23(4): 1-12, 2017; Article no.JAMCS.34697

TODORIA

Previously known as British Journal of Mathematics & *Computer Science ISSN: 2231-0851*

Fixed Points for Some Multivalued Mappings in *Gp***-Metric Spaces**

Melek K¨ubra Ayhan¹ **and Cafer Aydın**¹ *∗*

¹ Department of Mathematics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, 46100, *Turkey.*

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

[Received: 6](http://www.sciencedomain.org/review-history/20111)th June 2017 Accepted: 12th July 2017

DOI: 10.9734/JAMCS/2017/34697 *Editor(s):* (1) Metin Basarir, Department of Mathematics, Sakarya University, Turkey. *Reviewers:* (1) Nihal Tas, Balikesir University, Turkey. (2) Choonkil Park, Hanyang University, Republic of Korea. (3) Ali Mutlu, Manisa Celal Bayar University, Turkey. (4) Xiaolan Liu, Sichuan University of Science & Engineering, China. Complete Peer review History: http://www.sciencedomain.org/review-history/20111

Original Research Article Published: 18th July 2017

Abstract

The aim of this work is to establish some new fixed point theorems for multivalued mappings in *G^p* metric space.

Keywords: Fixed point; multivalued mapping; G^p metric spaces.

2010 Mathematics Subject Classification: 47H10, 54H25.

1 Introduction and Preliminaries

In 1922, Banach[1] proved a theorem about the existence and uniqueness of fixed point. Thanks to this work, many generalization theorems were introduced and generalized the Banach contraction principle in some different way.

^{}Correspond[in](#page-10-0)g author: E-mail: caydin61@gmail.com;*

Nadler [2], introduced the notion of multivalued contraction mapping and proved well known Banach contraction principle. Aydi at al. [3] proved the Banach type fixed point results for set valued mapping in complete metric spaces. Matthews [4], introduced the partial metric spaces and proved a fixed point theorem on this space. After that several fixed point results have been proved in this spaces. Mustafa and Sims[5] introduced the concept of *G* metric spaces in the year 2006 as a gener[al](#page-10-1)ization of the metric spaces. Recently, based on the two above metric spaces, Zand and Nezhad $[6]$ introduced a new gener[ali](#page-10-2)zed metric spaces G_p which as a both generalization of the partial metric space and *G* metric spaces. Som[e o](#page-10-3)f these works may be noted in [7, 8, 9, 10, 11, 12, 13, 14, 15].

We now reminding some fundamental definitions, notations and basic results that will be used through[ou](#page-10-4)t this paper.

[De](#page-10-5)[fin](#page-10-6)i[tio](#page-10-7)n 1.1. [6] Let *X* be a nonempty set and let $G_p: X \times X \times X \to \mathbb{R}^+$ be a function satisfying the following properties:

 $(GP1)$ $0 \le G_p(x, x, x) \le G_p(x, x, y) \le G_p(x, y, z)$, all $x, y, z \in X$;

(*GP*2) $G_p(x, y, z) = G_p(x, z, y) = G_p(y, z, x) \dots$, (symmetry in all three variables);

(*GP*3) $G_p(x, y, z) \leq G(x, a, a) + G_p(a, y, z) - G_p(a, a, a)$, for any $a, x, y, z \in X$, (rectangle inequality);

$$
(GP4) \ \ x = y = z \ \text{if} \ G_p(x, y, z) = G_p(x, x, x) = G_p(y, y, y) = G_p(z, z, z);
$$

Then the pair (X, G_p) is called a G_p metric space.

Proposition 1.1. [6] Let (X, G_p) be a G_p -metric space. Then for any x, y, z and $a \in X$ the *following relations are true.*

- (i) $G_n(x, y, z) \leq G_n(x, x, y) + G_n(x, x, z) G_n(x, x, x)$;
- (iii) $G_p(x, y, y) \leq 2G_p(x, x, y) G_p(x, x, x)$;
- (iii) $G_p(x, y, z) \leq G_p(x, a, a) + G_p(y, a, a) + G_p(z, a, a) 2G_p(a, a, a);$ $G_p(x, y, z) \leq G_p(x, a, a) + G_p(y, a, a) + G_p(z, a, a) 2G_p(a, a, a);$
- (iv) $G_p(x, y, z) \leq G_p(x, a, z) + G_p(a, y, z) G_p(a, a, a)$.

Definition 1.2. [6] Let (X, G_p) be a G_p -metric space and a sequence $\{x_n\}$ is called a G_p convergent to $x \in X$ if

$$
\lim_{n,m \to \infty} G_p(x, x_n, x_m) = G_p(x, x, x).
$$

A point $x \in X$ is [sa](#page-10-4)id to be limit point of the sequence $\{x_n\}$ and written $x_n \to x$.

Thus if $x_n \to x$ in a G_p metric space (X, G_p) , then for any $\epsilon > 0$, there exists $\ell \in \mathbb{N}$ such that $|G_p(x, x_n, x_m) - G_p(x, x, x)| < \epsilon$, for all $n, m > \ell$.

Proposition 1.2. *[6] Let* (X, G_p) *be a* G_p *-metric space, then for any sequence* $\{x_n\}$ *in* X *, the following are equivalent that*

- *(i)* $\{x_n\}$ *is* G_p *convergent to* x *;*
- (iii) $G_p(x_n, x_n, x) \rightarrow G_p(x, x, x)$ *as* $n \rightarrow \infty$;
- (iii) $G_p(x_n, x, x) \rightarrow G_p(x, x, x)$ *as* $n \rightarrow \infty$.

Definition 1.3. [6] Let (X, G_p) be a G_p -metric space.

- (i) A sequence $\{x_n\}$ is called a G_p Cauchy if and only if $\lim_{n,m\to\infty} G_p(x_n,x_m,x_m)$ exists and finite.
- (ii) A G_p metric space (X, G_p) is said to be G_p complete if and only if every G_p Cauchy sequence in *X* is G_p [co](#page-10-4)nvergent to $x \in X$ such that $G_p(x, x, x) = \lim_{n, m \to \infty} G_p(x_n, x_m, x_m)$.

Lemma 1.1. *[8] Let* (X, G_p) *be a* G_p *metric space. Then*

- *(i) If* $G_p(x, y, z) = 0$ *then* $x = y = z$ *,*
- (*ii*) *If* $x \neq y$ *then* $G_p(x, y, y) > 0$.

Recently, Kae[wch](#page-10-8)aeron and Kaewkhao ([16]) introduced the following concepts.

Let *X* be a *G* metric space. We shall denote $CB(X)$ the family of all nonempty closed bounded subsets of *X*. Let $H(.,.,.)$ be the Hausdorff *G* distance on $CB(X)$, i.e.,

 $H_G(A, B, C) = \max\{sup_{x \in A} G(x, B, C), sup_{x \in B} G(x, C, A), sup_{x \in C} G(x, A, B)\},\$ $H_G(A, B, C) = \max\{sup_{x \in A} G(x, B, C), sup_{x \in B} G(x, C, A), sup_{x \in C} G(x, A, B)\},\$ $H_G(A, B, C) = \max\{sup_{x \in A} G(x, B, C), sup_{x \in B} G(x, C, A), sup_{x \in C} G(x, A, B)\},\$

where

$$
G(x, B, C) = d_G(x, B) + d_G(B, C) + d_G(x, C),
$$

\n
$$
d_G(x, B) = \inf \{ d_G(x, y), y \in B \},
$$

\n
$$
d_G(A, B) = \inf \{ d_G(a, b), a \in A, b \in B \}.
$$

Recall that $G(x, y, C) = \inf\{G(x, y, z), z \in C\}$. A mapping $T: X \to 2^X$ is called a multivalued mapping. A point $x \in X$ is called a fixed point of *T* if $x \in Tx$.

Lemma 1.2. *[3] Let A and B be nonempty closed and bounded subsets of a partial metric space* (X, G_p) *and* $h > 1$ *. Then, for all* $a \in A$ *, there exists* $b \in B$ *such that*

$$
G_p(a, b) \le hH_{G_p}(A, B).
$$

2 Main Results

Our first main result is the following theorem.

Theorem 2.1. *Let* (X, G_p) *be a complete* G_p *metric space, and* $T : X \to CB(X)$ *be a multivalued contractive mapping such that for all* $x, y, z \in X$,

$$
H_{G_p}(Tx, Ty, Tz) \le \alpha G_p(x, y, z)
$$
\n(2.1)

where $\alpha \in (0, 1)$ *. Then T has a fixed point.*

Proof. We define a sequence $\{x_n\}$ in *X* given by $x_{n+1} \in Tx_n$ for all $n \in \mathbb{N}$. Hence,

$$
x_1 \in Tx_0, x_2 \in Tx_1 = T^2 x_0, \dots
$$
\n(2.2)

If there exists $n_0 \in \mathbb{N}_0$ such that $x_{n_0} = x_{n_0+1}$

$$
H_{G_p}(Tx_{n_0}, Tx_{n_0}, Tx_{n_0}) \leq \alpha G_p(x_{n_0}, x_{n_0}, x_{n_0})
$$

$$
H_{G_p}(x_{n_0+1}, x_{n_0+1}, x_{n_0+1}) \leq \alpha G_p(x_{n_0}, x_{n_0}, x_{n_0})
$$

Therefore, from definition of H_{G_p} , we get $H_{G_p}(x_{n_0}, x_{n_0}, x_{n_0}) = 0$. Then, it is the clear that x_{n_0} is fixed point of *T* which completes the proof.

Now, let be $G_p(x_{n_0}, x_{n_0+1}, x_{n_0+1}) > 0$ with $x_{n_0} \neq x_{n_0+1}$ for every $n \in \mathbb{N}_0$. Hereby, from inequality (2.1), we have;

$$
H_{G_p}(Tx_0, Tx_1, Tx_1) \leq \alpha G_p(x_0, x_1, x_1)
$$

$$
H_{G_p}(Tx_1, Tx_2, Tx_2) \leq \alpha G_p(x_1, x_2, x_2)
$$

. . .

$$
H_{G_p}(Tx_n, Tx_{n+1}, Tx_{n+1}) \leq \alpha G_p(x_n, x_{n+1}, x_{n+1}).
$$
\n(2.3)

Let $h \in (1, \frac{1}{\alpha})$. In Lemma 1.2, we have

$$
G_p(x_1, x_2, x_2) \le hH_{G_p}(Tx_0, Tx_1, Tx_1) \le h\alpha G_p(x_0, x_1, x_1)
$$

\n
$$
G_p(x_2, x_3, x_3) \le hH_{G_p}(Tx_1, Tx_2, Tx_2) \le h\alpha G_p(x_1, x_2, x_2)
$$

\n
$$
\le h^2 \alpha H_{G_p}(Tx_0, Tx_1, Tx_1)
$$

\n
$$
\le h^2 \alpha^2 G_p(x_0, x_1, x_1)
$$

Hence for all $n \in \mathbb{N}$;

$$
G_p(x_n, x_{n+1}, x_{n+1}) \le hH_{G_p}(Tx_{n-1}, Tx_n, Tx_n) \le \cdots \le h^n \alpha^n G_p(x_0, x_1, x_1). \tag{2.4}
$$

Get $k = h\alpha < 1$ for $k \in (0, 1)$. From (2.4) , we write that

$$
G_p(x_n, x_{n+1}, x_{n+1}) \le k^n G_p(x_0, x_1, x_1). \tag{2.5}
$$

Now, we show that $\{x_n\}$ is a Cauchy sequence.

$$
G_p(x_n, x_{m+n}, x_{m+n}) \leq G_p(x_n, x_{n+1}, x_{n+1}) + G_p(x_{n+1}, x_{m+n}, x_{m+n}) -
$$

\n
$$
G_p(x_{n+1}, x_{n+1}, x_{n+1})
$$

\n
$$
\leq G_p(x_n, x_{n+1}, x_{n+1}) + G_p(x_{n+1}, x_{m+n}, x_{m+n})
$$

\n
$$
\leq G_p(x_n, x_{n+1}, x_{n+1}) + G_p(x_{n+1}, x_{n+2}, x_{n+2}) +
$$

\n
$$
G_p(x_{n+2}, x_{m+n}, x_{m+n}) - G_p(x_{n+2}, x_{n+2}, x_{n+2})
$$

\n
$$
\vdots
$$

\n
$$
\leq G_p(x_n, x_{n+1}, x_{n+1}) + G_p(x_{n+1}, x_{n+2}, x_{n+2}) +
$$

\n
$$
\cdots + G_p(x_{m+n-1}, x_{m+n}, x_{m+n})
$$

\n
$$
\leq k^n G_p(x_0, x_1, x_1) + k^{n+1} G_p(x_0, x_1, x_1) +
$$

\n
$$
\cdots + k^{n+m-1} G_p(x_0, x_1, x_1)
$$

\n
$$
= \frac{k^n - k^{n+m}}{1 - k} G_p(x_0, x_1, x_1).
$$
 (2.6)

Where we take the limit for $m, n \to \infty$, this show that $G_p(x_n, x_{m+n}, x_{m+n}) \to 0$. Hence $\{x_n\}$ sequence is a Cauchy sequence. Also, (X, G_p) is a complete G_p metric space. There exist $u \in X$ such that $\{x_n\}$ sequence converges $u \in X$. So,

$$
\lim_{n \to \infty} G_p(x_n, x_{n+1}, x_{n+1}) = \lim_{n \to \infty} G_p(x_n, u, u) = G_p(u, u, u) = 0.
$$
\n(2.7)

Due to *T* is continuous mapping, we have

$$
\lim_{n \to \infty} H_{G_p}(Tx_n, Tu, Tu) = 0.
$$
\n(2.8)

So, for all $n \in \mathbb{N}$,

$$
G_p(u, T_u, T_u) \le G_p(u, x_{n+1}, x_{n+1}) + G_p(x_{n+1}, T_u, T_u) - G_p(x_{n+1}, x_{n+1}, x_{n+1})
$$

\n
$$
\le G_p(u, x_{n+1}, x_{n+1}) + G_p(x_{n+1}, T_u, T_u)
$$

\n
$$
\le G_p(u, x_{n+1}, x_{n+1}) + hH_{G_p}(Tx_n, Tu, Tu)
$$

\n
$$
\le G_p(u, x_{n+1}, x_{n+1}) + h\alpha G_p(x_n, u, u) = G_p(u, x_{n+1}, x_{n+1}) + kG_p(x_n, u, u).
$$

From (2.7),

$$
G_p(u, T_u, T_u) \leq 0.
$$

This inequality is satisfying only $G_p(u, T_u, T_u) = 0$. Consequently, $u \in T_u$. This means that *u* is a fixed point of *T*. \Box

Exam[ple](#page-3-1) 2.2. Let $X = [0, \infty)$ and define $G_p(x, y, z) = \max\{x, y, z\}$, for all $x, y, z \in X$. Then (X, G_p) *is a complete* G_p *metric space. Also defined* $T : X \rightarrow CB(X)$ *a multivalued mapping, where*

 $T(x) = [0, x]$

for all $x \in X$ *. Then, from Theorem 2.1 we get*

$$
H_{G_p}(Tx, Ty, Tz) \leq \alpha G_p(x, y, z)
$$
\n(2.9)

$$
H_{G_p}([0, x], [0, y], [0, z]) \leq \alpha G_p(x, y, z)
$$
\n(2.10)

Let assume that

$$
D_1([0, x], [0, y]) = \sup\{d(a, [0, y]); a \in [0, x]\}
$$

\n
$$
D_2([0, y], [0, x]) = \sup\{d(b, [0, x]); b \in [0, y]\}
$$

\n
$$
D_3([0, x], [0, z]) = \sup\{d(a, [0, z]); a \in [0, x]\}
$$

\n
$$
D_4([0, z], [0, x]) = \sup\{d(c, [0, x]); c \in [0, z]\}
$$

\n
$$
D_5([0, y], [0, z]) = \sup\{d(b, [0, z]); b \in [0, y]\}
$$

\n
$$
D_6([0, z], [0, y]) = \sup\{d(c, [0, y]); c \in [0, z]\}.
$$
\n(2.11)

We write by (2.11),

$$
H_{G_p}([0, x], [0, y], [0, z]) = \max\{D_1, D_2, D_3, D_4, D_5, D_6\}.
$$
\n(2.12)

Suppose that x < y < z then,

$$
[0, x] \subset [0, y] \subset [0, z]. \tag{2.13}
$$

So, for all $a \in X$ *we have*

$$
d(a, [0, z]) \le d(a, [0, y]) \le d(a, [0, x]). \tag{2.14}
$$

Hence,

$$
\sup\{d(a, [0, z]); a \in X\} \le \sup\{d(a, [0, y]); a \in X\} \le \sup\{d(a, [0, x]); a \in X\}
$$
\n(2.15)

Thereby, using by (2.11) and (2.15), If $a \in [0, x]$ *, then*

$$
\sup d(a, [0, z]) \le \sup d(a, [0, y]) \Rightarrow D_3([0, x], [0, z]) \le D_1([0, x], [0, y]).
$$

If b ∈ [0*, y*]*, then*

$$
\sup d(b, [0, z]) \le \sup d(b, [0, x]) \Rightarrow D_5([0, y], [0, z]) \le D_2([0, y], [0, x]).
$$

If $c \in [0, z]$ *, then*

$$
\sup d(c, [0, y]) \le \sup d(c, [0, x]) \Rightarrow D_6([0, z], [0, y]) \le D_4([0, z], [0, x]).
$$

From the equality of (2.12),

$$
H_{G_p}([0, x], [0, y], [0, z]) = \max\{D_1, D_2, D_4\}.
$$
\n(2.16)

Otherwise, from (2.10),

$$
G_p(x, y, z) = \max\{x, y, z\} = z.
$$
\n(2.17)

So, we have from (2.17),

 $\max\{D_1, D_2, D_4\} \leq \alpha z.$

Obviously, this is satisfying the condition of Theorem 2.1.

Mizoguchi and Ta[kahas](#page-5-0)hi proved the following theorem in [17].

Theorem 2.3. [17] Let *X* be a complete metric space with metric *d* and let $T : X \to CB(X)$ satisfy $H(Tx,Ty) \le k(d(x,y))d(x,y)$, for all $x,y \in X$ with $x \neq y$, where k is a function of $(0,\infty)$ to $[0,1)$ *such that* $\limsup_{r \to t^+} k(r) < 1$ *for every* $t \in [0, \infty)$ *. Then T has a fixed point.*

We will do the proof of the following theorem, by using the proof method of Theorem 5 in [17].

Theorem 2.4. Let (X, G_p) be a complete G_p metric space and $T: X \to CB(X)$ be a multivalued *contractive mapping such that for all* $x, y, z \in X$,

$$
H_{G_p}(Tx, Ty, Tz) \le k(G_p(x, y, z))G_p(x, y, z)
$$
\n
$$
(2.18)
$$

where k is a Mizoguchi-Takahashi function of $(0, \infty)$ *to* $[0, 1)$ *such that* $\lim_{r \in t^+} k(r) < 1$ *for every* $t \in [0, \infty)$ *. Then T has a fixed point.*

Proof. Let x_0 be arbitrary in *X* and we define a sequence $\{x_n\}$ in *X* given by $x_{n+1} \in Tx_n$ for all $n \in \mathbb{N}_0$. Hence,

$$
x_1 \in Tx_0, x_2 \in Tx_1 = T^2 x_0, \dots, x_n \in T^n x_0 \dots \tag{2.19}
$$

We suppose that T has no fixed point. From the assumption for any $t > 0$ there exists positive numbers $N(t)$ and $e(t)$ such that

$$
k(r) \le N(t) < 1
$$

for all *r* with

$$
t < r < t + e(t).
$$

Take any $x_1 \in X$ and put $t_1 = G_p(x_1, Tx_1, Tx_1)$. In this case, when

$$
G_p(x_1, Tx_1, Tx_1) < G_p(x_1, y, y)
$$

for all $y \in Tx_1$, choose a positive number $\alpha(t_1)$ such that

$$
\alpha(t_1) < \min\left\{e(t_1), \left(\frac{1}{N(t_1)} - 1\right)t_1\right\} \tag{2.20}
$$

and

$$
\varepsilon(x_1) = \min\left\{\frac{\alpha(t_1)}{t_1}, 1\right\}.
$$
\n(2.21)

Hence, there exists $x_2 \in Tx_1$ such that,

$$
G_p(x_1, x_2, x_2) < G_p(x_1, Tx_1, Tx_1) + \varepsilon(x_1) G_p(x_1, Tx_1, Tx_1)
$$

$$
= (1 + \varepsilon(x_1))G_p(x_1, Tx_1, Tx_1).
$$
\n(2.22)

Note that, from assumption of $x_1 \neq x_2$ by hypothesis that *T* has no fixed point. On the other hand

$$
G_p(x_2, Tx_2, Tx_2) \le H_{G_p}(Tx_1, Tx_2, Tx_2) \le k(G_p(x_1, x_2, x_2))G_p(x_1, x_2, x_2)
$$
\n(2.23)

so

$$
G_p(x_1, Tx_1, Tx_1) - G_p(x_2, Tx_2, Tx_2) \ge G_p(x_1, Tx_1, Tx_1) - k(G_p(x_1, x_2, x_2))G_p(x_1, x_2, x_2)
$$

and from (2.22),

$$
G_p(x_1, Tx_1, Tx_1) - G_p(x_2, Tx_2, Tx_2) > \frac{1}{1 + \varepsilon(x_1)} G_p(x_1, x_2, x_2) - k(G_p(x_1, x_2, x_2)) G_p(x_1, x_2, x_2)
$$

$$
= \left(\frac{1}{1 + \varepsilon(x_1)} - k(G_p(x_1, x_2, x_2))\right) G_p(x_1, x_2, x_2). \tag{2.24}
$$

Further than, from $t_1 = G_p(x_1, Tx_1, Tx_1)$, we get

$$
t_1 = G_p(x_1, Tx_1, Tx_1) < G_p(x_1, x_2, x_2) < G_p(x_1, Tx_1, Tx_1) + \varepsilon(x_1)G_p(x_1, Tx_1, Tx_1)
$$

$$
\leq t_1 + \alpha(t_1) \leq t_1 + e(t_1). \tag{2.25}
$$

So,

$$
k(G_p(x_1, x_2, x_2)) \le N(t_1) < 1.
$$

From (2.21) and (2.20),

$$
\varepsilon(x_1) \le \frac{\alpha(t_1)}{t_1} < \frac{1}{N(t_1)} - 1 \tag{2.26}
$$
\n
$$
\varepsilon(x_1) + 1 < \frac{1}{N(t_1)}
$$
\n
$$
N(t_1) < \frac{1}{1 + \varepsilon(x_1)}.
$$
\n(2.27)

Hence,

$$
\frac{1}{1 + \varepsilon(x_1)} - k(G_p(x_1, x_2, x_2)) > 0
$$
\n(2.28)

In this case, since $G_p(x_1, Tx_1, Tx_1) = G_p(x_1, x_2, x_2)$ for $x_2 \in Tx_1$. We have from (2.23)

$$
G_p(x_1, Tx_1, Tx_1) - G_p(x_1, x_2, x_2) \ge G_p(x_1, Tx_1, Tx_1) - H_{G_p}(Tx_1, Tx_2, Tx_2)
$$

\n
$$
\ge G_p(x_1, Tx_1, Tx_1) - k(G_p(x_1, x_2, x_2))G_p(x_1, x_2, x_2)
$$

\n
$$
= (1 - k(G_p(x_1, x_2, x_2))G_p(x_1, x_2, x_2). \tag{2.29}
$$

Next, let $t_2 = G_p(x_2, Tx_2, Tx_2)$. In the case when

$$
G_p(x_2, Tx_2, Tx_2) < G_p(x_2, y, y)
$$

for all $y \in Tx_2$, $e(t_2)$ and $N(t_2)$, choose $\alpha(t_2)$ with

$$
0 < \alpha(t_2) < \min\left\{e(t_2), \left(\frac{1}{N(t_2)} - 1\right)t_2\right\} \tag{2.30}
$$

and set,

$$
\varepsilon(x_2) = \min\left\{\frac{\alpha(t_2)}{t_2}, \frac{1}{2}, \frac{t_1}{t_2} - 1\right\}
$$
 (2.31)

7

In the same way as above, we obtain $x_3 \in Tx_2$ satisfying

$$
G_p(x_2, x_3, x_3) < (1 + \varepsilon(x_2))G_p(x_2, Tx_2, Tx_2) \tag{2.32}
$$

and

$$
G_p(x_2, Tx_2, Tx_2) - G_p(x_3, Tx_3, Tx_3) \ge \left(\frac{1}{1 + \varepsilon(x_2)} - k\left(G_p(x_2, x_3, x_3)\right)\right) G_p(x_2, x_3, x_3) > 0.
$$

Since $\varepsilon(x_2) \leq \frac{t_1}{t_2} - 1$ and (2.32), then

$$
G_p(x_2, x_3, x_3) < (1 + \varepsilon(x_2)) \, G_p(x_2, Tx_2, Tx_2) \le G_p(x_1, Tx_1, Tx_1) \le G_p(x_1, x_2, x_2).
$$

When $G_p(x_2, Tx_2, Tx_2) = G_p(x_2, x_3, x_3)$ for $x_3 \in Tx_2$, we have,

$$
G_p(x_2, Tx_2, Tx_2) - G_p(x_3, Tx_3, Tx_3) \ge (1 - k(G_p(x_2, x_3, x_3))) G_p(x_2, x_3, x_3) > 0
$$

and

$$
G_p(x_2, x_3, x_3) = G_p(x_2, Tx_2, Tx_2) < G_p(x_1, Tx_1, Tx_1) \le G_p(x_1, x_2, x_2).
$$

Thus, for $n = 1, 2, \ldots$ we can inductively construct a sequence (x_n) in *X* with $x_{n+1} \in Tx_n$ such that $\{G_p(x_n, x_{n+1}, x_{n+1})\}_{n=1}^{\infty}$ and $\{G_p(x_n, Tx_n, Tx_n)\}_{n=1}^{\infty}$ are decreasing sequences of positive numbers and

$$
G_p(x_n, Tx_n, Tx_n) - G_p(x_{n+1}, Tx_{n+1}, Tx_{n+1})
$$

$$
\geq \left(\frac{1}{1 + \delta(x_n)} - k\left(G_p(x_n, x_{n+1}, x_{n+1})\right)\right) G_p(x_n, x_{n+1}, x_{n+1}) \tag{2.33}
$$

where $\delta(x_n)$ is real numbers with

$$
0 \le \delta(x_n) \le \frac{1}{n}, \ (n = 1, 2, \ldots) \tag{2.34}
$$

So, the sequence $\{G_p(x_n, x_{n+1}, x_{n+1})\}$ of positive real numbers converges to nonnegative number. By the assumption of the theorem,

$$
\limsup_{n\to\infty}(G_p(x_n,x_{n+1},x_{n+1}))<1.
$$

Let choose,

$$
\alpha_n = \frac{1}{1 + \delta(x_n)} - k(G_p(x_n, x_{n+1}, x_{n+1})), \quad (n = 1, 2, \ldots),
$$

we have

$$
\liminf_{n \to \infty} \alpha_n \ge \lim_{n \to \infty} \frac{1}{1 + \delta(x_n)} - \limsup_{n \to \infty} k(G_p(x_n, x_{n+1}, x_{n+1})) > 0
$$
\n(2.35)

and there exists $\beta > 0$ such that

$$
G_p(x_n, Tx_n, Tx_n) - G_p(x_{n+1}, Tx_{n+1}, Tx_{n+1}) \geq \beta G_p(x_n, x_{n+1}, x_{n+1})
$$
\n(2.36)

for large enough *n*. Also that, the decreasing sequence $\{G_p(x_n, Tx_n, Tx_n)\}$ of positive real numbers is convergent, we have

$$
G_p(x_n, x_m, x_m) \leq \sum_{j=n}^{m-1} G_p(x_j, x_{j+1}, x_{j+1})
$$

$$
< \frac{1}{\beta} \sum_{j=n}^{m-1} \{ G_p(x_j, Tx_j, Tx_j) - G_p(x_{j+1}, Tx_{j+1}, Tx_{j+1}) \}
$$

$$
= \frac{1}{\beta} \{ G_p(x_n, Tx_n, Tx_n) - G_p(x_m, Tx_m, Tx_m) \} \to 0.
$$

as $n, m \to \infty$ and hence the sequence $\{x_n\}$ in *X* convergence to $x_0 \in X$. If $x_0 \neq x_n$ then

$$
H_{G_p}(Tx_0, Tx_n, Tx_n) \le k(G_p(x_0, x_n, x_n))G_p(x_0, x_n, x_n)
$$
\n(2.37)

and if $x_0 = x_n$ then

$$
H_{G_p}(Tx_0, Tx_n, Tx_n) \le G_p(x_0, x_n, x_n)
$$
\n(2.38)

So, $x_0 \in Tx_0$ from Lemma 2 of [15]. This shows that *T* has a fixed point.

Example 2.5. *Let* $X = [0, \infty)$ *and defined by* (X, G_p) *be a complete* G_p *metric space where*

$$
G_p(x, y, z) = \max\{x, y, z\}
$$
\n(2.39)

for all $x, y, z \in X$. Also defined $T : X \to CB(X)$ *a multivalued mapping where*

$$
T(x) = \begin{cases} [-1,1], & x \in (-\infty, 0] \\ [0, x], & x \in (0, \infty) \end{cases}
$$
 (2.40)

and $k : [0, \infty) \to [0, 1)$ *be a function such that*

$$
k(t) = \begin{cases} 0, & t \in [0, 1) \\ \frac{1}{2t}, & t \in [1, \infty) \end{cases}
$$
 (2.41)

for every $t \in [0, \infty)$ *which* $\lim_{r \in t^+} k(r) < 1$ *. Then by using the theorem*

$$
H_{G_p}(Tx, Ty, Tz) \leq k(G_p(x, y, z))G_p(x, y, z).
$$

If $x, y, z \in (-\infty, 0]$ *, we get,*

$$
H_{G_p}(Tx, Ty, Tz) = H_{G_p}([-1, 1], [-1, 1], [-1, 1])
$$

= max { $D([-1, 1], [-1, 1])$ },

and

$$
D([-1, 1], [-1, 1]) = \sup_{a \in [-1, 1]} d(a, [-1, 1]) = 0.
$$

So,

$$
0\leq k(G_p(x,y,z))G_p(x,y,z).
$$

from (2.39), we have that

$$
G_p(x, y, z) = \max\{x, y, z\} = 0, x, y, z \in (-\infty, 0]
$$

This is satisfying the Theorem 2.4. On the other hand, $x, y, z \in (0, \infty)$, we get,

$$
H_{G_p}(Tx, Ty, Tz) = H_{G_p}([0, x], [0, y], [0, z])
$$
\n(2.42)

from the assumption (2.11) of the Example 2.2 , we write,

$$
H_{G_p}([0, x], [0, y], [0, z]) = \max\{D_1, D_2, D_3, D_4, D_5, D_6\}.
$$
\n(2.43)

Let be x < y < z such that we get

$$
[0, x] \subset [0, y] \subset [0, z]. \tag{2.44}
$$

 \Box

Then,

$$
d(a, [0, z]) \le d(a, [0, y]) \le d(a, [0, x]). \qquad (\forall a \in X)
$$
\n
$$
(2.45)
$$

Hence,

$$
\sup\{d(a, [0, z]); a \in X\} \le \sup\{d(a, [0, y]); a \in X\} \le \{d(a, [0, x]); a \in X\}.\tag{2.46}
$$

Thereby,

If a ∈ [0*, x*]*, then,*

$$
\sup d(a, [0, z]) \le \sup d(a, [0, y]) \Rightarrow D_3([0, x], [0, z]) \le D_1([0, x], [0, y]).
$$

If $b \in [0, y]$ *, then,*

$$
\sup d(b, [0, z]) \le \sup d(b, [0, x]) \Rightarrow D_5([0, y], [0, z]) \le D_2([0, y], [0, x]).
$$

If $c \in [0, z]$ *, then,*

$$
\sup d(c, [0, y]) \le \sup d(c, [0, x]) \Rightarrow D_6([0, z], [0, y]) \le D_4([0, z], [0, x]).
$$

From the equality, we get

$$
H_{G_p}(Tx, Ty, Tz) = \max\{D_1, D_2, D_4\}.
$$

Otherwise, from (2.39),

$$
G_p(x, y, z) = \max\{x, y, z\} = z.
$$

We have,

 $\max\{D_1, D_2, D_4\} \leq k(z)z$

From $z \in (0, \infty)$ *, [we h](#page-8-0)ave two cases. First case* $If z \in (0,1) then,$

$$
\max\{D_1, D_2, D_4\} \le 0.
$$

This is clearly that is satisfying. Other case, $z \in [1, \infty)$ *, then,*

$$
\max\{D_1, D_2, D_4\} \le \frac{1}{2z}z
$$

$$
\max\{D_1, D_2, D_4\} \le \frac{1}{2}.
$$

Hence all the conditions of the Theorem 2.4 are satisfied.

3 Conclusion

In this paper, we gave some new fixed po[int t](#page-5-1)heorems for multivalued mappings in *G^p* metric space. We hope that our study contributes to the development of these results by other researchers.

Disclaimer

The main results of this paper were presented in part at the 2*nd* International Conference on Analysis and Its Applications (ICAA-2016). July 12-15, 2016, Kırşehir, Turkey. Conference link is: "https://icaa2016.ahievran.edu.tr/-Web/Default.aspx"

Acknowledgements

The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] BanachS. Sur les operations dans les ensembles abstraits et leur application aux equations integrals. Fund. Math. J. 1922;3:133-181.
- [2] Nadler SB. Multivalued contraction mappings. Pasific J.Math. 1969;30:475-488.
- [3] Aydi H, Abbas M, Vetro C. Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces. Topol. Appl. 2012;159:3234-3242.
- [4] Matthews SG. Partial metric spaces topology. Research Reports 21, Dept. of Computer Science, University of Warwick; 1992.
- [5] Mustafa Z, Sims B. A new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis. 2006;7(2):289-297.
- [6] Zand MRA, Nezhad AD. A generalization of partial metric spaces. Journal of Contemporary Applied Mathematics. 2011;24:86-93.
- [7] Mustafa Z, Sims B. Fixed point theorems for contractive mappings in complete G- metric spaces. Fixed Point Theory ans Applications. 2009;Article ID 917175, 10.
- [8] Aydi H, Karapınar E, Salimi P. Some Fixed Point Results in *G^p* Metric Spaces. Journal of Applied Mathematics. 2012;Article ID 891713.
- [9] Barcz E. Some fixed point theorems for multivalued mappings. Dem. Math. 1983;16:735-744.
- [10] Matthews SG. Partial metric topology. In: Proc. 8th Summer Conference on General Topology and Applications. Annals of the New York Academi of Sciences. 1994;728:183-197.
- [11] Mutlu A, Yolcu N. C- Class functions on coupled fixed point theorem for mixed monotone mappings on partially ordered dislocated quasi metric spaces. Nonlinear Functional Analysis and Applications. 2017; 22(1):9-106.
- [12] Mutlu A, Mutlu B, Akda˘g S. Using C-Class function on coupled fixed point theorems for mixed monotone mappings in partially ordered rectangular quasi metric spaces. British Journal of Mathematics and Computer Science. 2016;19(3):1-9.
- [13] Mutlu A, Yolcu N, Mutlu B. Fixed point theorems in partially ordered rectangular metric spaces. British Journal of Mathematics and Computer Science. 2016;15(2):1-9.
- [14] Mutlu A, Yolcu N. Coupled fixed point theorem for mixed monotone mappings on partially ordered discolated quasi metric spaces. Global Journal of Mathematics. 2015;1(1):12-17.
- [15] Assad NA, Kirk WA. Fixed point theorems for set-valued mappings of contractive type. Pacific J. Math. 1972;43:553-562.
- [16] Kaewcharoen A, Kaewkhao A. Common fixed points for single valued and multivalued mapping in G metric spaces. J. Math. Anal. 2011;5:1775-1790.
- [17] Mizoguchi N, Takahashi W. Fixed point theorems for multivalued mappings on complete metric spaces. J. of Math. Analysis and Applications. 1989;141:177-188.

 $\overline{}$, and the contract of the contrac *⃝*c *2017 Ayhan and Aydın; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this [paper can be accessed here \(Please copy paste](http://creativecommons.org/licenses/by/4.0) the total link in your browser address bar) http://sciencedomain.org/review-history/20111