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Abstract

Fredholm integral equatis of the first kind are considel by applying regularization method and
homotopy analysis method. This kind of integral equations@msidered as an ill-posed problem and|for
this reason needs an effective method in solving thens. fieithod first transforms a given Fredhglm
integral equation of the first kind to the second kindthwy regularization method and then solves |the
transformed equation using homotopy analysis method. Apprérimaf the solution will be of much
concern since it is not always the case to get the apltdi converge and the existence of the solutign is
not always guaranteed as this kind of Fredholm integratemuis not well-posed.

Keywords: Regularization method; Homotopy analysis methoehosed problem; Fredholm integral
equation of the first kind; Linear and nonlinear.
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1 Introduction

There have been various kinds of numerical and analytictiade used for solving Fredholm integral
equations that appear in many applications in sciencesenaguheering. The Adomain decomposition
method which was developed by Adomain in [1] and the homgiepyrbation method [2,3] have proven
to work for integral, integro-differential, differential ediams, linear and nonlinear types of equations.
Unlike these methods, the homotopy analysis method HAM [%4,8,6,10,11,12,13] is an analytical
approximation technique which gives a reliable solution for kighbnlinear problems and also ensures
rapid convergence of the solution series. Many researttzeses used the HAM for linear and nonlinear
problems [14,15,16,17,18,5,13]. In handling ill-posed problémse is the need for an effective analytic
method [19,20,21,22,23,24]. In this report, the regularizath@ihod [25,26,27] and homotopy analysis
method [4] are used for the first kind of Fredholm integations. The regularization method converts
the first kind of integral equation to the second Kia8], and the homotopy analysis method is then used to
solve the resulting second kind of Fredholm integral equatfonlassical Fredholm integral equation of the
second kind is of the form where the unknown function to bereéted appears under both inside and
outside the integral signs.

w ()=90)+ [ G (x, Y)u()dy (L.

Wherepu (x) is the function to be determined, which is an unknownction. g(x) is a free term which is
known, 7 is an auxiliary parameter, a and b are constants, thes lohithe integration and G(x,y) is the
kernel of the integral equation.

90)* [, GG uG)dy, xe Q (1.1.2)
and equation (1.1.2) is the linear Fredholm integral equafitre first kind.

9)* [, GG IN(M)dy , xE O (1.1.3)
where equation (1.1.3) is the nonlinear Fredholm integraltiequaof the first kind and N( (x)) is a
nonlinear function oft (x) andQ is a closed and bounded region. These types of integrali@wpiare

often referred to as an ill-posed problems [19,20,21%242 which may either have no solution in the
desired class or has more than one solutions [28].

2 Description of the Methods

2.1 Theregularization method

This method was introduced in [25,26,27] by Tikhonov andlipsitespectively. Both linear and nonlinear
Fredholm integral equations of the first kind is transformed A&y regularization method
[25,26,27,28,20,23,24,29,30,31,32] to the Fredholm integmaktion of the second kind. Howeveris
introduced with the unknown function to approximate Fredhotegimal equation respectively as follows

e (¥) = 90 - [ G, Ve ()dy (2.1.4)

where

At (x) = 9(X) - G e, YIN (e (7)) dy (2.1.5)
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Moreover, equation 2.1.4 and 2.1.5 can be expressed as

Ha(¥) =2 909 - = f} (0, Y)a Oy 2.1.6)

and

Ha(X) =2 9(9) - = [ GGt YIN (ua(y))dy 2.1.7)

respectively, however (2.1.6) and (2.1.7) are second kinBredholm integral equation. The solution
U, (x) of equation 2.1.8 or 2.1.9 usually converge to the solyt{gpof (2.1.2) and (2.1.3) as— 0.

Then

#(x) =limg o pq (%) (2.1.8)

which may not exist or be unique, for Fredholm integral equafidine first kind is an ill-posed problem.
2.2 The homotopy analysis method

The homotopy analysis method [14,15,16,17,10,5,6,7,8,9,10,13] Mas introduced by Shijun Liao in [4].
The method has successfully been used for solving limehnanlinear equation. The homotopy analysis
method gives certain advantages over other numerical mgth88s34] such as the perturbation method [2]
which depends on small/large physical parameters and dogsaraintee convergence as the equation series
become bigger for strongly nonlinear problems. The HAM unlikeptiréurbation method [2,3], presents an
accurate, fast and easy to implement for strongly nonlipiedniems.

Consider the following
N[u(7)] =0 (2.1.9)
Where N is a nonlinear operator; is an independent variable andu(t) the unknown function. In

constructing the zero-order deformation of the homotomtyais method, Liao [4,14,15,16,17,18,11,12]
constructs,

(1-p)L[u(T; p) —po(7)] = p2oH(TIN[u(T; p) — p(7) | (2.1.10)
Where g # 0, H(t)# 0, an auxiliary function, L auxiliary linear operatoref®,1] is an embedding
parameter, an interval. And as in (2.1.4Q0r) represents an initial guess andr) represents the exact
solution [35]. Clearly, when

p=0 and p=1 the w(0)= uo(t) and ug, 1)= u(t). (2.1.11)

As p increases from 0 to 1, theryyf) changes from thgy(t) which is the initial guesses tdqr) the exact
solution.

And here we expand wfp) in the Taylor series with respect to p [36], where

u(T,p) = po(t) +Xn=1 un(7)p" (21
And here,
pn(7) = %S";;;.p) lp=o (2.1.13)
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If proper selection is done with respect to the auxilipayameter h, the auxiliary functigeiz), the initial
guessuy(t) and the auxiliary linear operator, the solution sgftek 12) converges at where p=1.

And

w(T) =po(r) + Xi=q un(T)

(2.1.14)

The equation 2.1.14 is obtained as equation 2.1.10 is diffaeghtitimes with respect to p and dividing by

n! [4] and [33]. Then the nth—order deformation equation

L #n(T) = Xn ttn-2 (T)] = 20H(T)Ra(ptn-1 (7))
And

#a(T) = X ot (2) + 2oL [H(OR (-1 (0)]
Where

1 8" IN[u(t;p)]

Ra(kn=1(2) = o —pnet 1p=0

And finally,

uT) = Yhoo un(T)

3.1 Linear Fredholm integral equation of the second kind

Ha () == 9() = = [ 66, YIa(y)dy
where the nth-order deformation equation is given as follows
#nl®) = o tna () + 2L TH(D)R(t7-1 (0)]
and
Ro(l—1)=Hn-100-(Ln) 5 909 * 7 J; GG, YDa)d y
Hence the solution of the nth-order deformation equation is
U@ = Xn=o Hn(7)
It can also be obtained by expressing
u(r) = limy g Yoo m, (O p°
hence,

P po(r) = = 9(x)
Pl = - =[G Ouo(t)dt
P () = - 27 G Dty (Dt

(2.1.15)

(2.1.16)

(2.1.17)

(2.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

(3.1.22)

(3.1.23)
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After obtaining the components @f(t), i=0, and finally

u(@) = Xn=o Hn(r)
or

u(r) = limy; Xr-o 1, () p"
And the series solution converges, if the solution exist

The nonlinear Fredholm integral equation of the first kiad also be treated by the regularization method
[27] and [26] in the same way as in the linear case.nbmdinear first kind of Fredholm integral equation is
in the form as can be seenin (3.1.24)

9()=[" G (x, ON (u())dt (3.1.24)
By the method, the equation 3.1.24 can be converted to afirgtind of Fredholm integral equation as

9=/ G (x, Hu(t)de (3.1.25)
where

u(x) = N((x)) (3.1.26)
and if the nonlinear function is invertible, it can be esented in this form

1) = N~H(u(x)) (3.1.27)

There may be some difficulties in dealing with nonlineadkrodém integral equations of the first kind due to
the fact that, the equation is an ill-posed problem [28].

3.2 Linear Fredholm integral equation of thefirst kind

The linear Fredholm integral equation of the first kindtriansformed to the second kind using the
regularization method. The HAM is then applied to solve tlblpm to get approximate solutions of the

equations. The existence of the solution as well as its umgsés not always assured [28]. For more detall
about convergence, existence, and uniqueness see theigllideratures [37,38,39].

Example 3.2.1. Consider the following linear first kind of Fredholm intgequation

5x = 5[ xt? p(t)dt (3.2.28)
By means of the regularization method, equation 3.2.28risfiormed to

e (x) = 5% +5[) xt® p, (Bt 3.2.29)

This is reduced to the form

L (X) = sa_" - g J, xt? pg(t)at (3.2.30)
Then equation 3.2.30 represents the second kind of Fredhigral equation. And the nth-order homotopy
deformation is constructed as
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1n(T) = Xnbtn-1(T) + 2L [H(T)R, (171 (7))]
And

Ri(t17-1() = e (9= (Ln) s — 2 [} 2t prg (Bt

a

Where, the initial guess is set as

5
Ho(T) = ;x
_ 5 r1 3 _ 5
() = — ;fo xt* po(tydt = — Zo ;X
5 1 5
Ha(7) = — ;fo xt? py (dt = b X
5 1 5
u3() =— ;fo xt? pp()dt =— 24X

and so on, then
=5x — 7.2 S 7
=5x Zy_X + Zy5X = 23X ..
is the approximate solution.
By summing the infinite geometric solution series.

The h is a convergence control parameter, choogiglzl

5.5 5.5 5.5
=OX +X - ox + XL
a a a

And
5.5 5.5 5.5
SEX +—X ——=x + 5 X-....
a a a
Where
=5x +35-; —5.5x((3)™)
And the

.un(T) = lima—>0 Zfi:o .un(T) = 5x

(3.2.31)

(3.2.32)

(3.2.33)

(3.2.34)

(3.2.35)

Which is the exact solution. The solution may not exist aisdpipssible to have more than one solution.

Example 3.2.2. Consider the following linear first kind of Fredholm igital equation

1. 1
X == J, cosxtu(t)dt

By means of the regularization method [27], equation 3.2.86risformed to

apg(x)= %X + fol cosxt, (t)dt
Where it is reduced to the form

1 101
Ha(X)= X += Jy cosxtug(t)dt

(3.2.36)

(3.2.37)

(3.2.38)
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Then (3.2.38) represents the second kind of Fredholngraiteequation. And the nth-order homotopy
deformation is constructed as

Un(T) = Xnbn-1(7) + L [H(T)Rn (171 (7))] (3.2.39)

And

Rn(t-1 (1) = -1 (9= (L) 5% = J cosxtuq(t)de (3.2.40)

Where, the initial guess is set as

- x
Ho(T) = 2a )
(= —- J, cosxtuy(t)dt =— 2y cosx

11 1

Ho(t) = — = J, cosxtu,(H)dt =12 —5C0SX

_ 1t __ 1
pa(t) = —— Jy cosxtu,(t)dt Zoz— cOSX

and so on, therefore
=X _ z>cosx+ L cosx — L cosx (3.2.412)
T2 Doy D 157 Seype e
Forg=-1.2
=4 Z2osx — 1'22 cosx + 1'23 CcOSX ...
2 6a 18a 54a

Which is the approximate solution of (3.2.36). This is achiewedunming the infinite geometric solution
series.

To obtain the exact solution of equation 3.2.36, the series solstexpiessed as
Ha(®) = limg o Yoy pa(7) =2 (3.2.42)

And here as indicated earlier, the solution may nadtend even if it does exist its uniqueness may not be
assured [25,27].

Table 1. The exact solution and RHAM result of example 3.2.1

X Exact RHAM, z,=-1.1 Other solution Error

0.0 0.000000000 0.000000000 0.000000000 0.000000000
0.1 0.500000000 0.785185189 0.240740741 -0.285185189
0.2 1.00000000 1.57037037 0.48148148 -0.57037037

0.3 1.500000000 2.355555555 0.722222222 -0.855555555
0.4 2.00000000 3.14074074 0.96296296 -1.14074074

0.5 2.500000000 3.925925924 1.203703705 -1.425925924
0.6 3.000000000 4711111111 1.444444445 -1.711111111
0.7 3.50000000 5.49629629 1.68518518 -1.99629629

0.8 4.000000000 6.281481487 1.925925926 -2.281481487
0.¢ 4.50000000 7.06666666 2.16666666 -256666666

1.0 5.000000000 7.85181843 2.407407409 -2.85181843
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Table 2. The exact solution and RHAM result of example 3.2.36

X Exact solution RHAM, z,=-1.2 Other solution Error

0.C 0.00000000 0.14979421 -0.12482851 -0.14979421

0.1 0.050000000 0.199794009 -0.074828341 -0.149794009
0.2 0.10000000 0.24979332 -0.0248277 -0.14979332

0.3 0.150000000 0.299792185 0.025173180 -0.149792185
0.4 0.200000000 0.349746721 0.075211066 -0.149746721
0.t 0.25000000 0.39978853 0.12517622 -0.14978853

0.6 0.300000000 0.449805374 0.175162188 -0.149805373
0.7 0.35000000 0.49978305 0.22518078 -0.14978305

0.8 0.400000000 0.549779636 0.275183636 -0.149779636
0.9 0.450000000 0.599775757 0.325186869 -0.149775757
1.0 0.500000000 0.649771423 0.37519048 -0.149771423

3.3 Thenonlinear Fredholm integral equation

In this section, the nonlinear Fredholm integral equasasolved by the regularization-homotopy analysis
method. Let us take a look at the following examples:

Example 3.2.3. Consider the following first kind of Fredholm integral eqoati

Ze*=— [ te* p2(t)dt (3.3.43)
To start, we set
@*(t)=u(t) ande(t) = £/ u(t) (3.3.44)

By changing the (3.3.43) from nonlinear Fredholm integral equatitinear Fredholm integral equation, we
have

4 5 1

se=— J, te* u(t)dt (3.3.45)
And applying the regularization method, takes (3.3.45) to

o) = =X += [T te* uy(t)dt (3.3.46)
The (3.3.46) represents the second kind of Fredholm integualtion

Un(T) = Xnbn-1(7) + 2L [H(T)Ry (171 (7))] (3.3.47)
And

Ri(t-1(1) = tnoa (%) = (Lxn)ome® — = [ te* p(6)dt (3.3.48)

Then, we find the homotopy by setting the initial guesss a

_ 4 x
Ho(X) = 3a1€ ) \
Ha(X) = _;fo te* po()dt == 20 ;e*
1 r1 4
Ho(X) = —— [ te* i (Ddt =2 ze*
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101 4
u3(X) = _;fo te* pp(H)dt =— ZOﬁex

And this goes on and on, then we consider the approximatgosofor 3.3.43. This can be achieved by
summing the infinite geometric solution series.

B (X) = po(X)+ py (X) + pa(X) + pg(X) + ... (3.3.49)
_ 4 4 4 4
(X) —gex—zogex +Zo$€x —20@995 .. (3.3.50)

And choosing & —1

‘u(x):%ex_'_ iex _ iex + #ex + ... (3351)

3a2 3a3

1 () = VI o () (3.3.52)
For the exact solution,u (x)is expressed as,
W (%) =limg oI g (%)
Which gives the exact solution to 3.3.43. Getting the gwigeries to converge [27] could be a challenge.

Example 3.2. 4. Consider this nonlinear Fredholm integral equation
7x? = [ xPte?(Hdt (3.3.53)
To begin, we set

P*(x)=p(x) and @ (x) = +/u(x) (3.3.54)

By changing the equation 3.3.53, from nonlinear Fredholegmal equation to linear Fredholm integral
equation, we have

7x? = — [ xPtp(t)dt (3.3.55)
Where the regularization method is applied, takes equation 3@.55 t
2
Ha() = 2=+ = [Fx2t g (Dt (3.3.56)

And this represents the second kind of Fredholm integratemp. Introducing the nth-order homotopy
deformation of (3.3.53).

1n(T) = Xnbn-1(T) + Zo L™ H(T)Ry (17— (7))] (3.3.57)
And

Rl +(2) = bn 209 = (L) 2= =2 [} 22¢ gkt (3:358)
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Where the initial guess is set as

Holx) = 2

0= =2 ol = — 275
Ya(x) = _ifolxzt pa(t)dt = zo 1767;23
B = =[x ot = -2

And this goes on and on, then we consider the approximateosofati(3.3.53).

1 (X) = () ua(X) + pa(X) + pa(X) + ... (3.3.59)
_ 7x? 7x2 7x2 7x2
= T 205 T e L (3.3.60)
If ZO—_%
_ 7x? x? x? x?
- 7+ a2 16a3 + 64a* to (3.3.61)
where
B (X) =/ Lo Hn(X) (3.3.62)

And for the exact solution, expreggx) as,

Yin=0Hn(X)

Which is the exact solution to (3.3.53). The solution if it derist, is possible to have more than one
solution and the solution may not be unique, see [25,26,27].

p (x) =limg_,o

Table 3. The exact solution and RHAM result of example 3.3.53

X Exact solution RHAM, a=0.3, Other solution Error
Zo=-1.1

0 0.00000000 0.00000000 0.00000000 0.000000000

0.1 0.529150262 0.557608865 0.551250074 -0.028458603

0.2 1.05830052 1.11521940 1.10249618 -0.0569188

0.3 1.587450787 1.672829078 1.636201286 -0.085378291

0.4 2.116601049 2.230438647 2.204992178 -0.113837598

0.5 2.64575131 2.78804845 2.75624049 -0.14229714

0.6 3.174901573 3.345658152 3.307488538 -0.170756579

0.7 3.70405183 3.90326780 3.85873662 -0.19921597

0.8 4.233202098 4.460877158 4.4099844 -0.22767506

0.9 4.76235236 5.01847234 4,961232813 -0.25611998

1 5.291502622 5.576096628 5.512483075 -0.284594006
4 Conclusion

The Linear and nonlinear Fredholm integral equations ofiiteekind are considered. The equations are
transformed from Fredholm integral equation of the firstilko second kind by the regularization method

10
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and then solve by homotopy analysis method (HAM). This tygategral equation is an ill-posed problem
which sometimes does not have a solution and where it deeginivergence and unigueness is not always
guaranteed. In this work, the approximate solutions emed and compared with the exact solutions. The
regularization - homotopy analysis method showed relighilithandling Fredholm integral equation of the
first kind.

Competing Interests

Authors have declared that no competing interests exist.

References

(1]
(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

Adomain G. Solving frontier problems of physics: The decontiposmethod. Kluwer; 1994.

Aghazadeh N, Mohammadi S. A modified homotopy perturbation methioddving linear and
nonlinear integral equations. International Journal of Noatiisziences. 2012;3:308-316.

Mahmoudi M, Kazemi MV. Solving singular BVPs ordinary diéntial equations by modified
homotopy perturbation method. Journal of Mathematics and G@m§Science. 2013;7:138-143.

Liao SJ. The homotopy analysis method and its applicatiomseichanics. Ph.D. Thesis, Shanghai
Jiaotong University; 1992.

Abbasbandy S, Parkes EJ. Solitary-wave solutions db#gasperis Procesi equation by means of the
homotopy analysis method. Int. J. Comp. Math. 2010;87:2303-2313

Liao SJ. On the homotopy multiple-variable method and its egtjpns in the interactions of
nonlinear gravity waves. Commun. Nonlinear Sci. Numenugat. 2011;16:1274-1303.

Nui Z, Wang C. A one-step optimal homotopy analysis metloddnlinear differential equations.
Commun. Nonlinear Sci. Numer. Simulat. 2010;15:2006-2036.

Wu YY, Cheung KF. Homotopy solution for nonlinear differentigu&tions in wave propagation
problems. Wave Motion. 2009;46:1-14.

Li YJ, Nohara BT, Liao SJ. Series solutions of coupleoh \er Pol equation by means of homotopy
analysis method. J. Mathematical Physis. 2010;51:063517.
DOI: 10.1063/1.344770

Liao SJ. Beyond perturbation-introduction to the homotopy anatgsthod. Chpman & Hall/CRC
Press, Boca Raton; 2003.

Liao SJ. On the homotopy analysis method for nonlinear prablémpl. Math.Comput. 2004;147:
499-513.

Liao SJ. On the relationship between the homotopy analydisoth@nd Euler transform. Commun.
Nonlinear Sci. Numer. Simulat. 2010;15:1421-1431.

Liao SJ. An optimal homotopy-analysis approach for strongiglinear differential equations.
Commun. Nonlinear Sci. Numer. Simulat. 2010;15:2003-2016.

Liao SJ. Advances in the homotopy analysis method. World BaieA013.

11



Issaka et al. ARJOM, 4(1): 1-13, 2017; Article no.ARJOM.32585

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

Liao SJ. Homotopy analysis method in nonlinear differentiahéqns. Springer & Higher Education
Press, Heidelberg; 2012.

Zhao YL, Lin ZL, Liao SJ. An iterative HAM approach formimear boundary value problems in a
semi-infinite domain. Comput. Phys. Commun. 2013;184:2136-2144.

Pathak S, Singh T. Optimal homotopy analysis methodsdieing the linear and nonlinear Fokker-
planck equations. British Journal of Mathematics & Compuseience, SCIENCEDOMAIN
international. 2015;7(3):209-217.

Abbasbandy S, Shivanian E. Predictor homotopy analysithad and its application to some
nonlinear problems. Commun. Nonlinear Sci. Numer. Sima@it1;16:2456-2468.

Solodky SG, Semenova EV. About minimal informational effbstssolving exponentially ill-posed
problems. Journal of Computational & Applied Mathematics U@8.642. 2015;2:119.

Landi G. A discrete L-curve for the regularization bfpbsed inverse problems. University Press,
Baltimore, Third Edition; 2012.

Kangro I, Kangro R, Vaarmann O. Some approximate Guass-Newtpa methods for nonlinear ill-
posed problems. Proceedings of the Estonian Academyaric®s. 2013;62(4):227-237.

Noschese S, Reichel R. A modified TSVD method for descittfsed problems. VDMG60-
Nonlinear Evolution Equation and Linear Algebra; 2013.

Ge X, Wu J. A new regularized solution to lll-posed peablin coordinate transformation.
International Journal of Geosciences, Scientific Reseafip.

Bleyer IR. Novel regularization methods for ill-posed pratdein Hilbert and Banach spaces.
University of Helsinki; 2015.

Phillips DL. A technique for the numerical solution of edmtintegral equations of the first kind. J.
Ass. Comput. Mach. 1962;9:84-96.
Available:http://dx.doi.org/10.1145/321105.321114

Tikhonov AN. On the solution of incorrectly posed problem and tethad of regularization. Soviet
Math. 1963;4:1035-1938.

Tikhonov AN. Regularization of incorrectly posed problems. Sdvith. Dokl. 1963;4:1624-1627.

Wazwaz AM. The regularization — Homotopy method for thedr and nonlinear Fredholm integral
equation of the first kind. Dep. of Math., Saint Xavierikgrsity, Chicago. 2011;IL 60655, USA.
DOI: 10.5899/2011/can-00105

Nguyen HT, Luu VCH. Two new regularization methods for solvinigways heat equation. Journal
of Inequalities and Applications, Springeropen.com; 2015.

Nair TM, Pereverzev SV. Regularized collocation methad-fedholm integral equations of the first
kind, ScienceDirect, Journal of COMPLEXITY; 2006.

Budd CJ, Nichols NK. Tikhonov regularization for (largejverse problems. Department of
Mathematical Sciences, University of Bath. Great WesResearch; 2011.

Haltmeier M, Leitao A, Scherzer O. Kaczmarz methods rigularization nonlinear lll-posed
equations |: Convergence analysis. Inverse Problems anihen2907;1-298.

12



Issaka et al. ARJOM, 4(1): 1-13, 2017; Article no.ARJOM.32585

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Shahooth MK. Numerical solution for mixed Volterra- Frelth integral equations of the second
kind by using Bernstein polynomials method. MathematiteoFy and Modeling. 2015;5:10.

Rabbani M, Jamali R. Solving nonlinear system of mix@iterra-Fredholm integral equations by
using Variational iteration method. The Journal of Mathematicd Computer Science. 2012;5(4):
280-287.

Issaka |, Obeng-Denteh W, Mensah PAA, Mensah 10. Homotoplysismanethod for solving
Fredholm integral equations of the second kind. BOMSR. 2016;4:1.

Pandey PK. Non-standard finite difference method for numesiclution of second order linear
Fredholm Integro-differential equations. International Journal Mdthematical Modelling&
Computations. 2015;5(3):259-266. Summer

Delves LM, Mohamed JL. Computational methods for integmhations. Cambridge University
Press, Cambridge; 1985.

Hairer E, Norsett SP, Wanner G. Solving ordinary déif¢ial equations | Nonstiff problems (Second
revised edition). Springer-Verlag New York; 1993. USA.

Hu S, Wan Z, Khavanin M. On the existence and uniquenessidiolinear integro-differential
equations. Jour Math Phy. Sci. 1987;21(2):93-103.

© 2017 Issaka et al.; This is an Open Access artitistributed under the terms of the Creative Commattsbution License
(http://creativecommons.org/licenses/byj4 ®Which permits unrestricted use, distributiondareproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be asedsere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/18994

13



