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Turkey.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved
the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2017/34697
Editor(s):

(1) Metin Basarir, Department of Mathematics, Sakarya University, Turkey.
Reviewers:

(1) Nihal Tas, Balikesir University, Turkey.
(2) Choonkil Park, Hanyang University, Republic of Korea.

(3) Ali Mutlu, Manisa Celal Bayar University, Turkey.
(4) Xiaolan Liu, Sichuan University of Science & Engineering, China.

Complete Peer review History: http://www.sciencedomain.org/review-history/20111

Received: 6th June 2017

Accepted: 12th July 2017

Original Research Article Published: 18th July 2017

Abstract

The aim of this work is to establish some new fixed point theorems for multivalued mappings in
Gp metric space.
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1 Introduction and Preliminaries

In 1922, Banach[1] proved a theorem about the existence and uniqueness of fixed point. Thanks to
this work, many generalization theorems were introduced and generalized the Banach contraction
principle in some different way.
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Nadler [2], introduced the notion of multivalued contraction mapping and proved well known Banach
contraction principle. Aydi at al. [3] proved the Banach type fixed point results for set valued
mapping in complete metric spaces. Matthews [4], introduced the partial metric spaces and proved
a fixed point theorem on this space. After that several fixed point results have been proved in
this spaces. Mustafa and Sims[5] introduced the concept of G metric spaces in the year 2006 as
a generalization of the metric spaces. Recently, based on the two above metric spaces, Zand and
Nezhad [6] introduced a new generalized metric spaces Gp which as a both generalization of the
partial metric space and G metric spaces. Some of these works may be noted in [7, 8, 9, 10, 11, 12,
13, 14, 15].

We now reminding some fundamental definitions, notations and basic results that will be used
throughout this paper.

Definition 1.1. [6] Let X be a nonempty set and let Gp : X×X×X → R+ be a function satisfying
the following properties:

(GP1) 0 ≤ Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z), all x, y, z ∈ X;

(GP2) Gp(x, y, z) = Gp(x, z, y) = Gp(y, z, x) . . ., (symmetry in all three variables);

(GP3) Gp(x, y, z) ≤ G(x, a, a)+Gp(a, y, z)−Gp(a, a, a), for any a, x, y, z ∈ X, (rectangle inequality);

(GP4) x = y = z if Gp(x, y, z) = Gp(x, x, x) = Gp(y, y, y) = Gp(z, z, z);

Then the pair (X,Gp) is called a Gp metric space.

Proposition 1.1. [6] Let (X,Gp) be a Gp-metric space. Then for any x, y, z and a ∈ X the
following relations are true.

(i) Gp(x, y, z) ≤ Gp(x, x, y) +Gp(x, x, z)−Gp(x, x, x);

(ii) Gp(x, y, y) ≤ 2Gp(x, x, y)−Gp(x, x, x);

(iii) Gp(x, y, z) ≤ Gp(x, a, a) +Gp(y, a, a) +Gp(z, a, a)− 2Gp(a, a, a);

(iv) Gp(x, y, z) ≤ Gp(x, a, z) +Gp(a, y, z)−Gp(a, a, a).

Definition 1.2. [6] Let (X,Gp) be a Gp-metric space and a sequence {xn} is called a Gp convergent
to x ∈ X if

lim
n,m→∞

Gp(x, xn, xm) = Gp(x, x, x).

A point x ∈ X is said to be limit point of the sequence {xn} and written xn → x.

Thus if xn → x in a Gp metric space (X,Gp), then for any ϵ > 0, there exists ℓ ∈ N such that
|Gp(x, xn, xm)−Gp(x, x, x)| < ϵ, for all n,m > ℓ.

Proposition 1.2. [6] Let (X,Gp) be a Gp-metric space, then for any sequence {xn} in X, the
following are equivalent that

(i) {xn} is Gp convergent to x;

(ii) Gp(xn, xn, x) → Gp(x, x, x) as n → ∞;

(iii) Gp(xn, x, x) → Gp(x, x, x) as n → ∞.

Definition 1.3. [6] Let (X,Gp) be a Gp-metric space.

(i) A sequence {xn} is called a Gp Cauchy if and only if limn,m→∞ Gp(xn, xm, xm) exists and
finite.

(ii) A Gp metric space (X,Gp) is said to be Gp complete if and only if every Gp Cauchy sequence
in X is Gp convergent to xϵX such that
Gp(x, x, x) = limn,m→∞ Gp(xn, xm, xm).
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Lemma 1.1. [8] Let (X,Gp) be a Gp metric space. Then

(i) If Gp(x, y, z) = 0 then x = y = z,

(ii) If x ̸= y then Gp(x, y, y) > 0.

Recently, Kaewchaeron and Kaewkhao ([16]) introduced the following concepts.

Let X be a G metric space. We shall denote CB(X) the family of all nonempty closed bounded
subsets of X. Let H(., ., .) be the Hausdorff G distance on CB(X), i.e.,

HG(A,B,C) = max{supx∈AG(x,B,C), supx∈BG(x,C,A), supx∈CG(x,A,B)},

where

G(x,B,C) = dG(x,B) + dG(B,C) + dG(x,C),

dG(x,B) = inf{dG(x, y), y ∈ B},
dG(A,B) = inf{dG(a, b), a ∈ A, b ∈ B}.

Recall that G(x, y, C) = inf{G(x, y, z), z ∈ C}. A mapping T : X → 2X is called a multivalued
mapping. A point x ∈ X is called a fixed point of T if x ∈ Tx.

Lemma 1.2. [3] Let A and B be nonempty closed and bounded subsets of a partial metric space
(X,Gp) and h > 1. Then, for all a ∈ A, there exists b ∈ B such that

Gp(a, b) ≤ hHGp(A,B).

2 Main Results

Our first main result is the following theorem.

Theorem 2.1. Let (X,Gp) be a complete Gp metric space, and T : X → CB(X) be a multivalued
contractive mapping such that for all x, y, z ∈ X,

HGp(Tx, Ty, Tz) ≤ αGp(x, y, z) (2.1)

where α ∈ (0, 1). Then T has a fixed point.

Proof. We define a sequence {xn} in X given by xn+1 ∈ Txn for all n ∈ N. Hence,

x1 ∈ Tx0, x2 ∈ Tx1 = T 2x0, . . . (2.2)

If there exists n0 ∈ N0 such that xn0 = xn0+1

HGp(Txn0 , Txn0 , Txn0) ≤ αGp(xn0 , xn0 , xn0)

HGp(xn0+1, xn0+1, xn0+1) ≤ αGp(xn0 , xn0 , xn0)

Therefore, from definition of HGp , we get HGp(xn0 , xn0 , xn0) = 0. Then, it is the clear that xn0 is
fixed point of T which completes the proof.

Now, let be Gp(xn0 , xn0+1, xn0+1) > 0 with xn0 ̸= xn0+1 for every n ∈ N0. Hereby, from inequality
(2.1), we have;

HGp(Tx0, Tx1, Tx1) ≤ αGp(x0, x1, x1)

HGp(Tx1, Tx2, Tx2) ≤ αGp(x1, x2, x2)
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...

HGp(Txn, Txn+1, Txn+1) ≤ αGp(xn, xn+1, xn+1). (2.3)

Let h ∈ (1, 1
α
). In Lemma 1.2, we have

Gp(x1, x2, x2) ≤ hHGp(Tx0, Tx1, Tx1) ≤ hαGp(x0, x1, x1)

Gp(x2, x3, x3) ≤ hHGp(Tx1, Tx2, Tx2) ≤ hαGp(x1, x2, x2)

≤ h2αHGp(Tx0, Tx1, Tx1)

≤ h2α2Gp(x0, x1, x1)

Hence for all n ∈ N;

Gp(xn, xn+1, xn+1) ≤ hHGp(Txn−1, Txn, Txn) ≤ · · · ≤ hnαnGp(x0, x1, x1). (2.4)

Get k = hα < 1 for k ∈ (0, 1). From (2.4), we write that

Gp(xn, xn+1, xn+1) ≤ knGp(x0, x1, x1). (2.5)

Now, we show that {xn} is a Cauchy sequence.

Gp(xn, xm+n, xm+n) ≤Gp(xn, xn+1, xn+1) +Gp(xn+1, xm+n, xm+n)−
Gp(xn+1, xn+1, xn+1)

≤Gp(xn, xn+1, xn+1) +Gp(xn+1, xm+n, xm+n)

≤Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2)+

Gp(xn+2, xm+n, xm+n)−Gp(xn+2, xn+2, xn+2)

...

≤Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2)+

· · ·+Gp(xm+n−1, xm+n, xm+n)

≤knGp(x0, x1, x1) + kn+1Gp(x0, x1, x1)+

· · ·+ kn+m−1Gp(x0, x1, x1)

=
kn − kn+m

1− k
Gp(x0, x1, x1). (2.6)

Where we take the limit for m,n → ∞, this show that Gp(xn, xm+n, xm+n) → 0. Hence {xn}
sequence is a Cauchy sequence. Also, (X,Gp) is a complete Gp metric space. There exist u ∈ X
such that {xn} sequence converges u ∈ X. So,

lim
n→∞

Gp(xn, xn+1, xn+1) = lim
n→∞

Gp(xn, u, u) = Gp(u, u, u) = 0. (2.7)

Due to T is continuous mapping, we have

lim
n→∞

HGp(Txn, Tu, Tu) = 0. (2.8)

So, for all n ∈ N,

Gp(u, Tu, Tu) ≤ Gp(u, xn+1, xn+1) +Gp(xn+1, Tu, Tu)−Gp(xn+1, xn+1, xn+1)

≤ Gp(u, xn+1, xn+1) +Gp(xn+1, Tu, Tu)

≤ Gp(u, xn+1, xn+1) + hHGp(Txn, Tu, Tu)

≤ Gp(u, xn+1, xn+1) + hαGp(xn, u, u) = Gp(u, xn+1, xn+1) + kGp(xn, u, u).
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From (2.7),
Gp(u, Tu, Tu) ≤ 0.

This inequality is satisfying only Gp(u, Tu, Tu) = 0. Consequently, u ∈ Tu. This means that u is a
fixed point of T .

Example 2.2. Let X = [0,∞) and define Gp(x, y, z) = max{x, y, z}, for all x, y, z ∈ X. Then
(X,Gp) is a complete Gp metric space. Also defined T : X → CB(X) a multivalued mapping,
where

T (x) = [0, x]

for all x ∈ X. Then, from Theorem 2.1 we get

HGp(Tx, Ty, Tz) ≤ αGp(x, y, z) (2.9)

HGp([0, x], [0, y], [0, z]) ≤ αGp(x, y, z) (2.10)

Let assume that

D1([0, x], [0, y]) = sup{d(a, [0, y]); a ∈ [0, x]}
D2([0, y], [0, x]) = sup{d(b, [0, x]); b ∈ [0, y]}
D3([0, x], [0, z]) = sup{d(a, [0, z]); a ∈ [0, x]} (2.11)

D4([0, z], [0, x]) = sup{d(c, [0, x]); c ∈ [0, z]}
D5([0, y], [0, z]) = sup{d(b, [0, z]); b ∈ [0, y]}
D6([0, z], [0, y]) = sup{d(c, [0, y]); c ∈ [0, z]}.

We write by (2.11),

HGp([0, x], [0, y], [0, z]) = max{D1, D2, D3, D4, D5, D6}. (2.12)

Suppose that x < y < z then,

[0, x] ⊂ [0, y] ⊂ [0, z]. (2.13)

So, for all a ∈ X we have

d(a, [0, z]) ≤ d(a, [0, y]) ≤ d(a, [0, x]). (2.14)

Hence,

sup{d(a, [0, z]); a ∈ X} ≤ sup{d(a, [0, y]); a ∈ X} ≤ sup{d(a, [0, x]); a ∈ X} (2.15)

Thereby, using by (2.11) and (2.15), If a ∈ [0, x], then

sup d(a, [0, z]) ≤ sup d(a, [0, y]) ⇒ D3([0, x], [0, z]) ≤ D1([0, x], [0, y]).

If b ∈ [0, y], then

sup d(b, [0, z]) ≤ sup d(b, [0, x]) ⇒ D5([0, y], [0, z]) ≤ D2([0, y], [0, x]).

If c ∈ [0, z], then

sup d(c, [0, y]) ≤ sup d(c, [0, x]) ⇒ D6([0, z], [0, y]) ≤ D4([0, z], [0, x]).

From the equality of (2.12),

HGp([0, x], [0, y], [0, z]) = max{D1, D2, D4}. (2.16)
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Otherwise, from (2.10),

Gp(x, y, z) = max{x, y, z} = z. (2.17)

So, we have from (2.17),
max{D1, D2, D4} ≤ αz.

Obviously, this is satisfying the condition of Theorem 2.1.

Mizoguchi and Takahashi proved the following theorem in [17].

Theorem 2.3. [17] Let X be a complete metric space with metric d and let T : X → CB(X) satisfy
H(Tx, Ty) ≤ k(d(x, y))d(x, y), for all x, y ∈ X with x ̸= y, where k is a function of (0,∞) to [0, 1)
such that lim supr→t+ k(r) < 1 for every t ∈ [0,∞). Then T has a fixed point.

We will do the proof of the following theorem, by using the proof method of Theorem 5 in [17].

Theorem 2.4. Let (X,Gp) be a complete Gp metric space and T : X → CB(X) be a multivalued
contractive mapping such that for all x, y, z ∈ X,

HGp(Tx, Ty, Tz) ≤ k(Gp(x, y, z))Gp(x, y, z) (2.18)

where k is a Mizoguchi-Takahashi function of (0,∞) to [0, 1) such that limr∈t+ k(r) < 1 for every
t ∈ [0,∞). Then T has a fixed point.

Proof. Let x0 be arbitrary in X and we define a sequence {xn} in X given by xn+1 ∈ Txn for all
n ∈ N0. Hence,

x1 ∈ Tx0, x2 ∈ Tx1 = T 2x0, . . . , xn ∈ Tnx0 . . . (2.19)

We suppose that T has no fixed point. From the assumption for any t > 0 there exists positive
numbers N(t) and e(t) such that

k(r) ≤ N(t) < 1

for all r with
t < r < t+ e(t).

Take any x1 ∈ X and put t1 = Gp(x1, Tx1, Tx1). In this case, when

Gp(x1, Tx1, Tx1) < Gp(x1, y, y)

for all y ∈ Tx1, choose a positive number α(t1) such that

α(t1) < min

{
e(t1),

(
1

N(t1)
− 1

)
t1

}
(2.20)

and

ε(x1) = min

{
α(t1)

t1
, 1

}
. (2.21)

Hence, there exists x2 ∈ Tx1 such that,

Gp(x1, x2, x2) < Gp(x1, Tx1, Tx1) + ε(x1)Gp(x1, Tx1, Tx1)

= (1 + ε(x1))Gp(x1, Tx1, Tx1). (2.22)

Note that, from assumption of x1 ̸= x2 by hypothesis that T has no fixed point. On the other hand

Gp(x2, Tx2, Tx2) ≤ HGp(Tx1, Tx2, Tx2) ≤ k(Gp(x1, x2, x2))Gp(x1, x2, x2) (2.23)

6



Ayhan and Aydın; JAMCS, 23(4): 1-12, 2017; Article no.JAMCS.34697

so

Gp(x1, Tx1, Tx1)−Gp(x2, Tx2, Tx2) ≥ Gp(x1, Tx1, Tx1)− k(Gp(x1, x2, x2))Gp(x1, x2, x2)

and from (2.22),

Gp(x1, Tx1, Tx1)−Gp(x2, Tx2, Tx2) >
1

1 + ε(x1)
Gp(x1, x2, x2)− k(Gp(x1, x2, x2))Gp(x1, x2, x2)

=

(
1

1 + ε(x1)
− k(Gp(x1, x2, x2))

)
Gp(x1, x2, x2). (2.24)

Further than, from t1 = Gp(x1, Tx1, Tx1), we get

t1 = Gp(x1, Tx1, Tx1) < Gp(x1, x2, x2) < Gp(x1, Tx1, Tx1) + ε(x1)Gp(x1, Tx1, Tx1)

≤ t1 + α(t1) ≤ t1 + e(t1). (2.25)

So,
k(Gp(x1, x2, x2)) ≤ N(t1) < 1.

From (2.21) and (2.20),

ε(x1) ≤
α(t1)

t1
<

1

N(t1)
− 1 (2.26)

ε(x1) + 1 <
1

N(t1)

N(t1) <
1

1 + ε(x1)
. (2.27)

Hence,

1

1 + ε(x1)
− k(Gp(x1, x2, x2)) > 0 (2.28)

In this case, since Gp(x1, Tx1, Tx1) = Gp(x1, x2, x2) for x2 ∈ Tx1. We have from (2.23)

Gp(x1, Tx1, Tx1)−Gp(x1, x2, x2) ≥ Gp(x1, Tx1, Tx1)−HGp(Tx1, Tx2, Tx2)

≥ Gp(x1, Tx1, Tx1)− k(Gp(x1, x2, x2))Gp(x1, x2, x2)

= (1− k(Gp(x1, x2, x2))Gp(x1, x2, x2). (2.29)

Next, let t2 = Gp(x2, Tx2, Tx2). In the case when

Gp(x2, Tx2, Tx2) < Gp(x2, y, y)

for all y ∈ Tx2, e(t2) and N(t2), choose α(t2) with

0 < α(t2) < min

{
e(t2),

(
1

N(t2)
− 1

)
t2

}
(2.30)

and set,

ε(x2) = min

{
α(t2)

t2
,
1

2
,
t1
t2

− 1

}
(2.31)
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In the same way as above, we obtain x3 ∈ Tx2 satisfying

Gp(x2, x3, x3) < (1 + ε(x2))Gp(x2, Tx2, Tx2) (2.32)

and

Gp(x2, Tx2, Tx2)−Gp(x3, Tx3, Tx3) ≥
(

1

1 + ε(x2)
− k (Gp(x2, x3, x3))

)
Gp(x2, x3, x3) > 0.

Since ε(x2) ≤ t1
t2

− 1 and (2.32), then

Gp(x2, x3, x3) < (1 + ε(x2))Gp(x2, Tx2, Tx2) ≤ Gp(x1, Tx1, Tx1) ≤ Gp(x1, x2, x2).

When Gp(x2, Tx2, Tx2) = Gp(x2, x3, x3) for x3 ∈ Tx2, we have,

Gp(x2, Tx2, Tx2)−Gp(x3, Tx3, Tx3) ≥ (1− k (Gp(x2, x3, x3)))Gp(x2, x3, x3) > 0

and
Gp(x2, x3, x3) = Gp(x2, Tx2, Tx2) < Gp(x1, Tx1, Tx1) ≤ Gp(x1, x2, x2).

Thus, for n = 1, 2, . . . we can inductively construct a sequence (xn) inX with xn+1 ∈ Txn such that
{Gp(xn, xn+1, xn+1)}∞n=1 and {Gp(xn, Txn, Txn)}∞n=1 are decreasing sequences of positive numbers
and

Gp(xn, Txn, Txn)−Gp(xn+1, Txn+1, Txn+1)

≥
(

1

1 + δ(xn)
− k (Gp(xn, xn+1, xn+1))

)
Gp(xn, xn+1, xn+1) (2.33)

where δ(xn) is real numbers with

0 ≤ δ(xn) ≤
1

n
, (n = 1, 2, . . .) (2.34)

So, the sequence {Gp(xn, xn+1, xn+1)} of positive real numbers converges to nonnegative number.
By the assumption of the theorem,

lim sup
n→∞

(Gp(xn, xn+1, xn+1)) < 1.

Let choose,

αn =
1

1 + δ(xn)
− k(Gp(xn, xn+1, xn+1)), (n = 1, 2, . . .),

we have

lim inf
n→∞

αn ≥ lim
n→∞

1

1 + δ(xn)
− lim sup

n→∞
k(Gp(xn, xn+1, xn+1)) > 0 (2.35)

and there exists β > 0 such that

Gp(xn, Txn, Txn)−Gp(xn+1, Txn+1, Txn+1) ≥ βGp(xn, xn+1, xn+1) (2.36)

for large enough n. Also that, the decreasing sequence {Gp(xn, Txn, Txn)} of positive real numbers
is convergent, we have

Gp(xn, xm, xm) ≤
m−1∑
j=n

Gp(xj , xj+1, xj+1)

<
1

β

m−1∑
j=n

{Gp(xj , Txj , Txj)−Gp(xj+1, Txj+1, Txj+1)}

=
1

β
{Gp(xn, Txn, Txn)−Gp(xm, Txm, Txm)} → 0.

8



Ayhan and Aydın; JAMCS, 23(4): 1-12, 2017; Article no.JAMCS.34697

as n,m → ∞ and hence the sequence {xn} in X convergence to x0 ∈ X. If x0 ̸= xn then

HGp(Tx0, Txn, Txn) ≤ k(Gp(x0, xn, xn))Gp(x0, xn, xn) (2.37)

and if x0 = xn then

HGp(Tx0, Txn, Txn) ≤ Gp(x0, xn, xn) (2.38)

So, x0 ∈ Tx0 from Lemma 2 of [15]. This shows that T has a fixed point.

Example 2.5. Let X = [0,∞) and defined by (X,Gp) be a complete Gp metric space where

Gp(x, y, z) = max{x, y, z} (2.39)

for all x, y, z ∈ X. Also defined T : X → CB(X) a multivalued mapping where

T (x) =

[−1, 1], x ∈ (−∞, 0]

[0, x], x ∈ (0,∞)
(2.40)

and k : [0,∞) → [0, 1) be a function such that

k(t) =

0, t ∈ [0, 1)

1
2t
, t ∈ [1,∞)

(2.41)

for every t ∈ [0,∞) which limr∈t+ k(r) < 1. Then by using the theorem

HGp(Tx, Ty, Tz) ≤ k(Gp(x, y, z))Gp(x, y, z).

If x, y, z ∈ (−∞, 0], we get,

HGp(Tx, Ty, Tz) = HGp([−1, 1], [−1, 1], [−1, 1])

= max {D([−1, 1], [−1, 1])} ,

and
D([−1, 1], [−1, 1]) = sup

a∈[−1,1]

d(a, [−1, 1]) = 0.

So,
0 ≤ k(Gp(x, y, z))Gp(x, y, z).

from (2.39), we have that

Gp(x, y, z) = max{x, y, z} = 0, x, y, z ∈ (−∞, 0]

This is satisfying the Theorem 2.4. On the other hand, x, y, z ∈ (0,∞), we get,

HGp(Tx, Ty, Tz) = HGp([0, x], [0, y], [0, z]) (2.42)

from the assumption (2.11) of the Example 2.2 , we write,

HGp([0, x], [0, y], [0, z]) = max{D1, D2, D3, D4, D5, D6}. (2.43)

Let be x < y < z such that we get

[0, x] ⊂ [0, y] ⊂ [0, z]. (2.44)
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Then,

d(a, [0, z]) ≤ d(a, [0, y]) ≤ d(a, [0, x]). (∀a ∈ X) (2.45)

Hence,

sup{d(a, [0, z]); a ∈ X} ≤ sup{d(a, [0, y]); a ∈ X} ≤ {d(a, [0, x]); a ∈ X}. (2.46)

Thereby,
If a ∈ [0, x], then,

sup d(a, [0, z]) ≤ sup d(a, [0, y]) ⇒ D3([0, x], [0, z]) ≤ D1([0, x], [0, y]).

If b ∈ [0, y], then,

sup d(b, [0, z]) ≤ sup d(b, [0, x]) ⇒ D5([0, y], [0, z]) ≤ D2([0, y], [0, x]).

If c ∈ [0, z], then,

sup d(c, [0, y]) ≤ sup d(c, [0, x]) ⇒ D6([0, z], [0, y]) ≤ D4([0, z], [0, x]).

From the equality, we get
HGp(Tx, Ty, Tz) = max{D1, D2, D4}.

Otherwise, from (2.39),
Gp(x, y, z) = max{x, y, z} = z.

We have,
max{D1, D2, D4} ≤ k(z)z

From z ∈ (0,∞), we have two cases. First case
If z ∈ (0, 1) then,

max{D1, D2, D4} ≤ 0.

This is clearly that is satisfying. Other case, z ∈ [1,∞), then,

max{D1, D2, D4} ≤ 1

2z
z

max{D1, D2, D4} ≤ 1

2
.

Hence all the conditions of the Theorem 2.4 are satisfied.

3 Conclusion

In this paper, we gave some new fixed point theorems for multivalued mappings in Gp metric space.
We hope that our study contributes to the development of these results by other researchers.
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