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Abstract
In this paper, we construct the exact solutions of the modified nonlinear time fractional
Kuramoto-Sivashinsky equation by suing the invariant subspace method. As a result, the
obtained reduced system of nonlinear ordinary fractional equations is solved by the Laplace
transform method and with using of some useful properties of Mittag-Leffler functions. Then,
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1 Introduction

In the last decade, fractional calculus attracted a great interest of many researchers. The idea of
fractional order derivative was started with half-order derivative as discussed in the literature by
Leibniz and L’Hôpital. Next, it was extended to an arbitrary order derivative by Liouville, Riemann,
Grünwald, Letnikov, Caputo etc. In addition, different approaches to define fractional derivatives
are known [1], [2], [3], [4]. The study of fractional differential equations becomes of great interest,
since for their widely applications including fluid flow, dynamical processes in self-similar and porous
structures, electromagnetic waves, probability and statistics, viscoelasticity, signal processing, and
so on [1], [4], [5].

The construction of particular exact solutions of fractional differential equations is not an easy task
and it remains a relevant problem. This is the reason why a powerful methods for solving those
fractional equations were recently developed in the literature, including Adomian’s decomposition
method [6], first integral method [7], homotopy perturbation method [8], Lie group theory method
[9], [10], [11], [12], [13] and so on. Most recently, according to invariance principles, the invariant
subspace method developed by V.A. Galaktionov and S.R. Svirshchevski [14] to study partial
differential equations was extended by R.K. Gazizov and A.A. Kasatkin [15] to construct some
particular exact solutions for time fractional differential equations.

Here we will use the invariant subspace method, this latter yields us with exact solutions of the
time fractional modified Kuramoto-Sivashinsky equation in terms of the well known Mittag-Leffler
functions. In the paper [15], the invariant subspace method and Lie group analysis are joined to
solve the reduced fractional ordinary differential system and the original studied equation. In our
case, the resolution of the reduced system is done by the Laplace transform method and by using
of some remarkable properties of the well known Mittag-Leffler functions [16], [17], [18].

This paper is arranged as follows: In section 2, we recall some main results of fractional derivatives
and integrals. Section 3, is devoted to describe the invariant subspace method. While in section
4, we use the described method to construct some exact solutions of the time fractional modified
Kuramoto-Sivashinsky equation. In section 5 and in section 6, we extract some particular exact
solutions corresponding to different values of parameters and we draw their 3-D surfaces. Finally,
some remarks are in order.

2 Some Basic Results on Fractional Calculus

This section is devoted to recall briefly some definitions and basic results on fractional calculus. For
more details and proofs of the results, we refer to [1], [2], [3], [4].

The Riemann-Liouville fractional integral is defined by:

Jγ
t f(t) =

1

Γ(γ)

∫ t

0

(t− τ)γ−1f(τ) dτ, (2.1)

where γ ∈ R+, and

Γ(γ) =

∫ +∞

0

xγ−1e−x dx, (2.2)

is the Euler Gamma function.

By definition we have J0
t f(t) = f(t) and it satisfies the stability property Jγ1

t Jγ2
t f(t) = Jγ1+γ2

t f(t).

Before going on, recall that there are various contributions [1], [2], [3], [4] to define fractional
derivatives. In this paper, we adopt the fractional derivative in the sense of Caputo [1], [2],[3], [4].
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The Caputo definition is used not only because it makes easy the consideration of initial conditions
but also because the derivative of a constant is equal to zero. In what follows, we recall some
important results and properties of fractional Caputo derivatives and integrals. For more details
see for example [4]. First, let us denote by ACn([0, t]), n ∈ N the class of functions f(x) which are
continuously differentiable in [0, t] up to order (n− 1) and with f (n−1) ∈ AC([0, t]).

Theorem 2.1. Let n − 1 < α < n, with n ∈ N. If f(x) ∈ ACn([0, t]), then the Caputo fractional
derivative exists almost everywhere on [0, t] and it is represented in the form:

Dα
t f(t) = Jn−α

t Dn
t f(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ) dτ, α ̸= n. (2.3)

Then, the Caputo derivative (2.3) and the Riemann-Liouville integral (2.1)satisfy the following
properties [4]:

Dα
t J

α
t f(t) = f(t), α > 0, (2.4)

Jα
t D

α
t f(t) = f(t)−

n−1∑
k=0

f (k)(0)
tk

k!
, α > 0, t > 0, (2.5)

Jα
t t

γ =
Γ(γ + 1)

Γ(γ + α+ 1)
tγ+α, α > 0, γ > −1, t > 0, (2.6)

Dα
t t

γ =
Γ(γ + 1)

Γ(γ − α+ 1)
tγ−α, α > 0, γ ∈]− 1, 0[∪]0,+∞[, t > 0. (2.7)

Here, it is important to mention that the studied equation is a time fractional partial differential
equation of order 0 < α < 1, so the integer n appearing in the relation (2.3) is equal to one.
Consequently, the formulae (2.5) becomes:

Jα
t D

α
t f(t) = f(t)− f(0), t > 0. (2.8)

3 Description of the Invariant Subspace Method

The aim of this section is to present some necessary and essentials results from invariant subspace
theory. The invariant subspace method [14] was firstly used to construct particular exact solutions
of evolutionary partial differential equations of the form:

∂u

∂t
= F (u, u1x, u2x, . . . , ukx), k ∈ N, (3.1)

where u = u(t, x), uix = ∂iu
∂xi is the i-th order derivative of u with respect to the space variable x

and F is a nonlinear differential operator.

Recently, Gazizov and Kasatkin [15] showed that the invariant subspace method can be applied
also to equations with time fractional derivative:

In fact, consider the time fractional partial differential equation of the form:

Dα
t u(t, x) = F [u], (3.2)

where F [u] = F (u, u1x, u2x, . . . , ukx) and Dα
t is the time fractional derivative in the sense of Caputo.

The invariant subspace method is based on the following basic definitions and results [14], [15].

Let f1(x), . . . , fn(x) be an n linearly independent functions and Wn is the n-dimensional linear
space namely Wn = ⟨f1(x), . . . , fn(x)⟩. Wn is said to be invariant under the given operator F [u] if
F [u] ∈ Wn whenever u ∈ Wn.
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Proposition 3.1. Let Wn be an invariant subspace of F [u]. A function u(t, x) =
∑n

i=1 fi(x)ui(t)
is a solution of equation (3.2) if and only if the expansion coefficients ui(t) satisfy the following
system of fractional ordinary differential equations:

Dα
t u1 = F1(u1, . . . , un),

Dα
t u2 = F2(u1, . . . , un),
...

...
Dα

t un) = Fn(u1, . . . , un),

where F1, . . . , Fn are given by:

F (c1f1(x) + · · ·+ cnfn(x)) = F1(c1, . . . , cn)f1(x) + · · ·+ Fn(c1, . . . , cn)fn(x). (3.3)

Remark 3.1. A crucial question in the theory of invariant subspace method was how to get the
corresponding invariant subspace of a given differential operator. This question is solved by the
following proposition and for more details see [14].

Proposition 3.2. Let f1(x), . . . , fn(x) form the fundamental set of solutions of a linear n-th order
ordinary differential equation

L[u] = y(n) + a1(x)y
(n−1) + · · ·+ an−1(x)y

′ + an(x)y = 0, (3.4)

and F [y] = F (x, y, y′, . . . , y(k)) a given differential operator of order k ≤ n − 1, then the subspace
Wn = ⟨f1(x), . . . , fn(x)⟩ is invariant with respect to F if and only if:

L[F [y]] = 0, (3.5)

whenever y satisfies equation (3.4).

Remark 3.2. Condition of invariance appearing in the above proposition is the invariance criterion
for equation (3.4) with respect to the Lie-Bäcklund generator V = F [y] ∂

∂y
. This criterion shows us

how the invariant subspace method is related to the techniques used in Lie symmetry analysis, see
for more details [19], [20], [21], [22].

4 Exact Solution of the Fractional mKS Equation

In this section, we use the invariant subspace method to construct some exact solutions of the time
fractional modified Kuramoto-Sivashinsky equation (mKS) which is given by:

Dα
t (u) = −u4x − u2x + (1− λ)(ux)

2 + λ(uxx)
2, 0 < α ≤ 1, (4.1)

where u = u(t, x) and λ ∈]0; 1[. In the case α = 1, the (mKS) equation (4.1) is a model for the
dynamics of a hyper-cooled melt [23], [24]. A more general class of such models was introduced and
discussed in [25]. The (KS) was examined as a prototypical example of spatiotemporal chaos in one
dimension and its was originally derived in the context of plasma instabilities [26].

Proposition 4.1. For any λ ∈]0; 1[ the nonlinear operator F [u] given by:

F [u] = −u4x − u2x + (1− λ)(ux)
2 + λ(uxx)

2, (4.2)

admits W3 = ⟨1, cos γx, sin γx⟩ with γ =
√

1−λ
λ

as an invariant subspace.
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Proof. For any function
h(t, x) = C1 + C2 cos γx+ C3 sin γx, (4.3)

with Ci = Ci(t) arbitrary functions, we get:

F [h] = −γ4C2 cos γx− γ4C3 sin γx+ γ2C2 cos γx+ γ2C3 sin γx

+(1− λ)(γ2C2
3 cos

2 γx+ γ2C2
2 sin

2 γx− 2γ2C2C3 cos γx sin γx)

+λ(γ4C2
2 cos

2 γx+ γ4C2
3 sin

2 γx+ 2γ4C2C3 cos γx sin γx)

= (1− λ)γ2(C2
2 + C2

3 ) + (γ2 − γ4)C2 cos γx+ (γ2 − γ4)C3 sin γx ∈ W3.

Now, we search an exact solution admitted by the time fractional (mKS) equation (4.1) of the form:

u(t, x) = C1 + C2 cos γx+ C3 sin γx. (4.4)

Consequently, a function u(t, x) of the form (4.4) is a solution of the time fractional (mKS) equation
if the expansion coefficients Ci(t) satisfy the following system of ordinary fractional differential
equations: 

Dα
t C1 = (1− λ)γ2C2

3 + (1− λ)γ2C2
2 ,

Dα
t C2 = γ2(1− γ2)C2,

Dα
t C3 = γ2(1− γ2)C3.

(4.5)

To get a non trivial solution needs to assume the condition C2(0)C3(0) ̸= 0 and for convenience
we suppose C2(0) = C3(0) = 1. This last condition will be clear when the Laplace transform
will be used. We start to construct solution of the third equation in the above reduced system
of ordinary fractional differential equations. We mention that, with the Laplace transform it is
frequently possible to avoid working with equations of different differential orders by translating
the problem into an easy one.

Recalling some useful properties of the Laplace transform [1]:

L {Dα
t f(t)} = sαf̃(s)− sα−1f(0), 0 < α < 1, (4.6)

where

L {f(t)} = f̃(s) =

∫ ∞

0

e−stf(t)dt. (4.7)

By putting θ = γ2(1− γ2) and applying the Laplace transform on both sides of the third equation
appearing in the fractional ordinary differential system, we obtain:

sαL {C3(t)} − sα−1C3(0) = θL {C3(t)} , (4.8)

it yields:

L {C3(t)} (s) =
sα−1

sα − θ
, (4.9)

then, with the inverse Laplace transform, it gives:

C3(t) = Eα,1(θt
α), (4.10)

where Eα,β(θt
α) is the Mittag-Leffler function given by:

Eα,β(θt
α) = Σ∞

i=0
θitαi

Γ(αi+ β)
. (4.11)

Not that when β = 1, Eα,1 ≡ Eα.

Two last equations in the fractional ordinary differential system (4.5) are the same, hence,

C2(t) = C3(t) = Eα,1(θt
α). (4.12)
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Substituting the obtained expressions of C2 and C3 in the first equation of the system (4.5), it leads
to:

Dα
t C1 = 2(1− λ)γ2 (Eα,1(θt

α))2 . (4.13)

By using some useful properties of the Mittag-Leffler functions [16],[17],[18] the above relation,
becomes:

Dα
t C1 = 2(1− λ)γ2Eα,1(θ(2t)

α). (4.14)

Applying Jα on both sides of equation (4.14), and using integration of the Mittag-Leffler function
relation [1] (p. 25), we obtain:

1

Γ(ν)

∫ t

0

(t− τ)ν−1Eα,β(ηt
α)tβ−1dt = tβ+ν−1Eα,β+ν(ηt

α), (4.15)

where α > 0, β > 0 and ν > 0, it leads by taking α = ν, η = θ2α and β = 1 to:

JαEα,1(θ(2t)
α) = tαEα,α+1(θ(2t)

α). (4.16)

According to the following relation, it yields:

JαDα
t C1(t) = C1(t)− C1(0), 0 < α < 1, (4.17)

we obtain
C1(t) = 2(1− λ)γ2tαEα,α+1(θ(2t)

α) + C1(0). (4.18)

We assume C1(0) = 0. Hence, the obtained solution of fractional ordinary differential system (4.5)
yields the following exact solution of the nonlinear time fractional modified Kuramoto-Sivashinsky
equation (4.1):

u(t, x) = 2(1− λ)γ2tαEα,α+1(θ(2t)
α) + Eα,1(θt

α)(cos γx+ sin γx), (4.19)

where γ =
√

1−λ
λ

and θ = γ2 − γ4.

5 Some Particular Cases

In this section, we extract some particular cases, precisely exact solutions corresponding to λ = 1
m
,

with m ∈ N⋆ − {1}.

Case 1 λ = 1
2

This particular value of λ leads to γ = 1 and θ = 0. Consequently, an exact solution of the
studied fractional equation (4.1) is given by:

u(t, x) =
tα

Γ(α+ 1)
+ cosx+ sinx, 0 < α ≤ 1. (5.1)

Case 2 λ = 1
m
, m > 2

In this case we obtain that γ =
√
m− 1 and θ = (m − 1)(2 −m). The constructed exact solution

takes the form:

uα,m(t, x) = 21−α (m− 1)

m(2−m)
{Eα,1 [(m− 1)(2−m)2αtα]− 1}

+ Eα,1 [(m− 1)(2−m)tα] cos
√
m− 1x

+ Eα,1 [(m− 1)(2−m)tα] sin
√
m− 1x. (5.2)
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Now we look for solutions of nonlinear time fractional equation (4.1) corresponding to α = 1 and
α = 1

2
.

Subcase 2.1 λ = 1
m
, m > 2, α = 1.

According to the relation
E1,1(z) = E1(z) = ez, (5.3)

the corresponding exact solution of equation (4.1) is obtained to be of the following form:

u1,m(t, x) =
m− 1

m(2−m)

{
e2(m−1)(2−m)t − 1

}
+ e(m−1)(2−m)t cos

√
m− 1x

+ e(m−1)(2−m)t) sin
√
m− 1x. (5.4)

Subcase 2.2 λ = 1
m
, m > 2, α = 1

2
.

According to the relation:

E 1
2
,1(z) = E 1

2
(z) = ez

2
(
1 + erf(z)

2√
π

∫ z

0

e−y2

dy

)
, (5.5)

where

erf(z) =
2√
π

∫ z

0

e−y2

dy, (5.6)

the corresponding exact solution of equation (4.1) is obtained in this subcase to be of the form:

u 1
2
,m(t, x) =

√
2(m− 1)

m(2−m)

{
E 1

2

[√
2(m− 1)(2−m)

√
t
]
− 1

}
+ e(m−1)(2−m)t (cos√m− 1x+ sin

√
m− 1x.

)
. (5.7)

6 The Numerical Simulation

In this numerical simulation, six exact solutions of Eq(4.1) have been used to draw the graphs as
shown in Figs 1-6 for different values of fractional parameter α and m.

Fig.1 : α = 1 and m = 3 Fig.2 : α = 1 and m = 4

Fig.3 : α = 1
2
and m = 3 Fig.4 : α = 1

2
and m = 4

Fig.5 : α = 1 and λ = 1
2

Fig.6 : α = 1
2
and λ = 1

2

Here, we have drawn the corresponding 3-D surfaces for the obtained exact solutions of (mKS)
equation in case of particular values of order derivatives.
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Fig. 1. Sol. α = 1 and m = 3 Fig. 2. Sol. α = 1 and m = 4

Fig. 3. Sol. α = 1
2
and m = 3 Fig. 4. Sol. α = 1

2
and m = 4

Fig. 5. Sol. α = 1 and λ = 1
2

Fig. 6. Sol. α = 1
2
and λ = 1

2
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7 Conclusion

Here, by using the invariant subspace method to the time fractional nonlinear modified Kuramoto-
Sivashinsky equation we obtain a nonlinear reduced system of fractional equations. The later was
solved by the Laplace transform method and using some basic properties of the Mittag-Leffler
functions. Some particular exact solutions of studied time fractional equation are given and their
3-D surfaces are drawn. Finally, we note that the construction of particular exact solutions of
fractional differential equations is not an easy task until now and it remains a relevant problem. So,
the method used in this paper for (mKS) equation can be extended to other nonlinear fractional
differential equations.
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