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Abstract

In this paper we investigate the properties of the general linear recursive sequences started from
the Lucas sequence and give an application to matrices.
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1 Introduction

For a1, a2 ∈ Z, the corresponding Lucas sequence {un} is given by u0 = 0, u1 = 1, and un+1 +
a1un + a2un−1 = 0 (n ≥ 1). The comparable series have been studied by many mathematicians [1];
[2]; [3]. The general linear recursive sequences {un} is given by un + a1un−1 + · · · + amun−m = 0
(n ≥ 0). Here we comply [4] the Lucas series extended to general linear recursive sequences by
defining {un(a1, ..., am)} as follows:

u1−m = · · · = u−1 = 0, u0 = 1,

un + a1un−1 + · · ·+ amun−m = 0 (n = 0,±1,±2, ...),

where m ≥ 2 and am ̸= 0.
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Throughout the Section 2 we assume that a1,...,am are complex numbers with am ̸= 0, xm +
a1x

m−1 + · · ·+ am = (x− λ1) · · · (x− λm), sn = λn
1 + λn

2 · · ·+ λn
m and un = un(a1, ..., am). There

we obtain convolution sums between un and sn also state un by using sn. After newly defining
Coef(un) which is the summation of the coefficients of si (1 ≤ i ≤ n) and their multiplication terms
in un, we prove Coef(un) = 1 for n ∈ N. In that process, we especially find that

n∑
k=1

n1+n2+···+nk=n

2k

n1n2 · · ·nkk!
= n+ 1.

In the Section 3 we treat the application of un in the powers of matrices and simplifies it by a
modular p according to the Legendre symbol.

2 Relations Between un and sn

Theorem 2.1. For n ∈ N we have

(a)

n∑
k=0

ukun−k =

n∑
k=1

n1+n2+···+nk=n

2ksn1sn2 · · · snk

n1n2 · · ·nkk!
,

(b)

n∑
k=0

kukun−k = n

n∑
k=1

n1+n2+···+nk=n

2k−1sn1sn2 · · · snk

n1n2 · · ·nkk!
.

Proof. (a) First in ([4], p. 345) we can see that

ln

∞∑
n=0

unx
n =

∞∑
n=1

sn
n
xn.

This leads that

∞∑
n=1

2sn
n

xn = ln

∞∑
n1=0

un1x
n1 + ln

∞∑
n2=0

un2x
n2

= ln

∞∑
n1,n2=0

un1un2x
n1+n2

and
∞∑

n1,n2=0

un1un2x
n1+n2 = exp

∞∑
n=1

2sn
n

xn. (2.1)
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Then by (2.1) and Maclaurin series of an exponential function we have

∞∑
n=0

(
n∑

n1=0

un1un−n1

)
xn

= exp
∞∑

n=1

2sn
n

xn

=
∞∑

N=0

1

N !

(
∞∑

n=1

2sn
n

xn

)N

= 1 +

∞∑
n=1

2sn
n

xn +
1

2!

(
∞∑

n=1

2sn
n

xn

)2

+
1

3!

(
∞∑

n=1

2sn
n

xn

)3

+ · · ·

= 1 +
∞∑

n=1

2sn
n

xn +
∞∑

n=2

( ∑
n1+n2=n

22sn1sn2

n1n2

)
xn

2!

+
∞∑

n=3

( ∑
n1+n2+n3=n

23sn1sn2sn3

n1n2n3

)
xn

3!
+ · · ·

= 1 + 2s1x+

(
s2x

2 +
∑

n1+n2=2

22sn1sn2

n1n2
· x

2

2!

)

+

(
2s3
3

x3 +
∑

n1+n2=3

22sn1sn2

n1n2
· x

3

2!
+

∑
n1+n2+n3=3

23sn1sn2sn3

n1n2n3
· x

3

3!

)

+ · · ·+

(
2sn
n

xn +
∑

n1+n2=n

22sn1sn2

n1n2
· x

n

2!
+ · · ·

+
∑

n1+n2+···+nn=n

2nsn1sn2 · · · snn

n1n2 · · ·nn
· x

n

n!

)
+ · · ·

= 1 +

∞∑
n=1

 n∑
k=1

n1+n2+···+nk=n

2ksn1sn2 · · · snk

n1n2 · · ·nk
· 1

k!

xn

and so

n∑
k=0

ukun−k =

n∑
k=1

n1+n2+···+nk=n

2ksn1sn2 · · · snk

n1n2 · · ·nkk!
for n ≥ 1.

(b) Effortlessly we can know that

n∑
k=0

kukun−k =

n∑
K=0

(n−K)un−KuK

= n

n∑
K=0

un−KuK −
n∑

K=0

Kun−KuK

and

n∑
k=0

kukun−k =
n

2

n∑
k=0

ukun−k

3
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so we refer to part (a).

Lemma 2.2. We have

(a)

u1 = s1,

(b)

u2 =
1

2
s21 +

1

2
s2,

(c)

u3 =
1

6
s31 +

1

2
s1s2 +

1

3
s3.

Proof. (a) Let us put n = 1 in Theorem 2.1 (a):

u0u1 + u1u0 =
1∑

k=0

uku1−k =
1∑

k=1
n1+n2+···+nk=1

2ksn1sn2 · · · snk

n1n2 · · ·nkk!
= 2s1.

Since u0 = 1, we obtain u1 = s1.

(b) Placing n = 2 in Theorem 2.1 (a), we note that

u0u2 + u1u1 ++u2u0 =

2∑
k=0

uku2−k =

2∑
k=1

n1+n2+···+nk=2

2ksn1sn2 · · · snk

n1n2 · · ·nkk!

= s2 + 2s21

and so

2u2 + u2
1 = s2 + 2s21.

Using part (a) in the above identity, we conclude that

u2 =
1

2
s21 +

1

2
s2.

(c) In a similar manner we set n = 3 in Theorem 2.1 (a) and use part (a) and (b).

Now Lemma 2.2 suggests that u1, u2, and u3 are represented by s1, s2, s3, and their multiplication
terms, furthermore the summation of the coefficients of si (1 ≤ i ≤ 3) and their multiplication
terms is 1. For example, Lemma 2.2 (c) shows that

Coef(u3)

:= The summation of the coefficients of si and their multiplication terms in u3

=
1

6
+

1

2
+

1

3

= 1.

Thus we define Coef(un) and generalize the above fact as follows:

4



Kim; ARJOM, 13(4): 1-11, 2019; Article no.ARJOM.48546

Definition 2.1. Coef(un) implies that the summation of the coefficients of si (1 ≤ i ≤ n) and
their multiplication terms in un for n ∈ N.

Under this condition we can see that Coef(un) is a linear transformation. To prove it let us put

un = a1s
p1
1 sp22 · · · spnn + a2s

q1
1 sq22 · · · sqnn + · · ·+ ans

r1
1 sr22 · · · srnn ,

un′ = a′
1s

p′1
1 s

p′2
2 · · · sp

′
n′

n′ + a′
2s

q′1
1 s

q′2
2 · · · sq

′
n′

n′ + · · ·+ a′
n′s

r′1
1 s

r′2
2 · · · sr

′
n′

n′ ,

where pi, qi, ri, p
′
i, q

′
i, r

′
i ∈ N ∪ {0} and ai, a

′
j ∈ R for (1 ≤ i ≤ n, 1 ≤ j ≤ n′). Then there exists a

constant α and it satisfies

Coef(αun)

= Coef
(
α(a1s

p1
1 sp22 · · · spnn + a2s

q1
1 sq22 · · · sqnn + · · ·+ ans

r1
1 sr22 · · · srnn )

)
= Coef

(
αa1s

p1
1 sp22 · · · spnn + αa2s

q1
1 sq22 · · · sqnn + · · ·+ αans

r1
1 sr22 · · · srnn

)
= αa1 + αa2 + · · ·+ αan

= α(a1 + a2 + · · ·+ an)

= αCoef(un).

In a similar manner,

Coef(un + un′)

= Coef
(
(a1s

p1
1 sp22 · · · spnn + a2s

q1
1 sq22 · · · sqnn + · · ·+ ans

r1
1 sr22 · · · srnn )

+ (a′
1s

p′1
1 s

p′2
2 · · · sp

′
n′

n′ + a′
2s

q′1
1 s

q′2
2 · · · sq

′
n′

n′ + · · ·+ a′
n′s

r′1
1 s

r′2
2 · · · sr

′
n′

n′ )
)

= (a1 + a2 + · · ·+ an) + (a′
1 + a′

2 + · · ·+ a′
n′)

= Coef(un) + Coef(un′).

(2.2)

In addition we can find

Coef(unun′) = Coef(un)Coef(un′). (2.3)

Theorem 2.3. We indicate un by si (1 ≤ i ≤ n) and their multiplication terms, moreover
Coef(un) = 1 for n ∈ N.

Proof. Obviously we can represent un as si (1 ≤ i ≤ n) and their multiplication terms by Theorem
2.1 and Lemma 2.2. Next we use the induction to deduce that Coef(un) = 1. Let us put

s1 = s2 = · · · = si = 1 (2.4)

to exclude the effect of si (1 ≤ i ≤ n). Then first since u1 = s1 in Lemma 2.2 (a), we have
Coef(u1) = 1. Second we suppose that Coef(un) = 1, which leads that

n∑
k=0

ukun−k =
n∑

k=1
n1+n2+···+nk=n

2k

n1n2 · · ·nkk!
for n ∈ N (2.5)
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by Theorem 2.1 (a) and Eq. (2.4). And by (2.2) and (2.3) the above identity signifies

Coef

 n∑
k=1

n1+n2+···+nk=n

2k

n1n2 · · ·nkk!


= Coef

(
n∑

k=0

ukun−k

)
= Coef(u0un + u1un−1 + u2un−2 + · · ·+ un−1u1 + unu0)

= Coef(u0)Coef(un) + Coef(u1)Coef(un−1) + Coef(u2)Coef(un−2)

+ · · ·+ Coef(un−1)Coef(u1) + Coef(un)Coef(u0)

= 2Coef(un) + n− 1

= 2 · 1 + n− 1

= n+ 1

and

n∑
k=1

n1+n2+···+nk=n

2k

n1n2 · · ·nkk!
= n+ 1. (2.6)

Similarly, by (2.5) and (2.6) we obtain

n+ 2

=

n+1∑
k=1

n1+n2+···+nk=n+1

2k

n1n2 · · ·nkk!

= Coef

 n+1∑
k=1

n1+n2+···+nk=n+1

2k

n1n2 · · ·nkk!


= Coef

(
n+1∑
k=0

ukun+1−k

)
= Coef(u0un+1 + u1un + u2un−1 + · · ·+ unu1 + un+1u0)

= Coef(u0)Coef(un+1) + Coef(u1)Coef(un) + Coef(u2)Coef(un−1)

+ · · ·+ Coef(un)Coef(u1) + Coef(un+1)Coef(u0)

= 2Coef(un+1) + n

and so Coef(un+1) = 1.

6
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3 Application of un to Matrices

Proposition 3.1. Let p be an odd prime, a, b, c, d ∈ Z, p - ad− bc, ∆ = (a− d)2 + 4bc. Then

(
a b
c d

)p−
(

∆
p

)
≡



I (mod p), if
(

∆
p

)
= 1,

a+ d

2
I (mod p), if

(
∆
p

)
= 0,

(ad− bc)I (mod p), if
(

∆
p

)
= −1,

where I is the 2× 2 identity matrix and

(
·
p

)
denotes the Legendre symbol.

Proof. See Corollary 3.3 in [4].

Theorem 3.1. Let p be an odd prime, a, b, c, d ∈ Z, p - ad − bc, ∆ = (a − d)2 + 4bc. Then for
m, l ∈ N ∪ {0} satisfying m ≥ l, we have

(
a b
c d

)pm−l
(

∆
p

)
≡



(
a b

c d

)m−l

(mod p), if
(

∆
p

)
= 1,

(
a+ d

2

)m

I (mod p), if
(

∆
p

)
= 0,

(ad− bc)l

(
d −b

−c a

)m−l

(mod p), if
(

∆
p

)
= −1.

In particular, if m = l or

(
a b
c d

)m−l

≡ I (mod p) with m > l, then we obtain

(
a b
c d

)pm−l
(

∆
p

)
≡



I (mod p), if
(

∆
p

)
= 1,

(
a+ d

2

)m

I (mod p), if
(

∆
p

)
= 0,

(ad− bc)mI (mod p), if
(

∆
p

)
= −1.

Proof. Let u−1 = 0, u0 = 1, and

un+1 = (a+ d)un − (ad− bc)un−1 for n ∈ N ∪ {0}. (3.1)

Then un = un(−a− d, ad− bc). Moreover in ([4], p. 348) we can see that(
a b
c d

)n

=

(
un − dun−1 bun−1

cun−1 un − aun−1

)
(3.2)

and

u
p−1−

(
∆
p

) ≡ 0 (mod p), up−1 ≡
(
∆

p

)
(mod p). (3.3)

7
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Now, by Proposition 3.1, (3.2), and (3.3) we note that

(
a b
c d

)pm−l
(

∆
p

)

=

{(
a b
c d

)p}m−l


(
a b
c d

)p−
(

∆
p

)
l

=

(
up − dup−1 bup−1

cup−1 up − aup−1

)m−l


(
a b
c d

)p−
(

∆
p

)
l

≡


up − d

(
∆
p

)
b
(

∆
p

)
c
(

∆
p

)
up − a

(
∆
p

)


m−l

×



Il (mod p), if
(

∆
p

)
= 1,

(
a+ d

2
I

)l

(mod p), if
(

∆
p

)
= 0,

(
(ad− bc)I

)l
(mod p), if

(
∆
p

)
= −1

≡



(
up − d b

c up − a

)m−l

(mod p), if
(

∆
p

)
= 1,

(
a+ d

2

)l
(
up 0

0 up

)m−l

(mod p), if
(

∆
p

)
= 0,

(ad− bc)l

(
up + d −b

−c up + a

)m−l

(mod p), if
(

∆
p

)
= −1.

(3.4)

Here when
(

∆
p

)
= 1, using (3.1) and (3.3) we deduce that

up = (a+ d)up−1 − (ad− bc)up−2

≡ (a+ d)

(
∆

p

)
− (ad− bc)u

p−1−
(

∆
p

) (mod p)

≡ (a+ d) · 1− (ad− bc) · 0 (mod p)

≡ a+ d (mod p)

thus

(
up − d b

c up − a

)m−l

≡
(
a b
c d

)m−l

(mod p).

8
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And when
(

∆
p

)
= 0, referring to u

p−
(

∆
p

) = up ≡ a+ d

2
(mod p) in ([4], p. 349) we obtain

(
a+ d

2

)l (
up 0
0 up

)m−l

=

(
a+ d

2

)l

(upI)
m−l

≡
(
a+ d

2

)l(
a+ d

2

)m−l

I

≡
(
a+ d

2

)m

I (mod p).

Similarly when
(

∆
p

)
= −1, by (3.3) we have up = u

p−1−
(

∆
p

) ≡ 0 (mod p) and so

(ad− bc)l
(
up + d −b
−c up + a

)m−l

≡ (ad− bc)l
(

d −b
−c a

)m−l

(mod p).

In consequence the above facts lead Eq. (3.4) to

(
a b
c d

)pm−l
(

∆
p

)
≡



(
a b

c d

)m−l

(mod p), if
(

∆
p

)
= 1,

(
a+ d

2

)m

I (mod p), if
(

∆
p

)
= 0,

(ad− bc)l

(
d −b

−c a

)m−l

(mod p), if
(

∆
p

)
= −1.

(3.5)

Especially, if m = l then Eq. (3.5) becomes

(
a b
c d

)pm−l
(

∆
p

)
≡



(
a b

c d

)0

(mod p), if
(

∆
p

)
= 1,

(
a+ d

2

)m

I (mod p), if
(

∆
p

)
= 0,

(ad− bc)m

(
d −b

−c a

)0

(mod p), if
(

∆
p

)
= −1

≡



I (mod p), if
(

∆
p

)
= 1,

(
a+ d

2

)m

I (mod p), if
(

∆
p

)
= 0,

(ad− bc)mI (mod p), if
(

∆
p

)
= −1.

From the matrix theory we easily know when a matrix A satisfies Am = I for an identity matrix I
and m ∈ N, then the inverse matrix A−1 = Am−1 since A ·Am−1 = I. Thus using this property we

deduce as follows : If

(
a b
c d

)m−l

≡ I (mod p) with m > l then the inverse matrix

(
a b
c d

)−1

≡

9
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(
a b
c d

)m−l−1

(mod p) so

{
1

ad− bc

(
d −b
−c a

)}m−l

=

{(
a b
c d

)−1
}m−l

≡

{(
a b
c d

)m−l−1
}m−l

(mod p)

≡ (I−1)m−l (mod p)

≡ I (mod p)

and (
d −b
−c a

)m−l

≡ (ad− bc)m−l I (mod p).

Therefore Eq. (3.5) shows that

(
a b
c d

)pm−l
(

∆
p

)
≡



I (mod p), if
(

∆
p

)
= 1,

(
a+ d

2

)m

I (mod p), if
(

∆
p

)
= 0,

(ad− bc)l · (ad− bc)m−l I (mod p), if
(

∆
p

)
= −1

≡



I (mod p), if
(

∆
p

)
= 1,

(
a+ d

2

)m

I (mod p), if
(

∆
p

)
= 0,

(ad− bc)mI (mod p), if
(

∆
p

)
= −1.

4 Conclusion

The essential point of this article is that we define a new concept Coef(un) and obtain

n∑
k=1

n1+n2+···+nk=n

2k

n1n2 · · ·nkk!
= n+ 1.

Acknowledgement

The authors are grateful to the referees for their careful reading, constructive criticisms, comments
and suggestions, which have helped us to improve this work significantly.

10



Kim; ARJOM, 13(4): 1-11, 2019; Article no.ARJOM.48546

Competing Interests

Authors has declared that no competing interests exist.

References

[1] Dickson LE. History of the theory on numbers. Vol. I, Ch. XVII. New York: Chelsea; 1952.

[2] Lehmer DH. Annals of Math. 1930;31.2:419-448.
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