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Abstract

In this paper we investigate the properties of the general linear recursive sequences started from
the Lucas sequence and give an application to matrices.
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1 Introduction

For ai1,a2 € Z, the corresponding Lucas sequence {un} is given by uo = 0, u1 = 1, and un+1 +
@1Un + a2un—1 = 0 (n > 1). The comparable series have been studied by many mathematicians [1];
[2]; [3]. The general linear recursive sequences {un,} is given by un + a1Un—1 4+ + @GmUn—m = 0
(n > 0). Here we comply [4] the Lucas series extended to general linear recursive sequences by
defining {un (a1, ...,am)} as follows:

ulfm:~~~:u,1:07 u(]:l,

Up + Q1Un—1 + ** + GmUn—m =0 (n=0,£1,£2,..),

where m > 2 and a, # 0.
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Throughout the Section 2 we assume that ai,...,a,, are complex numbers with a,, # 0, ™ +
az™ e am = (= M) (= Am), Sn = AT F AT -+ A% and un = un(a, ..., am). There
we obtain convolution sums between u, and s, also state u, by using s,. After newly defining
Coef(un) which is the summation of the coefficients of s; (1 <4 < n) and their multiplication terms
in u,, we prove Coef(u,) = 1 for n € N. In that process, we especially find that

n

2k
E _— = 1.
n1n2~~-nkk! ’I’L+

k=1
nitnz+--+np=n

In the Section 3 we treat the application of w, in the powers of matrices and simplifies it by a
modular p according to the Legendre symbol.

2 Relations Between u,, and s,
Theorem 2.1. For n € N we have

(a)
n n k
2%8p1 8ny * * Sy,
Dotk = > TR gk
k=0 k=1 172 kE:
ni+no+--4+n=n

n n k—1
2 Sn1Sna ** " Sny,
E kugun_r =n E o
ning - - - ngk!
k=0 k=1 172 k
ni+ng+--+np=n

Proof.  (a) First in ([4], p. 345) we can see that

[e @) oo
n sn n
In E UnT & = E —x".
n
n=0 n=1

This leads that

oo 2 oo oo
Sn

E " =1n E Un, 2"t +1n E Uny T2
n

n=1 n1=0 no=0
o0
=1In Z Un, unzx”1+n2
ni,ma=0
and
Z Uny Uny ™ T2 = exp Z T"m" (2.1)
ni,no=0 n=1
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Then by (2.1) and Maclaurin series of an exponential function we have

n=0 \n1=0
> 28n n
=€ -
xpng1 -
[eS) 1 o 9 N
Sn n
£i(En)
N=0 n=1
ad 25n 1 ad 28n ? >, 2s ?
e Rt B
e (v 22’:;;"2)“;?
n=1 n=2 \nj+ngs=n

> 23snlsnzsn3 :E"
N L &

ni+nz+nz=n

228 S .232
— 142 2 E : S omony L
S1T <SQ$ nina Y] )

n1+no=2
3 3 3
233 23 22 2°8n,8n, @ 2781, 81580
+ + Z nin2 ' 5 + Z nina2ns ' ?
ni+n2=3 ni+nz+n3z=3
280 n 255, 8 x
1°n2
+ + + E T +
nina 2
ni1+na=n
2" 80, 8 s z"
1°M2 n
> i vrserl s
nitngt-fng=n 12 "
oo n k
1+ S 2 SmiSna S % "
ning - - Nk !
n=1 k=1 112 k
ni+no+---+np=n
and so
n n k
2%8n,8ny " S
E Uy —f = E L];k for n > 1.
ning - - - nik!
k=0 k=1 172 k

nitng+-tng=n

(b) Effortlessly we can know that

n

Z kU Un—) = Z (n — K)un—kuk
=0

K=0
n n
=n E Un— KUK — E Kun_rur
K=0 K=0
and

n n

n
E kugun—r = 3 E Uk Un—k
k=0 k=0
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so we refer to part (a).

O
Lemma 2.2. We have
(a)
up = 81,
(b)
1, 1
U2 = 551 + 552,
(c)
U —lngrls s +ls
8= S1t a2t gss
Proof.  (a) Let us put n =1 in Theorem 2.1 (a):
! ! 25, s s
= - 27 8n18ng " Sny
uoU1 + UrUg = Zukul_k = Z e ikl 281.
k=0 k=1
nitnot-4np=1
Since up = 1, we obtain u; = s1.
(b) Placing n = 2 in Theorem 2.1 (a), we note that
2 2 2% 50, s s
_ _ niong T ong
UpU2 + U1UL + +U2U0 = kzioukusz = kZ:I T - Tk
- nytngtotng=2
= 85 + 28%
and so
2ug + uf = S92 + 25%.
Using part (a) in the above identity, we conclude that
1o 1
uz = =81 + = 8o.
2= 551t 582
(¢) In a similar manner we set n = 3 in Theorem 2.1 (a) and use part (a) and (b).
O

Now Lemma 2.2 suggests that ui, u2, and us are represented by s1, s2, s3, and their multiplication
terms, furthermore the summation of the coefficients of s; (1 < ¢ < 3) and their multiplication
terms is 1. For example, Lemma 2.2 (c¢) shows that

Coef(us)

:= The summation of the coefficients of s; and their multiplication terms in us
1 1

G 3

=1.

+1y
2

Thus we define Coef(un) and generalize the above fact as follows:
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Definition 2.1. Coef(uy) implies that the summation of the coefficients of s; (1 < ¢ < n) and
their multiplication terms in u, for n € N.

Under this condition we can see that Coef(uy) is a linear transformation. To prove it let us put

T T T
Up = a1s5tsh? - P+ agsP sl sl o ansitsg? s,

7 i / i ’ ’ 7 ’ ’
/Py P P 5 qy q q,.r /Ty T T
Up! = a1511822 . .snzw/ +a2511822 .. 'Sny} + -+ an/511822 . .Sny/,, ,

where pi, qi, 74,05, ¢, i € NU{0} and as,aj € R for (1 <i<n, 1<j<n'). Then there exists a
constant « and it satisfies

Coef(aun)

= Coef (oz(als’flsg2 coesbr pagsPsP st ot ans]tsg? - ~s:1"))

= Coef (aalsflsgz coe8ht 4 aagsttsd? st 4o+ aansitsy? - s:L")

=aa; +oa2 + -+ Qan

=afar+az+--+an)
= aCoef(un).

In a similar manner,

Coef(un + ups)
= Coef((als?’flsé72 coesPr pagsT st o ansTtsg? s

PPL P Par o dh dh | 1o T (2.2)
+ (@18 85 -8, Fans sy’ s Y A agrsytsy? s

=(m14az+--+an)+ (a1 +as+-- +ay)
= Coef(un) + Coef(uy).

In addition we can find
Coef(unuy ) = Coef(uy,)Coef(un). (2.3)

Theorem 2.3. We indicate un by s; (1 < i < n) and their multiplication terms, moreover
Coef(un) =1 forn e N.

Proof. Obviously we can represent u, as s; (1 < i < n) and their multiplication terms by Theorem
2.1 and Lemma 2.2. Next we use the induction to deduce that Coef(uy,) = 1. Let us put

S] =8y =---=8; =1 (24)

to exclude the effect of s; (1 < ¢ < n). Then first since u1 = s1 in Lemma 2.2 (a), we have
Coef(u1) = 1. Second we suppose that Coef(u,) = 1, which leads that

n

n k
Zukun_k = Z _r forn e N (2.5)
k=0

ning - - -nik!
=1 1n2 k
ni+no+--+n=n
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by Theorem 2.1 (a) and Eq. (2.4). And by (2.2) and (2.3) the above identity signifies

n

216
C § e
Oef n1n2~~~nkk!

k=1
ni+no+--+np=n

= Coef <i ukunk>

k=0

= Coef(uotn + U1Un—1 + U2Un—2 + * * * + Un—1U1 + UnUo)

= Coef(uo)Coef(un) + Coef(ur)Coef(un—1) + Coef(uz)Coef(un—2)
+ -+ Coef(un—1)Coef(ur) + Coef(un)Coef(ug)

=2Coef(un)+n—1

=2-14+n-1

=n-+1

and

> — = n+1 (2.6)

ning - - - ngk!
b1 172 k
nit+nz+--+ng=n

Similarly, by (2.5) and (2.6) we obtain

n—+2
n+1

2k
= Z nine - - - ngk!

k=1
nit+ngtotngp=ntl

n+1 2k
C - -
oef > nang - - gkl

k=1
ni+ng+--+np=n+1

n+1
= Coef (Z Ukun+1k>

k=0

= Coef(uotnt1 + Urtn + U2Un—1 + + - + UnU1 + Unt1U0)

= Coef(uo)Coef(unt1) + Coef(ui)Coef(un) + Coef(uz)Coef(un—1)
+ -+ Coef(un)Coef(ur) + Coef(unt1)Coef(uo)

=2Coef(unt1) +n

and so Coef(unt1) = 1. O



Kim; ARJOM, 13(4): 1-11, 2019; Article no. ARJOM.48546

3 Application of u, to Matrices

Proposition 3.1. Let p be an odd prime, a,b,c,d € Z, ptad — be, A = (a — d)* + 4bc. Then

I (mod p), if (%) =1,
(‘i Z)p(p)_ a;dl (modp), if (%>:0,
(ad — bc)I (mod p), if (%) = -1,

where I is the 2 X 2 identity matriz and (7> denotes the Legendre symbol.
p

Proof. See Corollary 3.3 in [4].

Theorem 3.1. Let p be an odd prime, a,b,c,d € Z, p { ad — be, A = (a — d)* + 4bc.

m,l € NU{0} satisfying m > 1, we have

(00 mean, 7(2) =1
(Z Z)PM—Z(§>: <a42rd>ml (mod p), if(%):(),
m—i
(ad — be)' (dc _ab> (mod p), if (%) =-1.

m—l1
In particular, if m =1 or ((cl Z) = I (mod p) with m > 1, then we obtain
)1

(D ) G 0(3) -0

(ad —be)™I (mod p), if (%) —- 1.

[ (mod p), if (

= >

Proof. Let u—1 =0, up = 1, and
Unt1 = (@ + d)un — (ad — be)un—1  for n € NU{0}.

Then u, = un(—a — d,ad — bc). Moreover in ([4], p. 348) we can see that
a b\" _ fup —dun—1 bun_1
c d) ClUn_1 Up — QUn_1

A
up_l_(%) =0 (mod p), Up_1 = (5

and

) (mod p).

O

Then for

(3.1)

(3.2)

(3.3)
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Now, by Proposition 3.1, (3.2), and (3.3) we note that

o NV e )
e o
EEI T I (I
wod(3) () )T
c(2)  w-a(2)

I' (mod p), if (%) =1,

a+d \' o (A
X ( 3 I) (mod p), if (;)—O,

Il
VRN

13
S

(3.4)

((adf bc)[)l (mod p), if (%) =-1

m—l1
Up —d b e (A
d p), f(=)=1,
G (3)
m—l1
a—|—d ¢ Up 0 . A\
( 5 ) (0 up> (mod p), if (?)_0,

(ad — be)* (up b >m_l (mod p), if (%) =-1.

—c Up +a

Here when (%) =1, using (3.1) and (3.3) we deduce that

up = (a + d)up—1 — (ad — bc)up—2

= (a+d) (%) ~(ad —be)u,_,_ () (modp)

=(a+d)-1—(ad—bc)-0 (mod p)
=a+d (mod p)

thus

Ml
7N
QQ
ST~
N~

3
L
—
=
o
o,
=
~

up—d b "'
c Up — @



Kim; ARJOM, 13(4): 1-11, 2019; Article no. ARJOM.48546

And when (%) = 0, referring to “p,(é) =up, = a—l—d (mod p) in ([4], p. 349) we obtain
p
a+d\' Up _
2 0 B 2
_(a+ a+d
(5 ( ) ,
E< at > (mod p).

Similarly when (%) = —1, by (3.3) we have u, = upili(é> =0 (mod p) and so
P

(ad — be)" (“P +do b )mz = (ad — be)! ( d _b)ml (mod p).

—c Up +a —Cc a

In consequence the above facts lead Eq. (3.4) to
1

(o (5 TORSENE

(ad — be)' ( d b>ml (mod p), if (%) =-1.

Especially, if m = [ then Eq. (3.5) becomes

(a 2)0 (mod p), i (2) =1,
R € R I O
(ad — be) (_dc ;”)0 (mod p), if (2) = -1

I (mod p) if (&) =1,

= () 1 moan. it (2) =0,

(ad—be)™1 (mod p), if (&) =-1.

From the matrix theory we easily know when a matrix A satisfies A™ = I for an identity matrix I
and m € N, then the inverse matrix A~ = A™ ! since A- A™~! = I. Thus using this property we
b

m—1 Z1
d) = I (mod p) with m > [ then the inverse matrix <CCL Z) =

deduce as follows : If (Z
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and

(d _b)m_l:(adbc)mlf (mod p).

—C a

Therefore Eq. (3.5) shows that

I (mod p), if (%) =1,
<Ccl Z)pml(p) — (a;rd)mj (mod p), if (%) =0,
(ad — be)' - (ad —be)™ ' I (mod p), if (%) -1

I (mod p), if(%):l7
= (a;d)ml (mod p), if (%):O,

(ad —bc)™I (mod p), if (%) =-1.

4 Conclusion

The essential point of this article is that we define a new concept Coef(uy) and obtain

n

2k:
_— = 1.
Z ning -kl n+

k=1
nitng+--+ng=n
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