existing non-stationary ternary interpatatichemes are the counterpart of existing
stationary schemes (without parameter) but our proposednssh&re non-stationary counterpart
of existing parametric stationary schemes. This propertysgadvantage to control the shape of
the limit curve than the schemes without parameter.

We compare the existing non-stationary ternary schemesblsuita generate ellipse, with the
proposed schemes by the following strategy:

* Introduce deviation error function

* Refine initial control polygon with 4, 5 and 6 initial contqmbints by different non-
stationary schemes to generate ellipse

e Compute deviation error and compare the results.

We conclude that the limiting ellipse to be an exact elligseerated by the proposed scheme, has
less deviation error as compared with the limiting ellipseduced by the different non-stationary
ternary schemes.

This paper is organized as follows. In Section 2, we cactstome results which are useful for
Section 3. In Section 3, we present odd point non-stationanarie interpolating schemes
providing the user with a tension parameter that, whenreased within its range of definition, can
generate continuous limit curves showing considerable vamati®action 3 also provides the
convergence of proposed interpolating schemes. Section deviested for comparison and
conclusion.
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2 Preliminaries

Given a set of control poinf® = {f° € R: i € Z} at level 0, a ternary subdivision scheme for
designing curves generates recursively a new set ofatqmtints f*+! = {fi’fr1 (i€ Z} at the
(k + 1) level by a subdivision rule:

K+l _ kK gk
i —Zai_3jfi, i €T

JeL

The set of coefficients® = {af : i € Z} determines the subdivision rule at lekeind is termed
as the mask at-th level. If the mask* is independent ok, the subdivision schemg, «
corresponding to the masgk is called stationary otherwise it is called non-stary.

Theorem 2.1. [Equation (2.1), [24]]Two ternary scheme$,x and S« are asymptotically

equivalent if
0
D la = Spell, <
k=1

Il = mafYlekd, Vbl Ylebo |

i€Z i€Z i€Z

where

The proof of the following theorem is exactly similar [dy] to the proof given in (Theorem 8,
[24]).

Theorem 2.2. LetS «x andS, be two asymptotically equivalent subdivision schemes having finite
masks of the same support. Suppge is non-stationary and, is stationary. Ifs, is C™ and

D 38 = Sall, <=,
k=0

then the non-stationary sche$ig: is C™.

Deslauriers and Dubuc [1] presented the idea to constuletivision schemes using Lagrange
interpolation. Here we also use Lagrange polynomial testtoct non-stationary schemes. First
we define Lagrange fundamental polynomials of de@ree 2 and2n — 3, for any integen >

1, corresponding to nodésj}i(_;_l) and{xj}:_j_l) respectively,

1 X=Xj

L () = ﬁ,-‘:—(n_l),xmm,-m. Xp=—Mm—-1),-(n-2),..,(n—-1), (2.1)
and
n-—1
X — Xj
203 (x) = L Xy =—(m—-2),-(n—23),..,(n—1). (2.2)
Xm — x]

x]-:—(n—z),xm:txj
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By using algebraic operations, we get following expressions
D" 13n-2)

ﬁ1=L§c:1_2 (1) — 3313 (1-3x9) (n—1)! (23)

3) T (~1)PFml(n—xp - 1) (ntxm-1)!

(- 1(3n-4)!
1

.BZ:L?c:ln_s (_) 331=5(1-3xy,) (n—2)! - ‘L’_1. (24)

3) T COM M (nmx - D4 —2)  Tp

Further, forx,, = —n + 1 in (2.3), we get

_y=n+1(an 2
B = 12173 (1) = Sy G 25

3 33n-3(n-1)!(2n-2)!"
Furthermore, we have

(-1)*m(3n-3)!
333 (n—1)!(n—xpm—1)!(n+xp, -1

T3=P1—f=

(2.6)

_ B1-P2 13
Ay, = 5 T 2.7)

For more detail, we may refer to [6]. By perturbing expms€2.4) and (2.7) with sine function
we get

nXm sm(%) 1 (28)
n _ sm(3;§rl)
An,xm_ Sin(sfil) ’ (29)

wherex,, = —n+2,...,n— 1 andn > 1 is any integer.
3 (2n-1)-Point Ternary Inter polating Scheme

In this section, we present general explicit formulaedostruct the mask ¢2n — 1) —point
ternary interpolating subdivision scheme.

Givenn = 2, the mask of followingZn — 1) —point ternary interpolating scheme

k+1 _ yn-1 k2n-1ck
3i—-1 = Lxpym=—(n-1) n—xm fi+xm ’
k _ rk
fzi =1 (3.1)
k+1 _ yn-1 k2n-1ck
3i+1 T Lxpy=—(n-1) nxm fi+xm'

can be generated by
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= , w<l1,
N-n+1 Si“(3k1+1 (3.2)
Mt = Ay + Anpey @ X =-n+2,.,n—1,

whered,, ., and4, , are defined by (2.8) and (2.9).
Examples:

Substitutingn = 2 in (3.1) and (3.2), we get new 3-point ternary interpolatifgs®e with free
parametet

k+1—771 4 +770 SfE 4k L fia

k+1 f
i

sk;} = T]Ef ili1 + no fl + 711 f1+1r
3.3)

Substitutingn = 3 in (3.1) and (3.2), we get new 5-point ternary interpolatidgese with free
parameter

k.5
k+1 —772 fi}iz‘*"h fili1+770 fl +77 1 L+1 +77 2 LI-{I-Z’
k+1 _ rk
5 =1
k5 k5 k.5
3kLH =N iliz +n21 i’i1 + 770 fl. + 771 fl.’il +7; fi’iz' (3.4)

where
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sin ( © )
k, 5 3k+1
77 2 i 1 ’
sin ()
kS5 _ sin (3k+1 [_ 81 40)])
n-1 1 ’
sin (3,”1)
1
k5 _ sin (3k+1 27 + 6a)])
Mo’ 1 )
sin (77)
ks _ oM (3k+1 [__4 D
1 = 1
sin (3k+1)

and

. 1 4
sSin | —— [— —+ a)])
k5 _ (3k+1 81

Remark 3.1. The sum of weights of the scheme (3.3) tends to oke-aso.

. 2 . 2 . 1
sm( sin | —— sin (—— sin (——
3k+1) (3.3k+1) (9.3k+1) (3.3k+1)
+ - w + +tw

£K = k3 k3 4 3 =
iy Mt = (o) sin(em)  sin(ozms)  sin(Gem)

This implies

w . 2
X sin k+1 sin m

_ _ 1y, s ()
& = - (#) + i (3k1+1) 2w cos <9.3k+1) + i (3,{1“) +tw

. . . . 1 1
Using the inequalitiesina > acosa for0 < a < % e > - for0<a< % we have

w 2 2 1 1
K 3k+1 cos (3k+1) 33k+1 COS (3.3k+1) + 5 1 3.3k+1 COS ( 3k+1) +
&= T + T — 2w cos g 3k + T + w.
3k+1 3k+1 3k+1
This implies

. ® 2 2 1 1 1
& =  COS (W) + (5) COoS <W) — 2w cos <W) + <§) Cos <W) + w.

Thus&® > 1 whenk — oo,

. . . " 1 .
Again, using inequalitiessc a < — for0<ac< % sina<afor0<a< % we have
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w 2 1
K k1 33K+ 1 33K+
& =<— T~ 1t —2wc05<9.3k+1)+ n T~ tw.
k1 COS \ St k1 €05 (it k1 €05 it
This implies
X ) 2 1 1
&< + —2(ucos<9 3k+1)+ T t .
: 3cos (ﬁ)
3

Thus&® < 1 whenk — o, So&* = 1 for k — .
Similarly, the sum of weights of the scheme (3.4) tendse ask — .
3.1 Convergence of 3- and 5-Point Ternary Schemes

Here first we prove some lemmas by using following ineqealiti

sina
sinb

2%f0r0<a$b<g,acsca<bcscbf0r0<a<b<§andcosa<¥ (orcsca <

acosa) for0<a <§. Then with the help of these lemmas we will show that gsegd non-
stationary schemes are asymptotically equivalent tdiegistationary schemes.

Lemma 3.1.

For 3-point non-stationary scheme (3.3) following inequalitielsih

w

cos(3k1+1)

(o <n<

L 2 k,3 2 2w
i-—2w<ny < -
( ) 3 Mo 3cos(3k1+1) cos(—gsiﬂ)

(@) 3 +o<n < +o.

)

Proof. We present the proof ¢f) and the proof ofii) and(iii) are similar. Note that

sin ( )
k+1 k+1
3 < 3

. 1 -
sin(57) 3o

I
g

Again consider

. w w
Sin Yoy - 1) 1 < Sk+1 w

. 1)~ 3k+1 esc 3k+1) = 1 1 - 1\
sin 3k+1 3k+1 cos 3k+1 €os 3k+1

This proveq(i).
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From Lemma 3.1, we get following lemma.

Lemma 3.2.

For scheme (3.3) withh = —% +u,forue (%%) we have

. 1
) —s+usyf<s—5 ]

LN 4 k,3 3
I < <
(Ll) 3 2u < Yo = cos( T )

(i) u <y <

Lemma 3.3.

For scheme (3.3) following inequalities also hold
@ %5 - o < ¢ ()

@ i - (- 20)| = ¢ ()

@) [l = G+ 0)| < 2 ()

where constant6,, C; andC, are independent df.

Proof. The inequality(i) can be proved by using) of Lemma 3.1:

k3 — cos 3k+1 2 sin? 23k+1 1 2w
ol = o N\ e () [
cos 3k+1 cos 3k+1 3 cos (3k+1)

This implies

|nk,3_w|<(i)( ’ )<e (L)
-1 = \32k/\18cos(1)/ = °\32k/)’

The proofs of(ii) and(iii) are similar.

From Lemma 3.3, we get following lemma.
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Lemma 3.4.

For scheme (3.3) with = —§ +u, forue (%g) following inequalities hold:
O 2 -(- ) 2639

@ bt~ (2] =6 (39

(i) [nf® - u] < & (o)

where constant§,, ; and(, are independent d.

Remark 3.2. From (i)-(iii) of Lemma 3.4, we observe that

k3 1 k3 _, 4 k3
N2y = =5+ wne” = S —2u andny” - u, ask - .

This means that the mask of the scheme (3.3) (with—§+ u,foru e (3%) converge to the
mask of the scheme [4].

Similarly, it is to be mentioned that far= 2, w = a wherea = b — %,w = —%, W= —§+ u

andw = —§+ uin (3.1), (3.2) and by proving/using similar inequalitidelin Lemma 3.1 and
Lemma 3.3, we get non-stationary counter part of stationhenses of [2,3,4,6] respectively.

Theorem 3.5. The proposed 3-point non-stationary scheme (3.3) M/ith—%—f- u,u€ (%%) is
ct.
Proof. We claim that

Z 3k[|S gk = Sa|, < oo,
k=0

where
[|S 4k = Sall, = max Z|a§‘_3j —a;_3;|:i€0,1,2p.
Tz

From schemé& ,« defined by (3.3) withw = —% + u and schem§,, of [4]

0

- 1
2 3 lsw =il = 23t = (=5 4w+
k=0 k=

=0

4
= Gndf =)
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From (i) of Lemma 3.4, it follows that

Z3’< 5'3—(——+u)| 23 C0<32k)<oo

Similarly from (ii) and(iii) of Lemma (3.4), we see that other terms are alsotlesvo. Hence
Yi=03[|Sqk = Sa||, < . Since stationary scheme of [4] & therefore by Theorem 2.2,

proposed scheme (3.3) with= — % +uisC?t.

Now we will discuss the continuity of 5-point scheme (3MB)r this first we will prove the
following lemmas. Proof of these lemmas are similah&proof of Lemmas 3.1-3.4.

Lemma 3.6.

For 5-point non-stationary scheme (3.4), following inequesitiold:

Ho<nf<—F

cos( )
4w
(u)———4w<nk5<— -
81COS(3k6+1 cos(m)
.20 kS < 20 6w
(lll)ﬁ +6w<ny” < +

N e

10 ks _ 10 20
(Lv)ﬁ —4w <n;” < 57" 4w cos (—243. 3k+1)

() -

4
1)+w<nz sS-—gto

-+
81005(3k
From Lemma (3.6), we get following lemma:

Lemma 3.7.

For scheme (3.4) with = — + u, foru e (—% _E) we have

4
4 —+tu
(l)a+u < nlfzs < 81—1
s )

—4u

. 7 k,5 27
i) ———4u < <
( ) 27 - 77—1 — C05(3]{14_1)

E-+-6u
27

1
cos 3k+1

28
(iii)2 +6us<ns® <
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14
——4u

o 14
(lv)a— 4qu < T]f's < 81—1
cos (3k+1)

u

cos(3k1+1)'

Wu< 11'2"5 <

Lemma 3.8.

For scheme (3.4pllowing inequalities also hold:
@ [n*5 — ol < g0 (3)

@ |5 = (5~ 40)| < & ()

Git) ri* = (55 + 60)| < 2 (52)
@) [ = (55— 40)| < s (50)

0 b - (- 0)] =50 ()

Where constantsy, g5, g,, g5 andg, are independent df.

From Lemma 3.8, we get following lemma.

Lemma 3.9.

5 7

For scheme (3.4) with = Lty forue (——, ——), following inequalities hold:
81 108 162

@ o5 - 5+ )| < & ()

@) 15 = (=55 - 40| < & (50)
(i) [n5® = (5+ 6u)| < &2 (3)
@) i = (5 - 4| < & ()

, 1
@) [n5° —u| < g4 (5)
Where constants,, §;, §,, §; andg, are independent df.

Remark 3.3. It is to be noted that for negative valueswofthe trigopnometric inequalities does not
affect the proof of our main Lemma 3.3 and Lemma 3.8.
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Remark 3.4. From (i) — (v) of Lemma 3.9, we observe that the mask of scheme (3td)un=
4 5 7

S Twue (— To5” _E) converge to the mask of the schespef [4].

n’fzs - 8—41 +u, n’ff - —% —4u, ng,s - % + 6u, nf's - g —4u andn;"5 - u, ask - .
Similarly, forn=3, w = %, W= 8—41+ uandw = 8—41+ u in (3.1), (3.2) and using similar
inequalities as in Lemma 3.6 and Lemma 3.8, the prop@éjlscheme becomes non-stationary
counterpart of the 5-point stationary schemes of [3,&&)ectively.

Theorem 3.10. The proposed 5-point non-stationary scheme (3.4) withé+u, forue
(—i —L) isC2.

108’ 162

Proof. From schemé « defined by (3.4) withv = 8—41 +u, forue (—%, —é) and schems§,
of [4]
== 3 5= g vl = (- o - G+ ) i~ - )

k=0 k=0

+ |k - u|}

By using inequalitiei) — (v) of Lemma 3.9, we see thEf_,3%*||S.x — S,|| < . Since
stationary scheme of [4] &? therefore by Theorem 2.2, proposed scheme (3@.is

Remark 3.5. Relation with DD schemes: The proposed non stationary ternary interpolating
schemes are counter part of stationary DD schemes [1].

e From Lemma 3.1 and Lemma 3.3 with= 0 andk — «, we get 2-point ternary DD
interpolating scheme.

e Forw=0 andk -« in Lemma 3.6 and Lemma 3.8, we get 4-point ternary DD
interpolating scheme. Similarly, we get other DD ternahestes.

4 Comparison and Conclusion

First we generate conic sections by using proposed schemesve present comparison among
proposed and existing non-stationary interpolating schemt Ifitial control points are chosen
as values at equidistant points of a functfgr) € span{cos(fx), sin(8x)},0 < B < m, then the
limit function of the scheme is the original function. Intmaular, if the initial control points are
equidistance points and lie on a circle or an ellipise,scheme generates a circle or an ellipse
respectively.

2im

N

Numerical Examples: Here we take the set of equidistant poiffts= (a cos( ),b sin (ZIT"))

i=0,1,2,..,N,N = 4,as control points of initial control polygons of propog:d5-point non-
stationary schemes. Far= 2,b =1, limiting curves generated by 3-, 5-point schemes are
ellipses shown in Fig. 1(a) and 1(b). It is observed thdafge values of limit curves generated
by proposed 3-point scheme passes near the initial comisggn whereas for small values of
limit curves generated by proposed 5-point scheme passegheeaitial control polygon as
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shown in Fig. 1(a) and 1(b).

Analogously, by choosing a set of equidistant points fronptrabolic equatiofy? = 4ax) for

2 2
a = 1 and hyperbolic equatio(nZ—2 - i—z = 1) wherea = 3,b = 2 then limit curve is parabola and
hyperbola as shown in Fig. 2(a) and 2(b).

Comparison: In following, we numerically compare the exactnessinfting ellipses generated
by different non-stationary subdivision schemes by usingviitig function.

Dy = |max{f¥} — min{f¥}|, (4.1)

Where

fit = \/ (xk+ 02+ (2 + J Gk -2+ G2 for b2 =a?—c? (4-2)

wherea = 2,b = 1 are semi-major and semi-minor axis respectively #fidare control points
generated by subdivision schemekah level of iteration fok > 0. If the initial control pointg;°

lie on the ellipse then of courdg will be zero. IfD, = 0 for sufficiently largek then its mean
scheme produce exact ellipseD)f # 0 thenf; do not lie on same ellipse. Sinbg measures the
maximum deviation of limiting ellipse from being an exacipsk therefore we can present
comparison among different limiting ellipses generategimposed and existing non-stationary
schemes.

By taking four, five and six initial control points, we figgnerate limiting ellipses by proposed 3-
, 5-point and existing non-stationary schemes of [7,8,11,12]1#%26 we compute deviation
error D, . Deviation of proposed 3-, 5-point ternary non-stationaryrpotating schemes is
calculated at parametric values -0.1122, 0.0228, respectively.

* In case of 4 initial control points: Limiting ellipses produceddifferent non-stationary
are shown in Fig. 3(a-e) while deviation errors in gregdhform are shown in Fig. 5(a)
and Fig. 5(b).

e In case of 5 initial control points: Limiting ellipses adepicted in Fig. 3(f-j) while
graphical representations of deviation errors are showgi. 5(c) and 5(d).

e In case of 6 initial control points: Limiting ellipseseapainted in Fig. 4(a-e) while
graphical representation of deviation errors are showrgins(e) and 5(f).

Deviation error in limiting ellipses, produced by di#fet schemes with 4, 5 and 6 initial control
points, in tabular form are shown in Table 1. From tHegees and table it is clear that the
limiting ellipses to be an exact ellipses, generated topgsed scheme, have less deviation
compare to the limiting ellipses produced by the scheshgg8,11,12,13,26].
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Table 1. Comparison of deviation error (D. Error) with existing non-stationary
interpolating schemes: Here N representsthe number of initial points of control polygon

Schemes N D. Error N D. Error N D. Error
4-point binary [7,8,26] 4 0.18501 5 0.20398 6 0.05910
3-point ternary [26] 4 0.30308 5 0.44910 6 0.17196
4-point ternary [11] 4 0.20160 5 0.20399 6 0.06478
4-point ternary [12] 4 0.19510 5 0.20365 6 0.06219
4-point ternary [13] 4 0.20165 5 0.20409 6 0.06483
3-point proposed 4 0.18957 5 0.19579 6 0.05865
5-point proposed 4 0.08104 5 0.04937 6 0.01106

4.1 Conclusion and Future Work

By using Lagrange identities we construct new familiéumivariate, ternary, non-stationary
interpolating subdivision schemes for curve design with glesitension parameter which enable
the scheme to produce more precise result. The proposedeschesnon-stationary counterpart
of the stationary schemes [1,2,3,4,5,6] so the paramainiges of continuity of proposed non-
stationary schemes are same as of the counter stgtisohemes. Fig. 1 illustrates that the
proposed scheme gives great flexibility to geometricgiess for the creation of smooth curves
according to their own requirements by choosing appropridtie wé parameter.

Here are some tips for future work proposed by the anonymefesee: Ley, andy,be two
curves defined on [0,1]. Let = y,(1) = (—2,2) andB =y,(0) = (2,2), the components of
tangent vector tg,(resp.y,) at A (resp. B) is (1, 1) (resp. (1, -1)). Is it edasycompute a
subdivision of the conic which realizesza —blend between these two curves using proposed
method in this article? Is it possible to choose a circatarto blend these curves? If someone
wants to subdivide a hyperbola arc, could someone have apoeridon a branch and the other
end point on the other branch? Articles [21,22,23] might helfind the answers of above
guestions.

Effect of parameter in 3-point non- Effect of parameter in 5-point non-
stationary interpolating scheme stationary interpolating scheme

(a) Scheme (3.3) (b) scheme (3.4)

Fig. 1. (a) Showstheincreasein tightness of the curve with increasing w and (b) Showsthe
increasein tightness of the curve with decreasing w.
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3-point and 5-point non-stationary 3-point and 5-point non-stationary
interpolating schemes interpolating schemes

:. — \3"\':7‘“”; /

2.
ﬁ{—}wintubemc 1_' F{
0. 02 04 05 08 1 FERYERIEED TR
—— S-peint scheme 6 43’ -1 :

& A2 [N
2 K"‘H.\. / i 5-point uham}\‘.

@ (b)

Fig. 2. Represents parabola and hyperbola by proposed 3-, 5-point non-stationary
inter polating schemes after two iterations.

(a) [7.8,26] (b) [26] (0 [11]

(d) Scheme (3.3) (e) scheme (3.4)
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Fig. 3. (a) and (f) Showsthe ellipse produced by non-stationary binary schemes of [7,8,26],
(b), (9), (c) and (h) show the ellipse produced by non-stationary ternary schemes of [26,11],
(d), (i), (e) and (j) show the ellipse produced by proposed 3-, 5-point non-stationary
interpolating schemes respectively
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(d) Scheme (3.3)

(e) scheme (3.4)

Fig. 4. (a) Showsthe ellipse produced by non-stationary binary scheme of [7,8,26], (b) and

(c) show the ellipse produced by non-stationary ternary scheme of [26,11], (d) and (€) show

the ellipse produced by proposed 3-, 5-point non-stationary ternary inter polating schemes
respectively
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