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Abstract

In this paper, an efficient decomposition method is congtduanhd used for solving system
nonlinear equations. These methods based on the modifiedotdyy technique of Noor [1].
This technique is revised to solve the system of nonliegaations. Our approach yields third
and fourth order iterative methods which are more effidiean their classical counterparts suych
as Newton’s, Chebychev’s and Halley’'s methods.

Keywords: Homotopy method, perturbation method, Systémoalinear equations, Iterative
methods, Newton's method.

1 Introduction

Homotopy perturbation methods (HPM) play a very importaoie rfor solving several
mathematical problems, for instance, linear and nonlingatem of equations, differential
equations and integral equations [1-10]. The basic idea of KPPk simplify the difficult
equation systems by converting them into either lineanomlinear system of equations so that
they can be easily solved. In the recent years, HPMctgtthe attention of researchers, because
solutions by this method offer a high degree of accuracy amceogency [11-19].

He [20] suggested an iterative method for solving the nonliegaations by rewriting the given
nonlinear equation as a coupled system of equations.tdd¢timique has been used by Chun [21]
and Noor et al. [22,23] to suggest some higher order cgent iterative methods for solving
nonlinear equations. Golbabai, and Javidi [24] applied HPMs@iving system of nonlinear
equations in two dimensions by expanding the variables Tatgor series. Noor et al. [1]
modified homotopy perturbation method by combining the homotopysiaahethod and HPM,
for solving nonlinear equations in one dimension. In théeaech we revised this technique to
solve system of nonlinear equationsnedimension withn-variables. Some illustrative examples
have been presented, to demonstrate the accuracy of propethdds and the results are
compared with those derived from the previous methods.
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2 lterative M ethods

If we have a system of nonlinear equations in the form:

wheref, : R" - R are differentiable up to any desired order [25], this systemalternatively

be represented by defining a functiomat R" — R", as follows:

F Xy, Xg0eee X ) = [F1(Xgy Xgpevn X )seees £ (X Xoen X)T
The previous system can be written in the vector notatidollasvs:
F(x)=0 1)

If we assume that Xs a simple root of Eq.(1) andg is an initial guess sufficiently close t0. X

We can apply the technique of He [20] and rewrite the neali Eq.(1) as a coupled system using
the Taylor’s series as follows:

fk(xo)%[éfk,i(xo)(xi O]+ LY x - xOT fxax - X+ aw=0 @)

Tislj=1

gk(x)=fk(x)—fk(xo)—%[;f R B DR ICEE LR GO S IE)

i=1j=1

2
wherek =1,2,..n f , :af7k, fii :& and Xq =[X1(O), X(O),..., X(O)]T is the
ax, 1 ox; 0x 2 n

initial approximation for the zero of Eq.(1).

Matrices of first and second partial derivatives of thecfion f appearing in equation (2) are the
JacobianJ and HessiarH matrix of this function respectively. Putting Eq.(2) iatnix notation

F(Xg) +J (Xo)IX =X ] +%Zq O[x —x dT Hi(x g[x = § +Gx) =0 (4)
e
G (0= F(=F(to)~30xolk ~xd —: > & Ol x T Ol x b 9
=l
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where Hi is the Hessian matrix of the functién, [ is the Kronecker product agds an x1
vector of zeroes except for a 1 in the posifiowe can rewrite Eq.(5) in the following form

x=Xo- [0 {6 + Fix 9+ > & Oix x 3T Hx ax x 1} ®
fim1

From Eq.(5)

G(x@) = F(x©) (7)
One can rewrite Eq.(6) as:
X =C + &N (x) ®)
where
C =xo-[I(Xx] " F(x 9 )
and
N (0 =130 @) +7.> 6 Tx * 37 Hix dx x B (10)
il

Now, we construct a homotopyl (X, p, T ) : R" x[0,1] -~ R which satisfies

H (%P, T)= - PILE)- L(x,)]+ { LX) - C—h N&] -4 FdL- pr =0 a1
or
H (%, p, T)= L(X)- L(x )+ pL(x )~ AIC+A N(®)] -7 F(1- pr =0 12)

where pUJ[0,1]is an embedding parametefr,# O is an auxiliary parameter, anld is an

arbitrary auxiliary operator. We emphasize that we havatdreedom to select the initial guess,
the auxiliary parametef and the auxiliary operatdr .

from Egs. (11) and (12), we have
H(X,0,T )=L(X)-L(x, )=%-C=0 (13)

or
H(X,1T)=L(X)-C AN (X)=X-C—-/N(X)= 0 (14)

The parametep monotonically increases from zero to unity as the driyiroblem (13), is
continuously deformed to the original problem (14). The cimngrocess op from zero to unity

is called deformation. Now, suppose that the solution of Bd3 and (12) can be expressed as a
power series ip:
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(o0
x=x@+3" pkx (15)
k=1
And hence, the approximate solution of Eq.(8), can be in the fo
X=Iimi=x(o)+2x(k) (16)
P- k=1

For the application of HPM to Eq.(1), we can write Eq.(1R)elpandingN (X) into a Taylor

series around((o) as follows:
_ 1< _ _
o N (@) + N (xO)[x ~x ) 53206 0 AT Wl O +-}
| =
+X~C —hp?(l- p)r =0 (17)

Substituting Eq.(15) into Eq.(17), and equating the coeffisiehthe identical power pf we get

p’:x@=c (18)

pt:x® =aN (x @) (19)

p2 :x® =pN (x(o))[x (1)] +hlr (20)

p*:x®=aN? (xO)x @) "‘;iﬁ Ox 47 NRx Ox @ -nr (21)
=

Taking x?) = 0, we get
M =-N7 (xO)x®

x® =;’éei OO NFxOx G +aNIx Gx @

From Egs. (5), and (10), we have the Jacobian and Hessittix in the form
N2 (<) =1 =[3(x)] I(x %)

N (x @) = -[3(x )] 7 H; (x )

from equations (9) and (18) the first approximation becomes
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0) — -1
X% = X =[3(xo)] (X9
which gives the following iterative method.

Algorithm 2.1For a givenX(, compute approximate solutiak, ;1 by the iterative scheme.
— -1
Xne1 = Xp _[‘](Xn)] F(Xn)

this is the well-known Newton method (NM).

Forn=1
x=xO+x®=C + aN (x(o))

= %o ~[I(xol TF(x 9 ~HI(x 9] " Gx 9 %ie Ix @x 37 Hx gx Ox B
e
For i =1andG (X(O)) =0, we get the following iterative method.

Algorithm 2.2 For a givenXg, compute approximate solutiod,, 41 by the iterative scheme.
— -1
Yn = Xp —[I(x n)] F(x n)

X1 =Y =301 Y Ol = AT Y o
' i=1

Forn=3

x=x@+xB+x@=C + 2N x ) +1N7 (x O[x (1]+%Zn:q Ox 97 N"x Ox @
14
=130l *Fix g 13x g1 Fax G + 2> 6 tx O T Hx dx Ox
il
+1{1 ~[I(x 9] ~H(x Oix @ —%iq x P @ oNH xOx Y
il

For i =1and H; (Xg) = 0, this formulation allows us the following new iive method.

Algorithm 2.3 For a givenXq, compute approximate solutiak,, .1 by the iterative scheme.

Yo = Xp ~[JX I HF(X )
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Xne1 =Yn =203 2R (Y )+ XX 1 7Ny K & O 76 Ok
e DL Ry )T &0 HHY WOk EF
il

3 Analysis of Convergence

Before exploring the local convergence propertiésthe Algorithm 2.2, we will state the
following result on Taylor's expansion of vectonfitions[26].

Lemma1Assume thaF :D [OR" - R" be aCP function defined on

D ={x:|| X — al[< r}; then for anyv < r , the following expression holds,
F(a+v)=F(a)+ F'(a)v+% |:'(a)vv+---+iI K (av- w R
p: ’

where

IRy t sultcll ) ¢ 5 0 4

xD

We can now state and prove the main result.

Theorem 1 Let F:D OR" - R"be aC*function in an open convex s& O R".
Assume that there exists @[] D such thaf (@) =0 and F '(O’)_lexists. Then there exists

an € >0 such that for an¥Xg au (0’,5) the sequence generated by Algorithm 2.2 is well
defined and converges to the zerof F, and the process has order three.

Proof We introduce the notations

I=Xnu =@, =X =0, H(Xp)= F(X0) ™ F(Xn), B(X))= FO)™ P( %),

From Algorithm 2.2we obtain

5=(s-H (xn))+%B(xn)H(xn) H( ) 22)

Using H (a) =1 , F(a@) =0 and Lemma 1 we represeht (X,) by Taylor expansion as:
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H(x,)=H(a)+H ’(a)£+% H "(a)a&‘+%5 H"(a)ees +O(|| e |f1 )

(23)
¢+ % H"(a)es +%3H "(a)ece +O(||& |f1 )
Similarly, we express:
! 1 " 1 n
B(X,) = B(a) + B(a)e+= B'(a)ee += B'(a)eee + Qi< | )
2 6 (24)

=-H"(a)+B'(a)e +% B"(a)ee +% B"(a)eee + O(l|£ If')
where B (@) =-H "(a)

Using (22) , (23) and (24), we obtain

o=[e-(¢ +; H"(a)ee +2H "(a)eegg)]

+;K—H "(a) + B’(a)£+; B"(Cf)ff’“(l5 B"'(a)‘%j

(5 +; H"(a)ee +(15H ’"(a)&sgj

(EJ,; H "(a)gg+éH "’(a)&ssﬂ +O(lle1f)

Further, we obtain

5{_(_13 H"(a)+B'(a) —% H"(a)H "(a)j£££+0(ll-€ i)

The latter expression implies the assertions irstatement of Theorem 1, and this completes the
proof.

4 Numerical Examples

In order to demonstrate the performance of theoéhiced iterative methods 2.2, 2.3 as a novel
solver for systems of nonlinear equations, foufedént problems were selected as famous test
problems found in literatures. We present the tesfl our comparison of methods obtained from
Algorithm 2.2-2.3, which we call, (M1, M2) with thgassical Newton’s method (NM), the third-
order Hafiz and Bahgat method (HBM) [27], Darvishethod (DAM) [28] and Khirallah and
Hafiz method (KHM1) [29] algorithms, respectivetsike the form
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X1 = Xp —12[3 (Xn)+ 100 (W )+ 3 (Yo ] ™ F (Xn),

X1 =X = 2[F' (%) +F' (y)] " F (X ),

Xisg =X, —6[F'(x;)+4F" (W )+F'(y)I ' F (%)
where
_Xi 1Y

Yn =Xn_‘J_1(Xn)F(Xn)’ W, 2

Here, numerical results are performed by Maple 15 wif digits. The following stopping
criteria is used

%41~ Xn I+ IF Of ) B 10%°

and the computational order of convergence (COC) can ba takhe following form:

coce MU%w =% I1711% = %va )
N (1% = Xnog 11/ 12— %2 )

Table 2 shows the number of iterations and the computataydar of convergence (COC).
|| X+1 = X || @and the norm of the functior= (X,,) is also shown for various methods.

Example 1. In the case of one dimension, consider the follownoglinear functions [29],

2 . 2 -
fa(x) =xe*" —sin® x+ 3cosx+ 5,with X_ =3 and f,(x) =" "*"-1 with

XO =4.

Table 1. Numerical resultsfor Example 1
Methods T COC X =X, Il IF (%)l
Fi, X =-3.
NM 15 2.0000 0.4625E-27 0.6524E-53
HBM 10 3.0000 0.1057E-37 0.4814E-112
DAM 10 2.9992 0.3706E-17 0.3367E-50
KHM1 10 3.0000 0.4530E-32 0.4261E-95
M1 10 2.999¢ 0.2535E-23 0.8303E-69
M2 9 3.9984 0.8755E-24 0.1213E-93
F, X0 =<
NM 20 2.0000 0.7040E-20 0.4237E-38
HBM 13 2.9998 0.1593E-24 0.2081E-71
DAM 14 2.999¢ 0.1864¢E-24 0.4872E-71
KHM1 13 2.9993 0.9881E-20 0.5425E-57
M1 14 3.000( 0.2311F-32 0.9204F-95
M2 12 3.9785 0.1771E-16 0.1091E-62
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Example 2. In the case of two dimension, consider the followindesys of nonlinear equations

(30],

fi(x,y)=x?>-10x+ y?+8=0

Fy(x)=] 1Y) R , fo.¥0)=(0.8, 0.8).
fo(x,y)=xy“+ x-10y+8=0
f(x,y)=x*y— xy+2x- y-1=0
Fa(x) = 1Y) oy %1 : %o Y0)=(2, 2).
fo(x,y)=ye* + x—y- € =0
Table 2. Numerical resultsfor Example2

Methods T coc || Xh+1 = Xn |l IIF ()
Fa, XO:(O.B, 08)
NM 5 1.999 0.3640E-19 0.2498E-34
HBM 4 2.99¢ 0.4110¢t-29 0.4359¢-88
DAM 4 2.996 0.2221E-31 0.4443E-95
KHM1 4 2.99¢ 0.1669t-29 0.2709E-89
M1 4 2.998 0.4538E-26 0.1089E-78
M2 4 3.999 0.6649E-60 0.2000E-198
Fa Xo=(2, 2)
NM 9 2.000 0.7530E-18 0.2301E-35
HBM 6 3.002 0.1189F-17 0.1021E-52
DAM 7 3.000 0.1177E-42 0.1378E-127
KHM1 6 3.001 0.7024E-17 0.2267E-50
M1 7 3.000 0.3197E-38 0.3037E-114
M2 6 4.001 0.5571E-26 0.5226E-103

Example 3. In the case of three dimension, consider the followirsgesys of nonlinear equations

[31].

fi(X,y,z)=15x+ y* - 4z-13= 0

Fs(x) = fo(x,y,z)= x*+10y- €

fa(x,y,z)= y3-25z+ 22= 0

f1(x,y,z)=3x-cos(yzy 0.5 0O
_Jf,(x,y,z)= x*-81(y+ 0.1f + sinz+ 1.06 C
R (x) = T20 Y, 2)= X° -81(y 1031_ 3sz

fa(x,y,z)=€" +20z+

=0

Z _11= Q%=(1.2,-1.8,0.1)

"X=(0.1, 0.1, -0.4).
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Table 3. Numerical resultsfor Example 3

Methods T coc [ X2 = %n |l [IF O
Fs, Xo=(1.2,-1.8, 0.1

NM 6  1.8225 0.2888E-19 0.9630E-40
HBM 4 2.8983 0.1597E-20 0.3115E-64
DAM 5  3.0860 0.6181E-42 0.1141E-126
KHM1 4  3.1514 0.1439E-22 0.3072E-70
M1 5  3.107: 0.6875[-31 0.3083F-93

M2 4 41222 0.1114E-37 0.1436E-153
Fe, X0=(0.1, 0.1, -0.4)

NM 6  2.0000 0.8901E-16 0.6413E-30
HBM 5  2.9999 0.3360E-39 0.1538E-115
DAM 5  2.999¢ 0.3409F-39 0.1606F-11F
KHM1 5 2.9999 0.3370E-39 0.1552E-115
M1 4 2.999¢ 0.1277-31 0.1691F-92

M2 4 3.9789 0.4140E-22 0.2984E-85

Example 4. Consider the kinematic synthesis mechanism for automdéeeirsg. This problem is
originally described in [32]. The Ackerman steering meddranis a four-bar mechanism for
steering four wheel vehicles. When a vehicle turns, therstl wheels need to be angled so that
they are both 90° with respect to a certain line. Théans that the wheels will have to be at
different angles with respect to the non-steering wheels.

The Ackerman design arranges the wheels automaticaliypdoyng the steering pivot inward.
Pramanik [32] stated that “the Ackerman design reveaigrpssive deviations from ideal steering

with increasing ranges of motion“. Pramanik instead cl@med a six-member mechanism. This
produces the system of equations given, fori=1, 2, 3, by

F(X)=Gi @ .¢)=[§ (ysing )-2)- F(ysing )- 2]+
[F (1+y costp )~ & (y cosy ¥ )~
[(1+y cosg )(y sing; )»z) x-
(ysin@ )-z)(ycosg ) z) x]z ,

where

E; =y(cos@ )- cosgpy )-yz( sinp ¥ simg )-(y sigf I 2 x

and

F, =-ycos{ )-yzsingg Wy cosf, * XZ+( z- >) y sindy
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When the angleg/; and ¢ are given as in Table 4, there are two roots for theesyin the
domain [0.5, 1}

Table 4. Angular data (in radians) for automotive steering problem

! 17 @

0 1.39541700417470901 1.74617564941508422

1 1.7444828545735749268 2.0364691127919609051

2 2.0656234369405315689 2.2390977868265978920

3 2.46006784789125005 2.46006784098093445
Table 5. Numerical resultsfor Example 4

Methods T coc | X1~ Xn I IIF ()

F7, X0=(0.6, 0.9, 0.¢

NM 8 1.9994 0.1340E-23 0.1556E-48

HBM 5 2.856¢ 0.3000E-16 0.2876E-49

DAM 6 2.9489 0.1572E-34 0.3138E-104

KHM1 5 2.8204 0.1390E-15 0.2843E-47

M1 6 3.0175 0.6865E-35 0.5323E-105

M2 5 4.221 0.3488E-19 0.8773E-77

F7, Xo=(0.6, 09, 0.9

NM 6 2.0393 0.8977E-28 0.1532E-56

HBM 4 2.711¢ 0.4229E-24 0.9155E-73

DAM 4 3.2442 0.5195E-22 0.1874E-65

KHM1 4 2.8026 0.4034E-27 0.2572E-81

M1 4 3.26¢ 0.4021F-16 0.6222E-49

M2 4 4.3400 0.1964E-37 0.9934E-148

5 Conclusions

Our study presents a family of third and fourth orierative methods for solving systems of
nonlinear equations. The numerical examples show in gehatabtir method are very effective
and efficient and provide highly accurate results in a less eumiiterations as compared to
some well-known methods when the initial valugix good chosen. It is an open problem to
determine the most appropriate choice of the initial guess.
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