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Abstract 
In this paper, we derive a simple and efficient matrix formulation using La-
guerre polynomials to solve the singular integral equation with degenerate 
kernel. This method is based on replacement of the unknown function by 
truncated series of well known Laguerre expansion of functions. This leads to 
a system of algebraic equations with Laguerre coefficients. Thus, by solving 
the matrix equation, the coefficients are obtained. Some numerical examples 
are included to demonstrate the validity and applicability of the proposed 
method. 
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1. Introduction 

Recent years, there has been a growing interest in the Fredholm and Volterra 
integral equations. This is an important branch of modern mathematics and 
arises frequently in many applied areas which include engineering, mechanics, 
physics, chemistry, astronomy, biology [1] [2]. There are several methods for 
approximating the solution of linear and non-linear integral equations [3]-[8]. 
We consider the singular integral equation of the second kind with smooth ker-
nel: 

( ) ( ) ( ) ( )
0

, dx f x k x t t tϕ λ ϕ
∞

= + ∫                   (1) 

where ( )f x  is a continuous function for 0x ≥  and the kernel ( ),k x t  is a 
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function defined on the domain ( ){ }= , : 0, <D x t x t≥ ∞  and ( )xϕ  is the un-
known function that will be determined. In [9], Laguerre polynomials are used 
to derive numerical Solutions of Volterra integral Equations. In [10], repeated 
Simpson’s and Trapezoidal quadrature rule was used to solve the linear Volterra 
Integral equations of the second kind. Since the integral equation is called sin-
gular when one or both limits of integration become infinite or when the kernel 
becomes infinite at one or more points in the domain of the integration. In our 
study, we are interested in the case where one limits of integration become infi-
nite. For solving singular integral equations, many methods with enough accu-
racy and efficiency have been used before much research, see [8]-[13]. In [14], 
the author uses Toeplitz matrices method as numerical method to solve a singu-
lar integral equation, where many definite integrals cannot be computed in 
closed form, and must be approximated numerically. In [1], the orthogonal po-
lynomials are used to solve numerically Nonlinear Volterra Fredholm Integral 
Equations. In [13], the Legendre and Chebyshev collocation method is presented 
to solve numerically the Voltterra-Fredholm Integral Equations with singular 
kernel. In this paper, we use numerical technique based on projection method, 
to reduce the singular integral Equations to a linear system of algebraic equa-
tions which will be solved using Gauss elimination or iterative methods. The 
paper is organized as follows. In section 2, we recall some properties related to 
Laguerre polynomials. In section 3, a system of algebraic equations will be pre-
sented based on Laguerre polynomials. In Section 4, we present a strategy to 
compute the exact solution for a singular integral equation with degenerate ker-
nel. In section 5, we give a practical example to certify the validity of the pro-
posed technique and then we conclude. 

2. Laguerre Method 

Sequences of orthogonal polynomials appear frequently used as applications in 
mathematics, mathematical physics, engineering and computer science, in par-
ticular during the resolution of partial differential equations (Laplace, Schrödin-
ger) by the method of separation of variables, also these polynomials can be used 
to solve integral equations of first and second kind [1] [11]. One of the most 
common set of orthogonal polynomials is the Laguerre polynomials. Many fami-
lies of orthogonal polynomials are known, which have in common a certain 
number of simple properties. The Laguerre differential equation is given by  

( ) ( ) ( ) ( )1 0,  0,1,2,xy x x y x ny x n′′ ′+ − + = = 
 

The solutions of this equation are the Laguerre polynomials, expressed by the 
equation following differential: 

( ) ( )de e
d

n
x n x

n nL x x
x

−=  

Then we get an approximation of the exactly integral, let say: 

( ) ( ) ( )
0

, dn nI K x y y yϕ
∞

Φ = ∫                     (2) 

https://doi.org/10.4236/ajcm.2023.131007


K. S. Alroogy, M. A. Aigo 
 

 

DOI: 10.4236/ajcm.2023.131007 155 American Journal of Computational Mathematics 
 

is an approximation of the exact integral. This type of approximation must be 
chosen so that the integral (2) can be evaluated (either explicitly or by an effi-
cient numerical technique). The functions ( ) ( ) ( )0 1, , , nL x L x L x

 will be called 
interpolating elements. In this paper, the interpolating function nL  will be as-
sumed to be the interpolating polynomial 

( ) ( )
0

n

n j j
j

x c L xϕ
=

=∑                         (3) 

where jL  are Laguerre polynomials of degree j, n is the number of Laguerre 
polynomials, and jc  are unknown parameters, to be determined. 

3. System of Algebraic Equations 

Consider the following systems 

( ) ( ) ( ){ }0 1, , , nL x L x L x  

where 

( ) ( ) ( ) ( )
0 1

0

1
1, 1 , , 2.

!

kn
k

n
k

n
L x L x x L x x n

k k=

− 
= = − = ≥ 

 
∑

 

This system forms an orthonormal basis in ( )2 0,L +∞ . In fact, we check that 

( ) ( ) ( ) ( )
0

, e d 0,x
n m n mL x L x L x L x x m n

∞ −= = ≠∫  

( ) 1, 0,1,2,nL x n= =   

The previous system is called the Laguerre polynomial system. To solve the 
integral Equation (1) we use the projection method. Using an approximation 

( )n xϕ  of the solution of Equation (1) which is a finite linear combination of 
orthogonal polynomials ( )( )nL x  and also solution of the integral equation 

( ) ( ) ( ) ( )
0

= , dn nx f x K x t t tϕ λ ϕ
∞

+ ∫                 (4) 

By taking the linear combination of the Laguerre polynomials 

( ) ( )
=0

=
n

n j j
j

x c L xϕ ∑                       (5) 

Substituting (5) in (4) we get 

( ) ( ) ( ) ( )
0

0 0
, d

n n

j j j j
j j

c L x f x K x t c L t tλ
∞

= =

 
= +  

 
∑ ∑∫            (6) 

Let 

( ) ( ) ( )
0

, dj jH x K x t L t t
∞

= ∫  

Then equation (6) can be written in the form 

( ) ( )( ) ( )
0

n

j j j
j

c L x H x f xλ
=

− =∑                   (7) 

By multiplying (7) by ( )iL x , we get 

( ) ( ) ( ) ( ) ( )
=0

, = ,
n

j j j i i
j

c L x H x L x f x L xλ−∑             (8) 
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Using the orthogonalization condition in Equation (8) we get 

( ) ( ) ( ) ( )
0

, , , 0,1, ,
n

i j j i i
j

c c H x L x f x L x i nλ
=

− = =∑          (9) 

The system of Equation (9) has a unique solution if ( ) 0D λ ≠ , where  

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 1 0 0

0 1 1 1 1

0 1

1 , , ,

, 1 , ,

, , 1 ,

n

n

n n n n

H x L x H x L x H x L x

H x L x H x L x H x L x
D

H x L x H x L x H x L x

λ λ λ

λ λ λ
λ

λ λ λ

− − −

− − −
=

− − −
   

 

this makes it possible to determine the coefficients ( )0j j n
c

≤ ≤
. 

4. Exact Solution with Degenerate Kernel 

Given a degenerate kernel ( ) ( ) ( )1 2,K x t P x P t=  then Equation (1) becomes 

( ) ( ) ( ) ( ) ( )1 20
= dx f x P x P t t tϕ λ ϕ

∞
+ ∫                (10) 

Let c be the number defined by 

( ) ( )20
dc P t t tϕ

∞
= ∫                        (11) 

Therefore 

( ) ( ) ( )1=x f x cP xϕ λ+                      (12) 

substituting (12) into (11) gives 

( ) ( )
( ) ( )

20

1 20

d

1 d

P t f t t
c

P t P t tλ

∞

∞=
−

∫
∫

                     (13) 

from (13) and (12) we get: 

( ) ( )
( ) ( ) ( )

( ) ( )
1 20

1 20

d

1 d

P x P t f t t
x f x

P t P t t
ϕ λ

λ

∞

∞= +
−

∫
∫

               (14) 

provided that  

( ) ( )1 20

1dP t P t t
λ

∞
≠∫  

Note that, using some degenerate kernel one can compute exactly the integral 
to obtain an exact solution. Sometimes ( ) ( )

0
, dnK x y L y y

∞

∫  can not be evaluated 
exactly, for that one use quadrature rule to approximate the integral [14]. 

5. Numerical Examples 

To confirm the validity, the accuracy and support our theoretical presentation of 
the proposed method, we give some computational examples. The computations, 
associated with the examples are performed by MATLAB. The system of alge-
braic system will be solved using Gauss elimination and iterative schemes will 
also be applied for large system.  
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5.1. First Example 

In this example, we consider = 1λ  and ( ) ( ) 3, = e , = et x xK x t f x x− − −− ; here we 
have ( )1 e xP x −=  and ( )2 e tP t −=  according to equation (14) we have 

( )
( )3

3 0
2

0

e e e d
= e

1 e d

x t t
x

t

t t
x x

t
ϕ

∞− − −
−

∞ −

−
− +

−

∫
∫

 

Considering 

( )3
0

2
0

e e d
11

1 e d

t t

t

t t
I

t

∞ − −

∞ −

−
= =

−

∫
∫

 

so the exact solution of Equation (1) is ( ) 3 10e xx xϕ −= + . 
We used both Gauss elimination method, and SOR method iterations to solve 

the linear system. To plot the solution, we truncate the spacial domain to [0; 5]. 
The behavior of exact and numerical solution is presented in Figure 1(a). The 
absolute error is depicted in Figure 1(b). It is noticed that convergence to the 
exact solution need at least 20 Laguerre polynomials. 

5.2. Second Example 

Let 1λ =  and ( ) ( )2 2 24 3, e , e
8

t x xK x t f x x π− − −= = −  here we have  

( ) 2

1 = e xP x −  and ( ) 2

2 e tP t −=  and by (14), the exaction solution is 

( )

2 2 2

2

2

4
0

4

2
0

3e e e d
83 e

8 1 e d

x t t

x

t

t t
x x

t

π
πϕ

∞− − −

−
∞ −

 
− 

 = − +
−

∫

∫
 

( )
2 2

2 2

2

4 2
0 04

2
0

3e d e d3 8e e
8 1 e d

t t

x x

t

t t t
x x

t

π
πϕ

∞ ∞− −

− −
∞ −

−
= − + ⋅

−

∫ ∫

∫  
the Gaussian integral gives 

2

0
e d

2
t t π∞ − =∫  

 

 

Figure 1. Analytical and numerical solution with n = 30. The absolute error ( )3
30 10e xxϕ −− + . 
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by integration by parts, we have 

24
0

3e d =
8

tt t π∞ −∫  

so the exact solution is ( ) 4x xϕ = . For n = 6 the approximate solution 

( ) ( )
6

6
0

j j
j

x c L xϕ
=

=∑  

with 

( )0 1,L x =  

( )1 1 ,L x x= −  

( ) 2
2

1 2 1,
2

L x x x= − +  

( ) 3 2
3

1 3 3 1,
6 2

L x x x x−
= + − +  

( ) 4 3 2
4

1 2 3 4 1,
24 3

L x x x x x= − + − +  

( ) 5 4 3 2
5

1 5 5 5 5 1,
120 24 3

L x x x x x x−
= + − + − +  

( ) 6 5 4 3 2
6

1 1 5 10 15 6 1,
720 20 8 3 2

L x x x x x x x= − + − + − +  

the coefficients ic  are the solution of the system 

( ) ( ) ( ) ( )

( ) ( )

6

0

2 2

0

, , , 0,1, ,6

e d

i j j i i
j

t x
j j

c c h x L x f x L x i

h x L t t

=

∞ − −

− = =

=

∑

∫



 

To plot the solution, we truncate the spacial domain to [0; 1]. The behavior of 
exact and numerical solution is depicted in Figure 2. Note that in example 2, the 
solution converge to the exact solution using only few Laguerre polynomail (n = 
4). 

 

 

Figure 2. Example 2, case of n = 5. Comparison between exact solution and 
numerical solution. 
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6. Conclusion 

A very simple and efficient method based on the Laguerre polynomial basis has 
been developed to solve singular integral equations. The result obtained con-
firms the strategy proposed. The method presented is tested and confirmed by 
two examples. A few numbers of Laguerre polynomials are needed to get con-
vergence to the exact solution. Further, one can apply the proposed method to 
more general kernels or systems of integral equation. 
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