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Abstract 

 
A generalized non-stationary 4-point b-ary approximating subdivision scheme is presented for 

even integer � ≥ 2. Lagrange trigonometric polynomial plays a key role in computation of mask 

of the generalized scheme. The proposed schemes can be considered as non-stationary 

counterpart of existing stationary approximating schemes. Asymptotic equivalence technique is 

used for convergence analysis of the proposed schemes. Efficiency of proposed schemes is 

illustrated with the help of some examples. 

Keywords: 4-point approximating, non-stationary, subdivision scheme, Lagrange, asymptotic 

equivalence. 

 

1 Introduction 

 
In the study of curve generating techniques subdivision is lime lighted due to its efficient and 

easy-to-use implementation. Subdivision schemes produce smooth curves by applying iterative 

refinements on set of control points. Subdivision schemes are classified into different categories 

upon their characteristics. For example if the points of limiting curve pass through initial control 

points then subdivision scheme is called interpolating otherwise approximating. Similarly, if the 

mask of the scheme does not vary with subdivision level then it is termed as stationary otherwise 

non-stationary. 

 

There are many stationary subdivision schemes in literature but non-stationary schemes are 

gaining interest day by day in research community. Morin et al. [1] derived mask of binary 

approximating non-stationary subdivision scheme which unifies cubic splines, splines-in-tension 

and a certain class of trigonometric splines. Daniel and Shunmugaraj [2] offered 2-point binary 

and 3-point ternary non-stationary approximating schemes by using Lagrange polynomial. Daniel 

and Shunmugaraj [3] presented 2-point and 3-point binary non-stationary approximating 

subdivision scheme based on trigonometric B-spline basis function. Daniel and Shunmugaraj [4] 

also introduced 3-point binary non-stationary approximating scheme. We also refer to [5-9] for 

some other non-stationary scheme in the literature. 
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Higher arity schemes are better than lower arity schemes because of their less computational cost 

and support as compared to lower arity schemes. Support of the scheme shows the region in which 

the limit curve/surface will change when a single control point is moved. The larger the support, 

the wider the influence of each control point. In general, schemes with compact support are 

preferred [10]. So the best way to get compact support is to raise arity. By taking this into account, 

we propose subdivision schemes of higher arity. 

 

Mustafa and Rehman [11] presented general formulae for the mask of (2b+4)-point n-ary 

approximating and as well as interpolating subdivision schemes. These formulae provide mask of 

higher arity schemes and generalize lower arity schemes. Masks of stationary schemes have been 

derived based on Lagrange polynomial while we derive mask of 4-point even-ary non-stationary 

scheme using trigonometric Lagrange polynomial. Augsd��rfer et al. [12] applied different variants 

on classical 4-point interpolating scheme [13] producing some subdivision scheme all of which 

are improvements on the original scheme. They have derived two non-stationary schemes one of 

them has continuity �� which is smaller than the continuity of proposed schemes and other has 

larger support than the support of proposed schemes. Pan et al. [14] presented a combined 

approximating and interpolating subdivision scheme. The connection between interpolating and 

approximating scheme is made by directly performing operations on geometric rules. This 

combined scheme is 4-point ternary stationary and has larger support than the proposed 4-point 

quaternary non-stationary scheme. 

 

In this paper, we present a generalized non-stationary 4-point b-ary approximating subdivision 

scheme constructed by using trigonometric Lagrange polynomial. We show that proposed 

schemes are non-stationary counterpart of existing stationary schemes. We use theory of 

asymptotic equivalence to investigate the convergence of the schemes. Moreover, we also discuss 

some important properties of schemes like affine invariance, support and symmetry of basic limit 

function. 

 

The paper is structured as follows. In Section 2, we listed some basic preliminaries. In Section 3, 

we introduce the generalized scheme and give some examples. In Section 4, we present some 

general results about smoothness analysis of proposed schemes and make analysis of some 

schemes. Some important properties of the schemes are discussed in Section 5. Applications, 

comparison and summary are given in Section 6. 

 

2 Preliminary Results   

  
A general form of univariate b-ary non-stationary subdivision scheme S which maps a polygon  	
 = {	

}
∈� is defined by 

 	�
��
�� = ∑ �����
 	
��
���� ,  � = 0, 1, … , � − 1.      (2.1) 

 

The set �
 = {�

: " ∈  #} is called the $%& level mask of the scheme. If the mask is dependent on 

the subdivision level then the subdivision scheme is termed as non-stationary otherwise it is 

stationary. 

 

Theorem 2.1. Two subdivision schemes {'()} and {'*)} are asymptotically equivalent if 
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+  ,'() − '*),
∞

∞


�� < ∞, 
where  

,'() ,
∞

= max 1+2���
 2,�∈� +2�����
 2,�∈� … , +2����3�4�5
 2 �∈� 6. 
 

The idea behind asymptotic equivalence was presented by Dyn and Levin [15]. The proof of 

following theorem follows exactly similar to the proof of the theorem given in (Theorem 8, [15]). 

 

Theorem 2.2. Let {'
} and {'} be two b-ary subdivision schemes having finite masks of the same 

support. Suppose {'
}  is non-stationary and {'}  is stationary scheme. If {'}  is ��  and ∑ ��
  ‖'
 − '‖
∞

∞
�� < ∞ then the non-stationary scheme {'
} is ��. 

 

3 Generalized 4-Point 8-ary Scheme 
 
In this section, we present 4-point approximating non-stationary subdivision scheme of even-arity. 

These schemes are constructed by interpolation with the space 9 = :;�<{1, sin @A, cos @A}, for 

some @, 0 < @ < D/2. 
Let us assume that we have a data set ' = FGA�  , ;HA�IJ ∶  L =  0, 1, 2, 3N. Consider the function 

 

O3A5 = + ;3A�5 cos β GA − A�2 J O�3A5,P
���  

 

where 

 

O�3A5 = Q sin β GR4R)S J
sin β GRT4R)S J

P

��,
U� , 

 

It is known [16] that O3A5 is not the unique function in 9  which interpolates ' . We label the 

function O3A5, a Lagrange like interpolant of the above data. 

 

We denote the function O�3A5, L = 0, 1, 2, 3  by O�V3x5  correspond to the data N = XA� = j − 1 ∶: j = 0, 1, 2, 3.  
 

Then  

 

O�3A5 = ∏ [\] βG^_^)` J
[\] βG^T_^)` JP
��,
U� ,   A = aS�,       (3.1) 

 

where b = 1, 3, 5, … , � − 1 (any odd integer) for � ≥ 2 (any even integer). 
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A general 4-point b-ary approximating non-stationary subdivision scheme associated with the 

interpolation with the space 9 is given as follows: 

 

Given the initial control points 	
� ∈  d and for @ such that 0 < @ < D/2 , the control points 	

�� 

at level $ + 1 are given by the following recursive algorithm: 

 

f 	�
�*
�� = −g*��,�
 	
4�
 + g*��,�
 	

+g*��,S
 	
��
 −g*��,P
 	
�S
 ,	�
�h
�� = −g�4h,P
 	
4�
 + g�4h,S
 	

+g�4h,�
 	
��
 −g�4h,�
 	
�S
 ,i    (3.2) 

 

 where j = 0, 1, … , k − 1, l = k, k + 1, … , � − 1, k = �S,  ; = 2� − b, m = 2� + b,  n =  2� + ;, b = 1, 3, … , � − 1, (any odd integer) for � ≥  2 (any even integer) and 

 

ga,�
 = cos G opq.�)rsJ sin  G apq.�)rsJ sin  G tpq.�)rsJ sin  G upq.�)rsJ 
sin  G pS.�)J sin  G SpS.�)J sin  G PpS.�) J , 

 

ga,�
 = cos G apq.�)rsJ sin  G tpq.�)rsJ sin  G opq.�)rsJ sin  G upq.�)rsJ 
sinS G pS.�)J sin G SpS.�)J , 

 

ga,S
 = cos G tpq.�)rsJ sin  G apq.�)rsJ sin  G opq.�)rsJ sin  G upq.�)rsJ 
sinS G pS.�)J sin G SpS.�)J , 

 

ga,P
 = cos G upq.�)rsJ sin  G apq.�)rsJ sin  G tpq.�)rsJ sin  G opq.�)rsJ 
sin  G pS.�)J sin  G SpS.�)J sin  G PpS.�) J . 

 

3.1 Some Examples of 4-Point b-ary Scheme  

 
Here we derive 4-point binary and 4-point quaternary schemes from general 4-point b-ary scheme 

(3.2). Similarly, we can easily derive other higher arity 4-point schemes. 

 

3.1.1  4-point binary scheme   

 

By substituting � = 2  in (3.2), we get following 4-point binary approximating non-stationary 

scheme 

 

f	S

�� = −g �,�
 	
4�
 + g �,�
 	

+g �,S
 	
��
 −g �,P
 	
�S
 ,	S
��
�� = −g�,P
 	
4�
 + g�,S
 	

+g�,�
 	
��
 −g�,�
 	
�S
 , i                                                         (3.3) 

 

where 

g�,�
 = cos G vpq.S)rsJ sin  G  pq.S)rsJ sin  G Ppq.S)rsJ sin  G wpq.S)rsJ 
sin  G pS.S)J sin  G SpS.S)J sin  G PpS.S) J , 
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g�,�
 = cos G  pq.S)rsJ sin  G vpq.S)rsJ sin  G Ppq.S)rsJ sin  G wpq.S)rsJ 
sinS G pS.S)J sin G SpS.S)J , 

 

g�,S
 = cos G Ppq.S)rsJ sin  G  pq.S)rsJ sin  G vpq.S)rsJ sin  G wpq.S)rsJ 
sinS G pS.S)J sin G SpS.S)J , 

 

g�,P
 = cos G wpq.S)rsJ sin  G vpq.S)rsJ sin  G Ppq.S)rsJ sin  G  pq.S)rsJ 
sin  G pS.S)J sin  G SpS.S)J sin  G PpS.S) J . 

 

3.1.2  4-point quaternary scheme   

 

By substituting � = 4 in (3.2), we get following 4-point quaternary approximating non-stationary 

scheme 

 

yz{
z|	q

�� = −g �,�
 	
4�
 + g �,�
 	

+g �,S
 	
��
 −g �,P
 	
�S
 ,	q
��
�� = −g S,�
 	
4�
 + g S,�
 	

+g S,S
 	
��
 −g S,P
 	
�S
 ,	q
�S
�� = −gS,P
 	
4�
 + gS,S
 	

+gS,�
 	
��
 −gS,�
 	
�S
 ,	q
�P
�� = −g �,P
 	
4�
 + g �,S
 	

+g �,�
 	
��
 −g �,�
 	
�S
 ,

i     (3.4) 

 

where 

 

g�,�
 = cos G }pq.q)rsJ  sin  G  pq.q)rsJ sin  G wpq.q)rsJ sin  G �vpq.q)rsJ 
sin  G pS.q)J sin  G SpS.q)J sin  G PpS.q) J , 

  
g�,�
 = cos G  pq.q)rsJ sin  G  }pq.q)rsJ sin  G wpq.q)rsJ sin  G �vpq.q)rsJ 

sinS G pS.q)J sin G SpS.q)J , 
 

 

g�,S
 = cos G wpq.q)rsJ sin  G  pq.q)rsJ sin  G }pq.q)rsJ sin  G �vpq.q)rsJ 
sinS G pS.q)J sin G SpS.q)J , 

 

 

g�,P
 = cos G �vpq.q)rsJ  sin  G  pq.q)rsJ sin  G wpq.q)rsJ sin  G }pq.q)rsJ 
sin  G pS.q)J sin  G SpS.q)J sin  G PpS.q) J , 
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gS,�
 = cos G ��pq.q)rsJ  sin  G  Ppq.q)rsJ sin  G vpq.q)rsJ sin  G �Ppq.q)rsJ 
sin  G pS.q)J sin  G SpS.q)J sin  G PpS.q) J , 

  
gS,�
 = cos G Ppq.q)rsJ sin  G  ��pq.q)rsJ sin  G vpq.q)rsJ sin  G �Ppq.q)rsJ 

sinS G pS.q)J sin G SpS.q)J , 
 

 

gS,S
 = cos G vpq.q)rsJ sin  G  ��pq.q)rsJ sin  G Ppq.q)rsJ sin  G �Ppq.q)rsJ 
sinS G pS.q)J sin G SpS.q)J , 

 

 

gS,P
 = cos G �Ppq.q)rsJ  sin  G  Ppq.q)rsJ sin  G vpq.q)rsJ sin  G ��pq.q)rsJ 
sin  G pS.q)J sin  G SpS.q)J sin  G PpS.q) J . 

 

4 Continuity Analysis of 8-ary Schemes 

 
In this section, we present continuity analysis of 4-point b-ary approximating non-stationary 

subdivision scheme. For the analysis of non-stationary schemes we use the notion of asymptotical 

equivalence [15]. In order to prove the convergence, we need some estimates of ga,

 , " = 0, 1, 2, 3, 
which are given in the following two lemmas. 

 

Lemma 4.1.  

 3"5 b;n48�P ≤ ga,�
 ≤ b;n48�P cosP G PpS�)J,      3""5  ;nm16�P ≤ ga,�
 ≤ ;nm16�P cosP G SpS�)J,       
 

  3"""5 bnm16�P ≤ ga,S
 ≤ bnm16�P cosP G SpS�)J,      3""5  b;m48�P ≤ ga,P
 ≤ b;m48�P cosP G PpS�)J,    
 

where   ; = 2� − b, m = 2� +  b,  n =  2� +  ; �<�  b = 1, 3, … , � − 1, (any odd integer) for � ≥ 2 (any even integer). 

Proof. Since 

ga,�
 ≥ �S apq�)rs tpq�)rs upq�)rspS�) SpS�) PpS�)
= b;n48�P 

and 

ga,�
 ≤  apq�)rs tpq�)rs upq�)rspS�) cos  G pS�)J SpS�) cos  G SpS�)J PpS�) cos  G PpS�)J ≤ b;n48�P cos  G PpS�)J , 
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so the proof of (i) is completed. The proofs of (ii), (iii) and (iv) are similar to the proof of (i). 

 

By substituting � = 2 and 4 in Lemma 4.1, we get following corollaries. 

 

Corollary 4.2. 

 3"5 7128 ≤ g�,�
 ≤ 7128 cosP G PpS)rs J,      3""5  105128 ≤ g�,�
 ≤ 105128 cosP G SpS)rsJ,       
3"""5 35128 ≤ g�,S
 ≤ 35128 cosP G SpS)rsJ,      3""5  5128 ≤ g�,P
 ≤ 5128 cosP G PpS)rsJ.   

 

Remark 4.1. The scheme (3.3) is non-stationary counterpart of 4-point binary �S scheme [17] 

with mask 

  1128 {−5, −7, 35, 105, 105, 35, −7, −5},                                                                         34.15 

 

as by above corollary the mask of scheme (3.3) converges to the mask (4.1):  g�,�
 → w�S� ,  g�,�
 →��v�S� ,  g�,S
 → Pv�S�  and g�,P
 → v�S� , for $ → ∞. 

 

Corollary 4.3. 

 3"5 351024 ≤ g�,�
 ≤ 351024 cosP G PpS.q) J,           3""5  9451024 ≤ g�,�
 ≤ 9451024 cosP G SpS.q) J,       
 3"""5 1351024 ≤ g�,S
 ≤ 1351024 cosP G SpS.q) J,          3"j5   211024 ≤ g�,P
 ≤ 211024 cosP G PpS.q) J,   
 3j5 651024 ≤ gS,�
 ≤ 651024 cosP G PpS.q) J,        3j"5  7151024 ≤ gS,�
 ≤ 7151024 cosP G SpS.q) J,      

  3j""5 4291024 ≤ gS,S
 ≤ 4291024 cosP G SpS.q) J,      3j"""5  551024 ≤ gS,P
 ≤ 551024 cosP G PpS.q) J.   
Remark 4.2. From the above corollary it is obvious that  g�,�
 → Pv��Sq ,  g�,�
 → }qv��Sq ,  g�,S
 →�Pv��Sq, g�,P
 → S���Sq ,  gS,�
 → �v��Sq ,  gS,�
 → w�v��Sq,  gS,S
 → qS}��Sq and  gS,P
 → vv��Sq as $ → ∞. It means that 

mask of the scheme (3.4) converges to the mask 

  11024 {−21, −55, −65, −35, 135, 429, 715, 945, 945, 715, 429, 135, −35, −65, −55, −21},                             34.25 
 

of 4-point quaternary  �S  scheme [18] for l = Pw��  . So the scheme (3.4) is non-stationary 

counterpart of (4.2). 
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By using Lemma 4.1, we have the following lemma. 
 

Lemma 4.4.  3"5 �ga,�
 − b;n48�P� ≤ �a,� 1�S
 ,          3""5 �ga,�
 − ;nm16�P� ≤ �a,� 1�S
 ,             
3"""5 �ga,S
 − bnm16�P� ≤ �a,S 1�S
 ,          3"j5 �ga,P
 − b;m48�P� ≤ �a,P 1�S
 ,            

 

where   ; = 2� − b, m = 2� + b,  n = 2� + ; �<�  b = 1, 3, … , � − 1 , (any odd integer) for � ≥ 2 (any even integer). The constants �a,� , �a,�,  �a,S, and �a,P   are independent of $. 

Proof. To prove (i), we have 

 

�ga,�
 − b;n48�P� ≤ � b;n48�P cosP G PpS�)J − b;n48�P�. 
 

This implies for 0 <  @ <  D/2 

 

�ga,�
 − b;n48�P� ≤ b;n48�P �1 − cosP G PpS�)J
 cosP G PpS�)J  �. 

 

Again implies 

 

�ga,�
 − b;n48�P� ≤ b;n8�P �sinS G Ppq�)J cosP33@5 �. 
Finally, we get 

 

�ga,�
 − b;n48�P� ≤ 1 �S
 � 9@Sb;n 128 �PcosP33@5 � = �a,� 1�S
 ,  
 

where �a,� = }p`atu �S� ����[�3Pp5 is independent of k. The proofs of (ii), (iii) and (iv) are similar to the 

proof of (i). 

 

By substituting � = 2 and 4 in Lemma 4.4, we get following corollaries. 

 

Corollary 4.5. 

 3"5 �g�,�
 − 7128� ≤ ��,� 12S
 ,          3""5 �g�,�
 − 105128� ≤ ��,� 12S
 ,             
3"""5 �g�,S
 − 35128� ≤ ��,S 12S
 ,          3"j5 �g�,P
 − 5128� ≤ ��,P 12S
.            
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Corollary 4.6. 

 3"5 �g�,�
 − 351024� ≤ ��,� 14S
 ,          3""5 �g�,�
 − 9451024� ≤ ��,� 14S
,             
3"""5 �g�,S
 − 1351024� ≤ ��,S 14S
 ,          3"j5 �g�,P
 − 211024� ≤ ��,P 14S
 ,            
3j5 �gS,�
 − 651024� ≤ �S,� 14S
 ,          3j"5 �gS,�
 − 7151024� ≤ �S,� 14S
 ,             

3j""5 �gS,S
 − 4291024� ≤ �S,S 14S
 ,          3j"""5 �gS,P
 − 551024� ≤ �S,P 14S
.            
 

Theorem 4.7. The proposed 4-point binary non-stationary scheme (3.3) is �S. 

Proof. Let '()  and '(  denote the schemes (3.3) and (4.1) having finite mask of same support 

respectively. 

 

We claim that 

+  2S
,'() − '(,
∞

∞


�� < ∞, 
where 

,'() − '(,
∞

= max �+2�
4S�
 − �
4S�2,�∈�   " = 0, 1, 2, 3�. 
 

From the schemes (3.3) and (4.1), we have 

 

+  2S
,'() − '(,
∞

∞


�� = +  2S
H2�4q
 − �4q2 + 2�4S
 − �4S2 + 2��
 − ��2 + 2�S
 − �S2I∞


�� . 
 

This implies that 

 

+  2S
,'() − '(,
∞

∞


�� = +  2S
 ��g�,P
 − 5128� + �g�,S
 − 35128� + �g�,�
 − 105128� + �g�,�
 − 7128��∞


�� . 
 

From (i) of Corollary 4.5, we have 

+  2S
  ∞


�� �g�,�
 − 7128� ≤ +  2S
��,� 12S

∞


�� < ∞. 
 

In the same way by using (ii), (iii) and (iv) of Corollary 4.5, we can easily show that 

 

 ∑  2S
∞
�� �g�,�
 − ��v�S�� < ∞, ∑  2S
∞
�� �g�,S
 − Pv�S�� < ∞ and ∑  2S
∞
�� �g�,P
 − v�S�� < ∞. 
 

 

Therefore, we have  ∑  2S
,'() − '(,
∞

∞
�� < ∞, which means that both schemes (3.3) and (4.1) 
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are asymptotically equivalent. Since (4.1) is  �S so by Theorem 2.2, (3.3) is also �S. 

 

By using Corollary 4.6, we get following theorem. 

 

Theorem 4.8. The proposed 4-point quaternary non-stationary scheme (3.4) is �S. 

 

Proof.  Proof of this theorem follows the proof of Theorem 4.7. 

 

5 Properties of the Subdivision Schemes 

 
In this section, we discuss some important properties of the proposed schemes. 

 

5.1 Affine Invariance Property 

 
In the following proposition, we show that the scheme (3.2) holds affine invariance property. 

 

Proposition 5.1. The scheme (3.2) satisfies affine invariance property i.e. −ga,�
 + ga,�
 + ga,S
 −ga,P
 = 1. 
 

Proof. Since  

 ga,�
 +  ga,P
 =  sin  G apq.�)rsJ sin  G tpq.�)rsJ sin  G ��pq.�)rsJ 
sin  G pS.�)J sin  G SpS.�)J sin  G PpS.�) J , 

 

then this implies 

 

          ga,�
 +  ga,P
 =  sin  G apq.�)rsJ sin  G tpq.�)rsJ  
sin  G pS.�)J sin  G SpS.�)J  .                                           35.15 

 

Similarly, we have 

 

                    ga,�
 +  ga,S
 =  sin  G upq.�)rsJ sin  G opq.�)rsJ  
sin  G pS.�)J sin  G SpS.�)J  .                              35.25 

By subtracting (5.1) and (5.2), we have 

 

−ga,�
 + ga,�
 + ga,S
 − ga,P
 = 12 �cos G S�pq.�)rsJ − cos G ��pq.�)rsJ
sin G pS.�)J sin G SpS.�)J �. 

 

This implies that 

 

−ga,�
 + ga,�
 + ga,S
 − ga,P
 = 12 �−2sin G 4pS.�)J sin G SpS.�)J
sin G pS.�)J sin G SpS.�)J �. 
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Thus we have 

 −ga,�
 + ga,�
 + ga,S
 − ga,P
 = 1. 
 

Corollary 5.2. The schemes (3.3) and (3.4) satisfy affine invariance property. 

 

5.2 Basic Limit Function 

 
The basic limit function B of a scheme is defined as the limit function of the scheme for the data 	�
  =  �
,�,  where �
,�  is Kronecker delta. By Theorems 4.7 and 4.8 it follows that the basic 

functions defined by the proposed schemes (3.3) and (3.4) generate  �S-continues limit curves. 

These functions are shown in Fig. 1. 

 

 
 

Fig. 1.  (a) and (b) present basic function of proposed schemes (3.3) and (3.4) respectively. 

 

Now we derive a general relation to calculate support width of 4-point b-ary scheme. We figure 

out that as we increase arity of 4-point b-ary scheme the support width decreases, i.e. for 4-point 

b-ary scheme arity and support width are reciprocal to each other.  
 

Proposition 5.3. The basic function B defined by proposed scheme (3.2) has support width � =  q�4��4� , which implies that it vanishes outside the interval �− q�4�S3�4�5 , q�4�S3�4�5�. 
 

Proof. Since the basic function B is the limit function of the scheme (3.2), its support width � can 

be determined by computing how far the effect of the non-zero vertex 	�� will propagate along by. 

As the mask of the scheme is a 4�-long sequence by centering it on that vertex, the distances to 

the last of its left and right non-zero coefficients are equal to 2� and 2� − 1 respectively. At the 

first subdivision step we see that the vertices on the left and right sides of 	�� at 
S��  and 

S�4��  are the 

furthest nonzero new vertices. At each refinement, the distance on both sides is reduced by the 

factor 
� �  . At the next step of the scheme this will propagate along by 

S��` on left and 
S�4��`  on right. 

Hence after k subdivision steps the furthest non-zero vertex on the left will be at 

 

2� �1� + 1�S + 1�P + ⋯ + 1�
� = 2�� �+ 1��

4�
��� � 

And 
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32� − 15 �1� + 1�S + 1�P + ⋯ + 1�
� = 32� − 15� �+ 1��

4�
��� �. 

 

Since �� < 1, the geometric sequence can be summed to give the extended distance on each side 

and we conclude that, in the limit, the total influence of the original non-zero vertex will 

propagate along by 

 

� = 2�� �+ 1��

4�
��� � + 32� − 15� �+ 1��


4�
��� � = 4� − 1� � 11 − ��

� = 4� − 1� − 1 . 
 

Proposition 5.4. The basic function of the scheme (3.3) has support width � =  7, which implies 

that it vanishes outside the interval �− wS , wS �. 
 

Proposition 5.5. The basic function of the scheme (3.4) has support width � =  5, which implies 

that it vanishes outside the interval �− vS , vS �. 
 

Proposition 5.6. The basic function B defined by the proposed scheme (3.3) is symmetric about 

Y-axis. 

 

Proof. Let us denote the set �
: = F 
S) | " ∈ #N such that the restriction of the basic function B to �
  satisfies � G 
S)J = 	

 , for all " ∈ # and we will use mathematical induction on k to prove this. 

First of all we note that �3"5 = 	
� = 	4
� = �3−"5  for all " ∈ #  and thus � G 
S)J = � G4
S)J =	4

 , ∀ " ∈ #, $ = 0. 
 

Now we assume that � G 
S)J = � G4
S)J , ∀ " ∈ #,  then it follows that 	

 = � G 
S)J =  � G4
S)J =	4

 , ∀ " ∈ #. 
 

Therefore � � 2"2
��� = −g�,�
 	
4�
 + g�,�
 	

 + g�,S
 	
��
 − g�,P
 	
�S
 . 
 

This implies that 

 � � 2"2
��� = −g�,�
 � �" − 12
 � + g�,�
 � � "2
� + g�,S
 � �" + 12
 � − g�,P
 � �" + 22
 �. 
 

So we have 

 � � 2"2
��� = −g�,�
 � �−" + 12
 � + g�,�
 � �−"2
 � + g�,S
 � �−" − 12
 � − g�,P
 � �−" − 22
 �. 
 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(1), 104-119, 2014 

 

 

116 
 

Thus we have 

 � � 2"2
��� = −g�,�
 	4
��
 + g�,�
 	4

 + g�,S
 	4
4�
 − g�,P
 	4
4S
 = 	4S

�� = � � −2"2
���. 
 

Similarly, we can easily show that 

 � �2" + 12
�� � = � �− 2" + 12
�� �. 
 

Consequently � G 
S)J =  � G4
S)J , ∀ " ∈ # and $ ∈ #�. As a result from continuity of B we have that �3A5 = �3−A5, ∀ A ∈  d, which shows that the basic function B defined by the proposed 4-point 

binary scheme (3.3) is symmetric about Y-axis. 

 

In the same way, we can easily show that 

 

Proposition 5.7. The basic limit function B defined by the proposed 4-point quaternary scheme 

(3.4) is symmetric about Y-axis. 
 

6 Applications, Comparison and Summary 
 
In this section, we demonstrate visual performance of some of the proposed schemes by several 

examples. Comparison with existing binary and ternary non-stationary schemes and brief 

summary of work done so far is also included in this section. 

 

Fig. 2 shows smooth curves which approximate set of given points. The control polygons are 

drawn by dashed lines and the smooth curves by full lines. Limit curves presented in 2(a)-2(c) are 

obtained by proposed scheme (3.3) after four iterations while limit curves shown in 2(d)-2(f) are 

obtained by proposed scheme (3.4) after two iterations. 

 

In Table 1 we give brief comparison of b-ary schemes with some existing schemes. It is shown 

that the continuity of b-ary schemes is greater than the other existing binary and ternary schemes. 

Also as we increase the arity of b-ary schemes, support of the schemes decreases. 

 

A generalized 4-point b-ary non-stationary approximating subdivision scheme is presented using 

trigonometric Lagrange polynomial. Asymptotic equivalence technique is used for continuity 

analysis of proposed scheme. It is also shown that proposed non-stationary schemes are 

counterpart of celebrated stationary schemes. Some important properties of proposed scheme like 

affine invariance, support and symmetry of basic limit function have been discussed. An explicit 

formula to calculate support width of basic limit function is established. We deduced that arity and 

support width of 4-point b-ary scheme are reciprocal to each other. Visual performance of 

proposed scheme is shown by several examples. 

 

 

Table 1.   Comparison of b-ary schemes 

 

Scheme Type Continuity Support 
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2-point Binary [2] Approximating 1 3 

3-point Binary [4]  Approximating 1 5 

4-point Binary [2]  Interpolating 1  6 

3-point Ternary [2] Interpolating 1  4 

Proposed 4-point Binary Approximating 2 7 

Proposed 4-point Quaternary Approximating 2 5 

 

 
 

Fig. 2.  (a)-(c) Present limit curve of the scheme (3.3) after 4th subdivision level and (d)-(f ) 

present limit curve of the scheme (3.4) after 2nd subdivision level. 
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