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Abstract: Nonlinear free vibrations of functionally graded porous Bernoulli–Euler nano-beams resting
on an elastic foundation through a stress-driven nonlocal elasticity model are studied taking into
account von Kármán type nonlinearity and initial geometric imperfection. By using the Galerkin
method, the governing equations are reduced to a nonlinear ordinary differential equation. The closed
form analytical solution of the nonlinear natural flexural frequency is then established using the
Hamiltonian approach to nonlinear oscillators. Several comparisons with existing models in the
literature are performed to validate the accuracy and reliability of the proposed approach. Finally,
a numerical investigation is developed in order to analyze the effects of the gradient index coefficient,
porosity volume fraction, initial geometric imperfection, and the Winkler elastic foundation coefficient,
on the nonlinear flexural vibrations of metal–ceramic FG porous Bernoulli–Euler nano-beams.

Keywords: nonlinear flexural vibrations; functionally graded porous nanobeams; nonlocal elasticity;
stress-driven formulation

1. Introduction

Functionally graded materials (FGMs) are advanced composites designed and fabricated in
a way that their physical and mechanical properties spatially vary in their structures. An overview of
manufacturing methods for FGMs, their applications and future challenges, based on the available
literature over 30 years, has been recently published by Saleh et al., in [1].

Due to the continuous variation in material properties, many problems related to the
material discontinuities of conventional composite material (stress concentrations, residual stresses,
delamination phenomena and damage growth) can be significantly reduced and high permeance
requirements ensured [2–4].

In most cases, functionally graded materials are made of a combination of metal and ceramic
to offer a wide range of applications for various equipment subject to extreme thermo-mechanical
stresses [5–13].

Recent studies have also shown that, by managing some fabrication parameters during the
manufacture of FGMs, different kinds of porosity distributions can be fabricated inside their structure
to further improve the physical and mechanical characteristics of the material [14–18]. For example,
the results of the investigations reported in [19–22] have highlighted the benefits of cellular metals and
metal foams inside the structure of micro/nano-scale systems (MEMS/NEMS) in terms of electrical
conductivity, thermal transport and energy absorption.

Various simple models have been widely adopted by many researchers to describe the interaction
of the nano-beam with its foundation for a wide range of engineering applications. However, to the
best of our knowledge, the analyses of the mechanical behavior of porous nano-beams resting on
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elastic foundations are rather rare and the available results are limited to FG nano-beams without
porosities [23–27].

As is well-known, the mechanical response of nanostructures made of functionally graded
materials is strongly size-dependent and therefore the small-scale effects on the mechanical behavior
of FG nanostructures must be considered [28–32].

In order to overcome the enormous costs and computation times of molecular dynamics
(MD) simulations, and the difficulties to conduct experimental investigations at the nanoscale,
the size-dependent effects on the static and dynamic characteristics of small-scaled structural systems
may be accurately captured by the so-called scale-dependent continuum mechanics-based theories,
including the strain gradient theory of elasticity [33,34] and Eringen’s nonlocal elasticity theory [35–37].
In the first theory, the material response at a point of a continuum is assumed to be dependent on both
the strain and the strain gradients of different orders, while, in the second one, the output field at
a point of a continuum is assumed to be the integral convolution between the elastic source field and
a suitable averaging kernel.

In the framework of nonlocal elasticity, the basic integral constitutive law is the strain-driven
Eringen’s integral model (EIM), which was recommended, for the first time, by Peddieson [38] to
analyze the mechanical behavior of nanoscale structures. For unbounded continua, when considering
the bi-exponential nonlocal kernel function, due to tacit fulfillment of the vanishing boundary conditions
at infinity, the integral strain-driven theory (EIM) can be replaced with the well-known differential
type theory (EDM), by which it is much easier to model small-scale phenomena in nanostructures than
with the corresponding integral formulation.

Recently, it was shown that the nonlocal differential-based and integral-based theories of elasticity
models may be not equivalent to each other for boundary condition problems, since adequate
higher-order homogeneous constitutive boundary conditions have to be prescribed.

Consequently, for bounded nanostructures, the strain-driven purely nonlocal elastic problems
defined on bounded domains are mathematically ill-posed due to the incompatibility between the
higher-order constitutive boundary conditions and equilibrium requirements (e.g., the paradox of
a cantilever nano-beam subject to a transverse concentrated load at the free end) [39].

The ill-posed problem related to the pure nonlocal model may be circumvented by adopting
the Eringen local-nonlocal mixture constitutive model [37] or by using coupled theories, such as the
nonlocal strain gradient theory [40] and the combination of pure nonlocal theory with the surface
theory of elasticity [41]. For example, some recent applications of the theories mentioned above are
addressed in [42–44].

Furthermore, these difficulties can be overcome by adopting the stress-driven nonlocal integral
model (SDM) recently proposed by Romano and Barretta [45], in which the roles of stress and elastic
strain fields are swapped with respect to the strain-driven model. In addition, in this case, for a class of
bi-exponential kernels, the integral form of the constitutive equations is shown to be mathematically
equivalent to differential equations subjected to some higher order constitutive boundary conditions.

The stress-driven nonlocal theory of elasticity has been widely respected by the scientific
community and has been successfully applied to investigate size-dependent behavior of elastic
nano-beams [46–54] with bounded structural domains. In particular, closed form solutions for
stress-driven integral models [55] have been provided for cantilever, simply supported, clamped-pinned
and fully-clamped FG nano-beams subject to different load conditions.

Recently, the authors of this paper examined the nonlinear vibration behavior of geometrically
imperfect functionally graded nano-beams on the basis of both the stress-driven nonlocal integral
model (SDM) and the strain-driven model (EDM), especially in the presence of an axial pretension
force [56].

In the present paper, the nonlinear free vibration of a metal-ceramic functionally graded
Bernoulli–Euler nano-beam, resting on a Winkler elastic foundation, is examined taking into account
von Kármán type nonlinearity and initial geometric imperfection. In particular, small scale effects are
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considered by using the stress-driven nonlocal elasticity. The equation of motion is determined by
Hamilton’s principle and simplified by Galerkin’s method. The first order Hamiltonian approach [57]
was then employed to solve the nonlinear vibrations problem.

In order to show the efficiency and accuracy of the proposed approach, several comparisons with
existing models in the literature are performed. Finally, the effects of initial geometric imperfection,
the gradient index coefficient, the porosity volume fraction and the Winkler elastic foundation coefficient
on nonlinear fundamental frequencies of porous FG simply supported nano-beams are presented
and discussed.

2. Functionally Graded Porous Material

We consider a Bernoulli–Euler straight nano-beam, with length “L”, thickness “h” and width “b”,
resting on a Winkler foundation, and denote by y’ and z’ the principal axes of geometric inertia of its
rectangular cross-section (Σ), originating at the geometric center O (Figure 1).
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the nano-beam.

The nano-beam is supposed to be made of a functionally graded (FG) material, composed of
a mixture of metal and ceramic, whose distribution spatially varies from the bottom (z’ = −h/2) to the
top (z’ = +h/2) surface. In this investigation, the top surface is ceramic-rich, whereas the bottom surface
is metal-rich.

The nano-beam structure is assumed to have porosities inside the FG material generated during
the manufacturing process of the two constituents. In particular, the porous FG nano-beam is assumed
to have two kinds of porosity distributions across the thickness of the beam (Figure 1): in the first
scenario, the porosity is evenly distributed among the metal and ceramic with widespread porosities;
in the second scenario (uneven distribution), the porosities are distributed around the central area of
the cross section of the FG nano-beam and tend to vanish both on the top surface (ceramic-rich) and on
the bottom surface (metal-rich) of the nano-beam.

By denoting with k (k ≥ 0) the gradient index of the FG material, and with ζ the porosity volume
fraction (ζ � 1), in the case of an even distribution of porosity, the effective material properties,
here described by the mass density, ρ(z’), and by Young’s modulus, E(z’), can be formulated by the
following power-laws [58]:

ρ(z′) = ρm + (ρc − ρm)

(
1
2
+

z′

h

)k

−
ζ

2
(ρc + ρm), (1)

E(z′) = Em + (Ec − Em)

(
1
2
+

z′

h

)k

−
ζ

2
(Ec + Em), (2)
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where ρc, ρm and Ec, Em are the material densities and the Euler–Young moduli of ceramic and
metal, respectively.

In the second scenario (uneven distribution of the porosity), the previous expressions are modified
as follows

ρ(z′) = ρm + (ρc − ρm)

(
1
2
+

z′

h

)k

−
ζ

2
(ρc + ρm)

(
1−

2|z′|
h

)
, (3)

E(z′) = Em + (Ec − Em)

(
1
2
+

z′

h

)k

−
ζ

2
(Ec + Em)

(
1−

2|z′|
h

)
. (4)

As is well-known, in order to remove bending–stretching coupling caused by FG material variation,
it is convenient to take as reference for the evaluation of the previous effective materials properties
(Equations (1)–(4)) the elastic center C, whose position is shifted from the geometric center O of the
following quantity

z′c =

∫
Σ E(z′)z′dΣ∫

Σ E(z′)dΣ
(5)

Accordingly, in the new elastic Cartesian reference system at elastic center C, z = z’−z
′

c and y = y’
(Figure 1).

Moreover, determination of the bending stiffness, EI, and the axial stiffness, EA, of the FG porous
nano-beam is useful in the subsequent relations. The first quantity is defined by the second moment of
elastic area, weighted with the scalar field of the Euler–Young moduli, about the y axis (I = Iy), and is
evaluated considering the bending abscissa z originating at C. Similarly, the axial stiffness is defined by
the elastic cross-sectional area weighted with the scalar field of the Euler–Young moduli

{EA, EI} = b
∫ h

2−z′c

−
h
2−z′c

E(z)
{
1, z2

}
dz. (6)

Moreover, the effective cross-sectional mass, m0, and rotatory inertia, m2, can be determined
employing the previously introduced effective material density ρ(z)

m0 = b
∫ h

2−z′c

−
h
2−z′c

ρ(z)dz, (7)

m2 = b
∫ h

2−z′c

−
h
2−z′c

ρ(z)z2dz. (8)

By substituting Equations (2) and (4) into Equation (5), we obtain the following coordinate of the
elastic center C for the two distributions of porosity considered here

- even distribution

z′ceven =
(−Ec + Em)hk

(2 + k)(−2(Ec + Emk) + (Ec + Em)(1 + k)ζ)
, (9)

- uneven distribution

z′cuneven =
2(−Ec + Em)hk

(2 + k)(−4(Ec + Emk) + (Ec + Em)(1 + k)ζ)
. (10)

Utilizing the expressions of the effective Euler–Young modulus E(z) introduced above for the
two scenarios of porosity distribution taken into account (Equations (2) and (4)), bending stiffness,
axial stiffness, cross-sectional mass and rotatory inertia can be determined as follows
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- even distribution

EI = (−48E2
c−16EcEmk(7+k(4+k))−4E2

mk2(7+k(4+k))+4(Ec+Em)(2+k)(2Ec(3+k(2+k))+Emk(7+k(4+k)))ζ−(Ec+Em)
2(1+k)(2+k)2(3+k)ζ2)

2(2+k)2(3+k)(−2(Ec+Emk)+(Ec+Em)(1+k)ζ)
Iy′, (11)

EA = A
(
(Ec + kEm)

(1 + k)
−

1
2
(Ec + Em) ζ

)
, (12)

m0 = A
(
(ρc + kρm)

1 + k
−

1
2
(ρc + ρm)ζ

)
, (13)

m2 =
(−48ρ2

c−16k(7+k(4+k))ρcρm−4k2(7+k(4+k))ρ2
m−(1+k)(2+k)2(3+k)ζ2(ρc+ρm)

2+4(2+k)ζ(ρc+ρm)(2(3+k(2+k))ρc+k(7+k(4+k))ρm))
2(2+k)2(3+k)((1+k)ζ(ρc+ρm)−2(ρc+kρm))

Iy′; (14)

- uneven distribution

EI =
(−32(12E2

c+4EcEmk(7+k(4+k))+E2
mk2(7+k(4+k)))+4(Ec+Em)(2+k)(Emk(22+k(11+3k))+Ec(18+k(11+7k)))ζ−(Ec+Em)

2(1+k)(2+k)2(3+k)ζ2)
8 (2+k)2(3+k)(−4(Ec+Emk)+(Ec+Em)(1+k)ζ)

Iy′, (15)

EA = A
(
(Ec + Emk)

1 + k
−

1
4
(Ec + Em)ζ

)
, (16)

m0 = A
(
(ρc + ρmk)

1 + k
−

1
4
(ρc + ρm)ζ

)
, (17)

m2 =
(−(1+k)(2+k)2(3+k)ζ2(ρc+ρm)

2+4(2+k)ζ(ρc+ρm)((18+k(11+7k))ρc+k(22+k(11+3k))ρm)+32(−12ρ2
c−4k(7+k(4+k))ρcρm−k2(7+k(4+k))ρ2

m))
8(2+k)2(3+k)((1+k)ζ(ρc+ρm)−4(ρc+kρm))

Iy′, (18)

where Iy’ = bh3/12 is the second geometric moment of area of the cross-section about the y’ axis about
the geometric center and A = bh is the cross-sectional area.

If the porosity volume fraction ζ→ 0, it is inferred from Equations (11)–(18) that, as k→ 0 and
k→∞, the aforementioned material quantities approach the corresponding material quantities of pure
ceramic and pure metal, respectively.

In this work, the nano-beam material is assumed to be made of silicon nitride-stainless steel
(Si3N4-SuS3O4), whose properties are listed in the following Table 1 [59,60].

Table 1. Material properties of the FG nano-beam (silicon nitride-stainless steel).

Material Young’s Modulus [GPa] Poisson’s Ratio Mass Density [kg/m3]

SuS3O4 (stainless steel) 207.8 0.3178 8166
Si3N4 (silicon nitride) 322.3 0.24 2370

Figure 2 shows the effect of the gradient index of the porous FG material (k) on the dimensionless
position of the elastic center C ( z̃c = z′c/h) of the rectangular cross section of the nano-beam.

Firstly, it can be noted that the dimensionless distance z̃c increases as the gradient index k increases,
with a maximum attained at a value of k*, which depends on the value of ζ; note that for k > k*,
the distance z̃c tends to vanish for k→∞. From Figure 2, one can also note that the curves corresponding
to the second type of porosity distribution exhibit less of an increase than those of the first scenario
of porosity.

Variations of the dimensionless axial stiffness (ẼA = EA
EcA ) and dimensionless bending stiffness

(ẼI = EI
EcI ) of the porous FG nano-beam, in terms of the gradient index, are reported in Figure 3,

varying the porosity volume fraction of the material. As can be observed, the increase in the gradient
index, as well as in the value of the porosity volume fraction, causes a decrease of the axial and bending
stiffness of porous FG nano-beams, for both the two kinds of porosity distribution considered.
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Figure 2. Effect of the gradient index of the FG material (k) on the dimensionless position of the elastic
center C ( z̃c = z′c/h) of the rectangular cross section of the FG nano-beam, varying the porosity volume
fraction (ζ): even distribution (continuous lines) and uneven distribution (dashed lines).

In particular, for each assigned value of ζ the dashed lines, corresponding to the uneven
distributions of porosity, always have a greater value than the continuous ones, which correspond to
the even distribution.

Figure 4 show the variations of the dimensionless cross-sectional mass (mo) and rotatory inertia
(m2) in terms of the gradient index, respectively, varying the porosity volume fraction. From these
graphs, one finds that mo and m2 increase with increasing ζ and with decreasing k.
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Figure 4. Variations of the dimensionless cross-sectional mass (A) and of the rotatory inertia (B) of a
porous FG nano-beam. The variations are shown in terms of the gradient index of the FG material (k),
varying the porosity volume fraction (ζ): even distribution (continuous lines) and uneven distribution
(dashed lines).

The variations of the Euler–Young modulus across the thickness of a nano-beam are illustrated
in Figure 5A, assuming ζ equal to zero and varying k in the set {0, 0.3, 0.5, 1, 3, 5,→∞}. As was to
be expected, when k = 0, the FG material reduces to pure ceramic (E = Ec = 322.3 GPa) while, on the
contrary, for k→∞, the material properties tend to pure metal (E = Em = 207.8 GPa).



Technologies 2020, 8, 56 8 of 23

Technologies 2020, 8, x FOR PEER REVIEW 8 of 24 

 

be expected, when 𝑘 = 0, the FG material reduces to pure ceramic (E = Ec = 322.3 GPa) while, on the 
contrary, for 𝑘 → ∞, the material properties tend to pure metal (E = Em = 207.8 GPa). 

The variations of the Euler–Young modulus through the thickness of the nano-beam cross 
section, assuming 𝜁  = 0.2, are illustrated in Figure 5B and 5C for even and uneven porosity 
distributions, respectively. As can be noted, the curves of the variation of E relative to the even 
distribution (Figure 5B) have the same behavior of those illustrated in Figure 5A, corresponding to a 
non-porous material, but with a decrease in the values of Young’s moduli. Finally, Figure 5C shows 
that the maximum of Euler–Young’s modulus for the uneven distribution of porosity is reached at 
the top and bottom of the cross section and decreases in the direction of the middle zone. 

 
(A) FG material (𝜁 = 0) 

 

(B) even distribution (𝜁 = 0.2) 
Technologies 2020, 8, x FOR PEER REVIEW 9 of 24 

 

 
(C) uneven distribution (𝜁 = 0.2) 

Figure 5. Variations of the Euler–Young modulus (E) in terms of dimensionless thickness (�̃� =𝑧/ℎ) with k ranging in the set {0, 0.3, 0.5, 1, 3, 5, → ∞} and 𝜁 = 0.2: (A) FG material (continuous lines); 
(B) even distribution (dashed lines); and (C) uneven distribution (dashed-points lines). 

3. Governing Equation 

Using the Bernoulli–Euler theory, the displacement components 𝑢௫, 𝑢௬ and  𝑢௭ along x, y and 
z directions, respectively, at any point of the nano-beam, can be written as 

 𝑢௫(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑧 𝜑௬(𝑥, 𝑡), (19) 𝑢௬(𝑥, 𝑧, 𝑡) = 0, (20) 𝑢௭(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) + 𝑤∗(𝑥), (21) 

where 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) are the axial and transverse displacements of the elastic center C at time 

t, respectively; 𝜑௬(𝑥, 𝑡) = − డ௪బడ௫ (𝑥, 𝑡) is the rotation of the cross section about the y-axis, and 𝑤∗(𝑥) is 

the initial assigned geometric imperfection in the transverse direction [61]. 
On the basis of the nonlinear Von-Kármán assumptions, with small strains and moderate 

rotation, the nonlinear strain–displacement relation may be written as [62] 
 𝜀௫௫ =  డ௨బడ௫ + ଵଶ ቀడ௪బడ௫ ቁଶ −  𝑧 డమ௪బడ௫మ + డ௪బడ௫ ௗ௪∗ௗ௫ . (22) 

 
As is well-known, the nonlinear equations of motion can be obtained using Hamilton’s principle:  𝛿(−𝐾 + 𝑈 + 𝑊)𝑑𝑡௧మ௧భ = 0, (23) 

where the expression of 𝐾 (kinetic energy), 𝑈 (strain energy) and 𝑊 (work done by external forces) 
are given in the following. 

The variation of kinetic energy 𝐾 is 

𝛿𝐾 =  න න 𝜌 𝜕𝑢𝜕𝑡  𝛿 𝜕𝑢𝜕𝑡  𝑑Σ𝑑𝑥 = ஊ


  න න 𝜌 ቈቆ𝜕𝑢𝜕𝑡 + 𝑧 𝜕𝜑௬𝜕𝑡 ቇ ቆ𝛿 𝜕𝑢𝜕𝑡 + 𝑧 𝛿 𝜕𝜑௬𝜕𝑡 ቇ + 𝜕𝑤𝜕𝑡 𝛿 𝜕𝑤𝜕𝑡  𝑑Σ𝑑𝑥 =  ஊ


  
(24) 

Figure 5. Variations of the Euler–Young modulus (E) in terms of dimensionless thickness (̃z = z/h) with
k ranging in the set {0, 0.3, 0.5, 1, 3, 5,→∞} and ζ = 0.2: (A) FG material (continuous lines); (B) even
distribution (dashed lines); and (C) uneven distribution (dashed-points lines).
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The variations of the Euler–Young modulus through the thickness of the nano-beam cross
section, assuming ζ = 0.2, are illustrated in Figure 5B,C for even and uneven porosity distributions,
respectively. As can be noted, the curves of the variation of E relative to the even distribution (Figure 5B)
have the same behavior of those illustrated in Figure 5A, corresponding to a non-porous material,
but with a decrease in the values of Young’s moduli. Finally, Figure 5C shows that the maximum of
Euler–Young’s modulus for the uneven distribution of porosity is reached at the top and bottom of the
cross section and decreases in the direction of the middle zone.

3. Governing Equation

Using the Bernoulli–Euler theory, the displacement components ux, uy and uz along x, y and z
directions, respectively, at any point of the nano-beam, can be written as

ux(x, z, t) = u0(x, t) + z ϕy(x, t), (19)

uy(x, z, t) = 0, (20)

uz(x, z, t) = w0(x, t) + w∗(x), (21)

where u0(x, t) and w0(x, t) are the axial and transverse displacements of the elastic center C at time t,
respectively; ϕy(x, t) = −∂w0

∂x (x, t) is the rotation of the cross section about the y-axis, and w∗(x) is the
initial assigned geometric imperfection in the transverse direction [61].

On the basis of the nonlinear Von-Kármán assumptions, with small strains and moderate rotation,
the nonlinear strain–displacement relation may be written as [62]

εxx =
∂u0

∂x
+

1
2

(
∂w0

∂x

)2

− z
∂2w0

∂x2 +
∂w0

∂x
dw∗

dx
. (22)

As is well-known, the nonlinear equations of motion can be obtained using Hamilton’s principle:∫ t2

t1

δ(−K + U + W)dt = 0, (23)

where the expression of K (kinetic energy), U (strain energy) and W (work done by external forces) are
given in the following.

The variation of kinetic energy K is

δK =
L∫

0

∫
Σ ρ

∂ui
∂t δ

∂ui
∂t dΣdx =

L∫
0

∫
Σρ

[(
∂u0
∂t + z

∂ϕy
∂t

)(
δ∂u0
∂t + z δ

∂ϕy
∂t

)
+ ∂w0

∂t δ
∂w0
∂t

]
dΣdx =

=
∫ L

0 (m0
∂u0
∂t δ

∂u0
∂t + m2

∂ϕy
∂t δ

∂ϕy
∂t + m0

∂w0
∂t δ

∂w0
∂t ) dx.

(24)

The expression for the variation of the strain energy U is

δU =
L∫

0

∫
Σ σxxδεxx dΣ dx =

L∫
0

∫
Σ σxxδ

(
∂u0
∂x + 1

2

(
∂w0
∂x

)2
+ z

∂ϕy
∂x + ∂w0

∂x
dw∗
dx

)
dΣ dx =

=
∫ L

0 (N
(
∂δu0
∂x + ∂w0

∂x
∂δw0
∂x + ∂δw0

∂x
dw∗
dx

)
+ M

∂δϕy
∂x ) dx,

(25)

where the stress resultants N and M introduced in Equation (25) are defined as:

N =

∫
Σ
σxx dΣ, (26)

M =

∫
Σ

z σxx dΣ. (27)
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The expression of the virtual work of the external force W can be expressed by

δW = −

∫ L

0
(qx δu0 + qz δw0 − Kw(x)w0(x, t)δw0)dx, (28)

where qx = qx(x) and qz = qz(x) are the axial and the transverse vertical distributed loads, respectively,
and Kw(x) is the Winkler elastic foundation coefficient.

By substituting the expressions of K, U, and W into Hamilton’s principle (Equation (23)),
performing integration-by-parts with respect to t as well as x to relieve the generalized displacements
δu0, δw0 and δϕy of any differentiations, and using the fundamental lemma of differential calculus,
we obtain the following equations of motion:

∂N
∂x

+ qx = m0
∂2u0

∂t2 , (29)

∂2M
∂x2 + qz − Kw(x) w0 +

∂
∂x

(
N
∂w0

∂x

)
+
∂
∂x

(
N

dw∗

dx

)
= m0

∂2w0

∂t2 − m2
∂4w0

∂x2 ∂t2 . (30)

The boundary conditions involve specifying one element of each of the following three pairs:

u0 or N at x = 0, L; (31)

w0 or
∂M
∂x

at x = 0, L ; (32)

−
∂w0

∂x
or M at x = 0, L. (33)

4. Stress-Driven Nonlocal Integral Model

In adapting the stress-driven integral formulation to the Bernoulli–Euler porous FG nano-beam,
the nonlocal axial strain, εxx, and the nonlocal bending curvature, χ, are obtained by the following
convolutions

εxx(x)=
∫ L

0
Φλ(x− ξ)

N(ξ)

EA
dξ, (34)

χ(x) =

∫ L

0
Φλ(x− ξ)

M(ξ)

EI
dξ, (35)

where x, ξ are position vectors of points of the domain of the Euclidean space occupied by the
nano-beam at time t, and the stress resultants N and M fulfil the equilibrium conditions.

By assuming the following bi-exponential function for the averaging kernel Φλ with internal
characteristic length, Lc

Φλ(x, Lc) =
1

2Lc
exp (−

|x|
Lc

), (36)

the stress-driven integrals (Equations (34) and (35)) admit the following set of solutions

εxx(x) − Lc
2 ∂

2εxx(x)
∂x2 =

N(x)
EA

, (37)

χ(x) − Lc
2 ∂

2χ(x)
∂x2 =

M(x)
EI

, (38)

with x ∈ [0, L], if and only if the following two pairs of constitutive boundary conditions are satisfied at
the nano-beam ends

∂εxx

∂x
(0) =

1
Lc
εxx(0), (39)
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∂εxx

∂x
(L) = −

1
Lc
εxx(L), (40)

∂χ
∂x

(0) =
1
Lc
χ(0), (41)

∂χ
∂x

(L) = −
1
Lc
χ(L). (42)

4.1. Equation of Motion (SDM)

According to the stress-driven differential model (SDM), the nonlocal axial force and moment
resultants can be described explicitly in terms of generalized strain components as follows

N(x, t) =
∫

Σ σxx dΣ =
∫

Σ E
(
εxx(x, t) − Lc

2 ∂2εxx(x,t)
∂x2

)
dΣ =

=
∫

Σ E
(
∂u0
∂x + 1

2

(
∂w0
∂x

)2
− z ∂2w0

∂x2 + ∂w0
∂x

dw∗
dx

)
−E Lc

2 ∂2

∂x2

(
∂u0
∂x + 1

2

(
∂w0
∂x

)2
− z ∂2w0

∂x2 + ∂w0
∂x

dw∗
dx

)
dΣ =

= EA
(
∂u0
∂x + 1

2

(
∂w0
∂x

)2
+ ∂w0

∂x
dw∗
dx

)
−EALc

2 ∂2

∂x2

(
∂u0
∂x + 1

2

(
∂w0
∂x

)2
+ ∂w0

∂x
dw∗
dx

)
;

(43)

M(x, t) =
∫

Σ σxx z dΣ =
∫

Σ E
(
εxx(x, t) − Lc

2 ∂2εxx(x,t)
∂x2

)
z dΣ =

=
∫

Σ E
(
∂u0
∂x + 1

2

(
∂w0
∂x

)2
− z ∂2w0

∂x2 + ∂w0
∂x

dw∗
dx

)
z

−ELc
2 ∂2

∂x2

(
∂u0
∂x + 1

2

(
∂w0
∂x

)2
− z ∂2w0

∂x2 + ∂w0
∂x

dw∗
dx

)
z dΣ =

= − EI
(
∂2w0
∂x2 − Lc

2 ∂4w0
∂x4

)
.

(44)

By substituting Equations (43) and (44) into Equations (29) and (30), the following stress-driven
equations of motion can be derived

EA
∂
∂x

∂u0

∂x
+

1
2

(
∂w0

∂x

)2

+
∂w0

∂x
dw∗

dx

− EA Lc
2 ∂3

∂x3

∂u0

∂x
+

1
2

(
∂w0

∂x

)2

+
∂w0

∂x
dw∗

dx

+ qx = m0
∂2u0

∂t2 , (45)

EI
(
∂4w0

∂x4
− Lc

2 ∂
6w0

∂x6

)
− qz + Kw(x) w0 −

∂
∂x

(
N
∂w0

∂x

)
−

∂
∂x

(
N

dw∗

dx

)
= m2

∂4w0

∂x2 ∂t2 − m0
∂2w0

∂t2 , (46)

with the following natural boundary conditions at the nano-beam ends

N = N at x = 0, L; (47)

m2
∂3w0

∂x ∂t2 +
∂M
∂x

= V at x = 0, L; (48)

M = M at x = 0, L; (49)

where N, M and V the assigned generalized forces acting at the nano-beam ends together and with the
constitutive boundary conditions at the nano-beam ends given by Equations (38)–(42).

According to the Bernoulli–Euler kinematics, the geometric bending curvature is related to the
transverse displacement w by

χ(x, t) =
∂2w
∂x2

(x, t). (50)
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Therefore, the constitutive boundary conditions (Equations (38)–(42)) can be rewritten as a function
of the displacement components

∂2u0

∂x2
(0, t) =

1
Lc

∂u0

∂x
(0, t), (51)

∂2u0

∂x2
(L, t) = −

1
Lc

∂u0

∂x
(L, t); (52)

∂3w0

∂x3
(0, t) =

1
Lc

∂2w0

∂x2
(0, t), (53)

∂3w0

∂x3
(L, t) = −

1
Lc

∂2w0

∂x2
(L, t). (54)

Nonlinear Transverse Free Vibrations (SDM)

The nonlinear transverse free vibrations (qx = qz = 0) of an imperfect porous FG nano-beam,

based on the stress-driven model, are derived assuming that the rotary inertia term, m2
∂4w0
∂x2 ∂t2 , is very

small compared to the other terms. Hence, from Equation (46), it follows

EI
∂4w0

∂x4
− EI Lc

2 ∂
6w0

∂x6 −
∂
∂x

(
N
∂w0

∂x

)
−
∂
∂x

(
N

dw∗

dx

)
+ m0

∂2w0

∂t2 = − Kw(x) w0. (55)

If we now neglect the axial inertia term, m0
∂2u0
∂t2 , from the first equation of motion, we obtain

N(x) = EA

∂u0

∂x
+

1
2

(
∂w0

∂x

)2

+
∂w0

∂x
dw∗

dx

− EA Lc
2 ∂2

∂x2

∂u0

∂x
+

1
2

(
∂w0

∂x

)2

+
∂w0

∂x
dw∗

dx

 = N̂, (56)

wherein N̂ is a constant.
Note that for a nano-beam with immovable ends (u0|x=0 = u0|x=L = 0 and w0|x=0 = w0|x=L = 0),

by integrating both sides of Equation (56) over the domain [0, L] yields the following expression

N̂ =
EA
L

∫ L

0

1
2

(
∂w0

∂x

)2

+
∂w0

∂x
dw∗

dx

− Lc
2 ∂2

∂x2

1
2

(
∂w0

∂x

)2

+
∂w0

∂x
dw∗

dx

dx, (57)

which is the so-called “mid-plane stretching effect” in SDM theory.
Based on this assumption, from Equation (55), it follows:

EI Lc
2 ∂6w0
∂x6 − EI ∂

4w0
∂x4 − Kw(x) w0+

+ (EA
L

∫ L
0

((
1
2

(
∂w0
∂x

)2
+ ∂w0

∂x
dw∗
dx

)
− Lc

2 ∂2

∂x2

(
1
2

(
∂w0
∂x

)2
+ ∂w0

∂x
dw∗
dx

))
dx)

(
∂2w0
∂x2 + d2w∗

dx2

)
= m0

∂2w0
∂t2 .

(58)

Equation (58) describes the nonlinear transverse free oscillations of a functionally graded (FG)
porous and imperfect nano-beam resting on an elastic foundation. The solution procedure is reported
in Appendix A.

5. Convergence and Comparison Study

Some numerical examples are presented in this paragraph to validate the accuracy and reliability
of the proposed approach. In the first comparison example (Table 2) geometrical nonlinearity, initial
imperfection and the elastic foundation coefficient are neglected in order to compare the results obtained
with the present approach. The comparison, in terms of linear dimensionless natural frequencies of
homogeneous simply-supported (S-S) and clamped-clamped (C-C) FG nano-beams, is made with
the results of Apuzzo et al., who in [55] obtained results while varying the dimensionless nonlocal
parameter λ in the set {0.00+, 0.01, 0.03, 0.05, 0.1}.
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Table 2. Linear dimensionless natural frequencies of homogeneous simply-supported (S-S) and
clamped-clamped (C-C) nano-beams (Aw = A0 = 0; K̃w = 0).

λ
S-S C-C

Present Approach Ref. [55] Present Approach Ref. [55]

0.00+ 9.8696 9.8696 22.3733 22.3733
0.01 9.8744 9.8744 22.8518 22.8518
0.03 9.9107 9.9107 23.9976 23.9976
0.05 9.9786 9.9786 25.3918 25.3918
0.1 10.2534 10.2534 29.8303 29.8303

In the second comparison study (Table 3), the present approach is compared with the model of
Mahmoudpou et al., [59] for homogenous S-S and C-C nano-beams resting on an elastic foundation
with K̃w = 50, and assuming thatAw andA0 are equal to zero.

Table 3. Linear dimensionless natural frequencies of homogeneous simply-supported (S-S) and
clamped-clamped (C-C) nano-beams (Aw = A0 = 0; K̃w = 50).

λ
S-S C-C

Present Approach Ref. [59] Present Approach Ref. [59]

0.00+ 12.1412 12.1412 23.4641 23.4641
0.01 12.1451 12.1451 23.9208 23.9208
0.03 12.1747 12.1747 25.0177 25.0177
0.05 12.2300 12.2300 26.3579 26.3579
0.1 12.4552 12.4552 30.6569 30.6569

The third example (Table 4) concerns the evaluation of the ratios between the local nonlinear
frequency (ωNL) and the local linear one (ωL), for a perfect simply-supported homogeneous nano-beams,
varying the dimensionless amplitude of the nonlinear oscillator Aw /L, and neglecting the elastic
foundation coefficient. The results obtained with the present approach are compared with the results of
Singh et al., [63], based on the Ritz–Galerkin method (RGM), and with those of Mahmoudpou et al., [59],
based on the first-order homotopy analysis method (HAM).

Table 4. Local nonlinear frequency ratios of perfect simply-supported (S-S) nano-beams
(λ = 0; A0 = 0; K̃w = 0).

Aw /L
Present Approach RGM Ref. [63] HAM Ref. [59]

ωNL ωL ωNL/ωL ωNL/ωL ωNL/ωL

1.0 10.7552 9.8696 1.0897 1.0897 1.0892
2.0 13.0563 9.8696 1.3229 1.3229 1.3178
3.0 16.1798 9.8696 1.6394 1.6394 1.6259
4.0 19.7392 9.8696 2.0000 - 1.9766

Finally, in Tables 5 and 6 the values of the nonlocal nonlinear dimensionless frequencies, evaluated
with the present approach varying the dimensionless amplitude of the nonlinear oscillatorAw /L in
the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, are summarized and compared with the results by Mahmoudpou
et al., in [59] for two values of the elastic foundation coefficient: 50 and 100.
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Table 5. Nonlocal dimensionless natural frequencies of a homogeneous simply-supported
(S-S) nano-beam resting on an elastic foundation for various dimensionless amplitude ratios
(λ = 0.1; A0 = 0; K̃w = 50, 100).

Aw /L
K̃w=50 K̃w=100

Present
Approach Ref. [59] ∆1 [%] Present

Approach Ref. [59] ∆2 [%]

0.0 12.4552 12.4552 0.00 14.3225 14.3225 0.00
0.1 12.4694 - - 14.3348 - -
0.2 12.5120 - - 14.3719 - -
0.3 12.5827 12.5639 0.15 14.4334 14.4171 0.11
0.4 12.6810 - - 14.5192 - -
0.5 12.8062 - - 14.6287 - -
0.6 12.9576 12.8835 0.57 14.7614 14.6967 0.44

Table 6. Nonlocal dimensionless natural frequencies of a homogeneous clamped-clamped
(C-C) nano-beam resting on an elastic foundation for various dimensionless amplitude ratios
(λ = 0.1; A0 = 0; K̃w = 50, 100).

Aw /L
K̃w=50 K̃w=100

Present
Approach Ref. [59] ∆1 [%] Present

Approach Ref. [59] ∆2 [%]

0.0 30.6591 30.6575 0.01 31.4640 31.4624 0.01
0.1 30.6606 - - 31.4654 - -
0.2 30.6651 - - 31.4698 - -
0.3 30.6725 30.7440 0.23 31.4770 31.5467 0.22
0.4 30.6830 - - 31.4872 - -
0.5 30.6964 - - 31.5003 - -
0.6 30.7128 31.0017 0.93 31.5163 31.7980 0.89

From these comparison studies, the accuracy of the Hamiltonian approach to nonlinear oscillators
here employed is validated.

6. Results and Discussion

The nonlinear dynamic behavior of a simply-supported Bernoulli–Euler imperfect and porous FG
nano-beam, resting on a Winkler elastic foundation, whose material properties are listed in Table 1,
is considered as a case study in this section. The nano-beam has a length L = 20 nm, internal characteristic
length Lc = 2 nm, and a squared cross-section (b = h = 0.05 L).

In particular, the effects of the gradient index, porosity distribution, nonlinear oscillator amplitude
and the dimensionless elastic foundation coefficient, on the frequency ratio between the non-linear
frequency of porous FG nano-beam, ωNL, and the linear frequency of a pure ceramic nano-beam, ωcL,
are presented.

6.1. Gradient Index and Porosity Volume Fraction

Firstly, the combined effect of the gradient index, k, and porosity volume fraction, ζ, on the
frequency ratio of a perfect FG nano-beam (A0 = 0) are plotted in Figures 6–8 assuming Aw = 0.2
and K̃w = 0. From these figures it can be observed that the frequency ratios evaluated for k < 1 are
always greater than those obtained for k > 1. Moreover, the effects of k and ζ, for the two kinds
of porosity distributions considered, on the aforementioned frequency ratio are plotted in Figure 9,
varying the dimensionless elastic foundation coefficient, K̃w, in the set {0, 20}, and the initial imperfection
amplitude,A0, in the set {0.0, 0.2}.
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porosity and 𝑘 <1, and (B) even distribution of porosity and 𝑘 >1. 
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Figure 8. Simply-supported porous FG nano-beams: frequency ratio in terms of porosity volume
fraction (ζ) and gradient index (k) withAw = 0.2,A0 = 0.0 and K̃w = 0: (A) uneven distribution of
porosity and k < 1, and (B) uneven distribution of porosity and k > 1.
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Figure 9. Simply-supported porous FG nano-beams. Frequency ratio versus porosity volume fraction
with k ranging in the set {0, 0.3, 0.5, 1, 3, 5} and K̃w varying in the set {0, 20}: (A) even distribution of
porosity and (B) uneven distribution of porosity.

In particular, from Figure 9A it can be observed that, for a perfect FG nano-beam (A0= 0) with an
even distribution of porosity, the curves of the aforementioned ratios (continuous lines) tend to increase
as the porosity volume fraction ζ increases when k < 1, while an opposite trend is obtained when k > 1.
Moreover, it is found that the nonlinear frequency ratios of imperfect nano-beams (A0 = 0.2) have
values which are always greater than those of perfect nano-beams. On the contrary, for the second
scenario of porosity distribution (Figure 9B), both in the case of perfect and imperfect FG nano-beams,
the frequency ratios always increase as ζ increases, no matter what values of gradient index k and
elastic foundation coefficient K̃w are adopted.
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6.2. Nonlinear Oscillator Amplitude

The nonlinear frequency ratio versus the nonlinear oscillator amplitude, Aw, is presented in
Figure 10, varying the elastic foundation coefficient K̃w and the porosity volume fraction ζ.Technologies 2020, 8, x FOR PEER REVIEW 18 of 24 
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Figure 10. Effect of porosity volume fraction (𝜁) and Winkler elastic foundation coefficient (𝐾௪ ) on 
the frequency ratio of simply-supported (SS) porous perfect (𝒜  = 0.0) FG nano-beams: (A) even 
distribution of porosity (blue lines), (B) uneven distribution of porosity (red lines). Effect of the 
porosity volume fraction (𝜁) and the Winkler elastic foundation coefficient (𝐾௪ ) on the frequency ratio 
of simply-supported (SS) porous imperfect (𝒜  = 0.5) FG nano-beams: (C) even distribution of 
porosity (blue lines), and (D) uneven distribution of porosity (red lines). 

Figure 10. Effect of porosity volume fraction (ζ) and Winkler elastic foundation coefficient (Kw) on
the frequency ratio of simply-supported (SS) porous perfect (A0 = 0.0) FG nano-beams: (A) even
distribution of porosity (blue lines), (B) uneven distribution of porosity (red lines). Effect of the
porosity volume fraction (ζ) and the Winkler elastic foundation coefficient (Kw) on the frequency ratio of
simply-supported (SS) porous imperfect (A0 = 0.5) FG nano-beams: (C) even distribution of porosity
(blue lines), and (D) uneven distribution of porosity (red lines).

As can be observed, the ratio ωNL/ωcL increases as the absolute value ofAw increases. Moreover,
the curves exhibit a symmetric behavior when a perfect FG nano-beam is considered, while a different
trend can be observed for an imperfect FG nano-beam (A0 = 0.5). It is also found that the nonlinear
frequency ratio increases as the porosity volume fraction ζ increases and that, for a given value of ζ,
the ratio ωNL/ωcL also increases as the coefficient K̃w increases.
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6.3. Winkler Elastic Foundation Coefficient

The effect of the Winkler elastic foundation coefficient on the non-linear frequency ratio was
investigated by varying the initial imperfection amplitude, A0, in the set {0, 0.1, 0.3} for the first
(Figure 11A) and the second (Figure 11B) kind of porosity distribution here considered.
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Figure 11. Simply-supported (SS) porous FG nano-beams. Frequency ratio versus Winkler elastic
foundation coefficient, Aw = 0.2 and k = 1, and different initial imperfection amplitudes: (A) even
distribution of porosity, and (B) uneven distribution of porosity.

The curves illustrated in these Figures, obtained forAw = 0.2 and k = 1, show that the non-linear
frequency ratio tends to increase with increasing elastic foundation coefficient and increasing initial
imperfection amplitude. Moreover, from the comparison of graphs shown in Figure 11, one finds that
the nonlinear frequency ratios associated with the even distribution of porosity are always the largest
for all considered values of the initial imperfection amplitude.

7. Conclusions

In this paper, the nonlinear dynamic behavior of a porous FG Bernoulli–Euler nano-beam,
resting on a Winkler elastic foundation, with von Kármán type nonlinearity and initial geometric
imperfection, has been studied, employing the stress-driven nonlocal integral model.

The governing equations have been reduced to a nonlinear ordinary differential equation by using
the Galerkin method. Then, the Hamiltonian approach to nonlinear oscillators was employed to obtain
a closed form analytical solution of the nonlinear natural frequency.

In view of the numerical results obtained in the present study, the following conclusions may be
formulated:

(1) the increase in the gradient index, as well as in the porosity volume fraction, cause a decrease in
the values of the axial and bending stiffness of porous FG nano-beams;

(2) an increase in the porosity volume fraction of perfect FG nano-beams causes an increase in the
nonlinear frequency ratio when k < 1 ; an opposite trend was observed when k > 1;

(3) the nonlinear frequencies of imperfect porous FG nano-beams are always greater than those
obtained for perfect nano-beams;

(4) the nonlinear frequency ratio always increases as the porosity volume fraction increases in the
case of an uneven distribution of porosity;
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(5) an increase in the elastic foundation coefficient and in the initial imperfection amplitude causes
an increase in the nonlinear frequency ratio.

In conclusion, the proposed approach is able to capture the nonlinear dynamic behavior of porous
and imperfect Bernoulli–Euler functionally graded nano-beams resting on a Winkler elastic foundation
and the approach provides a cost-effective method for the design and optimization of a wide range of
nano-scaled beam-like components of nano-electro-mechanical-systems (NEMS).

Author Contributions: Conceptualization, R.P. and L.F.; formal analysis, R.P. and L.F.; Methodology, R.P. and
L.F.; Validation, R.P. and L.F.; Writing—original draft, R.P. and L.F.; Writing—review & editing, R.P. and L.F.;
All authors have read and agreed to the published version of the manuscript.
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Appendix A Solution Procedure

From Equation (24) we obtain the following dimensionless form of Equation (32)

λ2 ∂6w0
∂x̃6 −

∂4w0
∂x̃4 − K̃w(x̃)w0 +

+(̃r2
∫ 1

0

((
1
2

(
∂w0
∂x̃

)2
+ ∂w0

∂x̃
dw∗
dx̃

)
− λ2 ∂2

∂x̃2

(
1
2

(
∂w0
∂x̃

)2
+ ∂w0

∂x̃
dw∗
dx̃

))
dx̃)

(
∂2w0
∂x̃2 + d2w∗

dx̃2

)
= m̃0

∂2w0
∂t2 ,

(A1)

where the following dimensionless parameters have been defined

Kw
L4

EI
= K̃w, (A2)

m0
L4

EI
= m̃0, (A3)

x
L
= x̃, (A4)

Lc

L
= λ, (A5)

L2 A
I
= r̃2. (A6)

On the basis of the Galerkin method, the transverse displacement function w0(x̃, t) can be
defined by

w0(x̃, t) =
N∑

i=1

Ψi(x̃) Wi(t), (A7)

where Wi(t) is the unknown i-th time-dependent coefficient andΨi(x) is the i-th test function, depending
on the assigned boundary conditions.

In this study, we assume the test function form to be equal to the local modal shape (i = 1)

w0(x̃, t) = Ψ1(x̃) W1(t), (A8)

where the time base function, W1(t), is given by the following approximate cosine solution

W1(t) = Awcos(ωt), (A9)
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where ω is the first nonlinear vibration frequency, Aw is the amplitude of the nonlinear oscillator,
and Ψ1(x̃) is assumed to be equal to the linear spatial mode based on the stress-driven non-local
integral model [64]

Ψ1(x̃) = q1e−x̃β1 + q2ex̃β1 + q3e−x̃β2 + q4ex̃β2 + q5e−x̃β3 + q6ex̃β3 . (A10)

In Equation (A6), β j = 1,2,3 are the roots of the characteristic equation, and (q j = 1,...,6) are six
unknown constants to be determined by imposing suitable boundary conditions.

Note that, from the numerical point of view, the evaluation of the linear fundamental natural
frequencies of a porous FG nano-beam consists of solving the eigenvalue problem expressed in terms
of a six dimensional array, q =

{
q1, . . . , q6

}
of the aforementioned unknown constants.

Moreover, the initial imperfection, w∗(x̃), is assumed to have the following expression

w∗(x̃) = A0Ψ1(x̃), (A11)

where A0 is the amplitude of the initial imperfection shape.
By substituting Equations (A8) and (A11) into Equation (A1), and multiplying the resulting

equation with the fundamental vibration mode Ψ1(x̃), then integrating across the length of the
nano-beam, leads to the following equation

δ1W1(t) + δ2W1(t)
2 + δ3W1(t)

3 + δ4W1
′′ (t) = 0, (A12)

where the expressions of the four coefficients δ1, δ2, δ3 and δ4 are summarized in Table A1, in which

Ψi
( j)(x̃) = d jΨi

dx̃ j .
Finally, in agreement with the Hamiltonian approach to nonlinear oscillators, the following

expression of the nonlinear fundamental vibration frequency of an imperfect porous FG nano-beam
can be derived as

ω1 =

√
4δ1 +

32Awδ2
3π + 3A2

wδ3

2
√
δ4

. (A13)

Note that the linear vibration frequency of an imperfect porous FG nano-beam can be determined
from the previous equation by settingAw = 0, while the nonlinear vibration frequency of a perfect
nano-beam can be obtained by setting A0 = 0. Moreover, by setting Aw = A0 = 0, we obtain the
local linear frequency, ωL, of a perfect FG nano-beam.

Table A1. Expressions of the four coefficients δ1, δ2, δ3 and δ4 of Equation (A12).

δ1 =
∫ 1

0 (−K̃wΨ1(x̃)Ψi(x̃) + r̃2(
∫ 1

0

(
A0Ψ1

(1)(x̃)Ψi
(1)(x̃) − 2λ2

A0Ψ1
(2)(x̃)Ψi

(2)(x̃) − λ2
A0Ψi

(1)(x̃)Ψ1
(3)(x̃)−

λ2
A0Ψ1

(1)(x̃)Ψi
(3)(x̃)

)
dx)A0Ψ1(x̃)Ψ1

(2)(x̃) −Ψ1(x̃)Ψi
(4)(x̃) + λ2Ψ1(x̃)Ψi

(6)(x̃))dx̃,

δ2 =
∫ 1

0

(
r2

(∫ 1
0

(
1
2 Ψi

(1)(x̃)2
− λ2Ψi

(2)(x̃)2
− λ2Ψi

(1)(x̃)Ψi
(3)(x̃)

)
dx̃)A0Ψ1(x̃)Ψ1

(2)(x̃)

+r̃2
(∫ 1

0

(
A0Ψ1

(1)(x̃)Ψi
(1)(x̃) − 2λ2

A0Ψ1
(2)(x̃)Ψi

(2)(x̃) − λ2
A0Ψi

(1)(x̃)Ψ1
(3)(x̃)

−λ2
A0Ψ1

(1)(x̃)Ψi
(3)(x̃)

)
dx̃)Ψ1(x̃)Ψi

(2)(x̃)
)
dx̃,

δ3 =
∫ 1

0 r̃2
(∫ 1

0

(
1
2Ψi

(1)(x̃)2
− λ2Ψi

(2)(x̃)2
− λ2Ψi

(1)(x̃)Ψi
(3)(x̃)

)
dx̃

)
Ψ1(x̃)Ψi

(2)(x̃)dx̃,

δ4 =
∫ 1

0 −m̃0Ψ1(x̃)Ψi(x̃)dx̃.
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55. Barretta, R.; Čanad̄ija, M.; Feo, L.; Luciano, R.; De Sciarra, F.M.; Penna, R. Exact solutions of inflected
functionally graded nano-beams in integral elasticity. Compos. Part B Eng. 2018, 142, 273–286. [CrossRef]

56. Penna, R.; Feo, L.; Fortunato, A.; Luciano, R. Nonlinear free vibrations analysis of geometrically imperfect
FG nano-beams based on stress-driven nonlocal elasticity with initial pretension force. Compos. Struct. 2020,
255, 112856. [CrossRef]

57. He, J.-H. Hamiltonian approach to nonlinear oscillators. Phys. Lett. A 2010, 374, 2312–2314. [CrossRef]
58. Dvorak, G. Micromechanics of Composite Materials; Springer: Berlin/Heidelberg, Germany, 2012.
59. Mahmoudpour, E.; Hosseini-Hashemi, S.H.; Faghidian, S.A. Non linear vibration of FG nano-beams resting

on elastic foundation in thermal environment using stress-driven nonlocal integral model. Appl. Math. Model.
2018, 57, 302–315. [CrossRef]

60. Aifantis, E. Update on a class of gradient theories. Mech. Mater. 2003, 35, 259–280. [CrossRef]
61. Liu, H.; Lv, Z.; Wu, H. Nonlinear free vibration of geometrically imperfect functionally graded sandwich

nanobeams based on nonlocal strain gradient theory. Compos. Struct. 2019, 214, 47–61. [CrossRef]
62. Dehrouyeh-Semnani, A.M.; Mostafaei, H.; Nikkhah-Bahrami, M. Free flexural vibration of geometrically

imperfect functionally graded microbeams. Int. J. Eng. Sci. 2016, 105, 56–79. [CrossRef]
63. Singh, G.; Sharma, A.; Rao, G.V. Large-amplitude free vibrations of beams—A discussion on various

formulations and assumptions. J. Sound Vib. 1990, 142, 77–85. [CrossRef]
64. Apuzzo, A.; Barretta, R.; Faghidian, S.A.; Luciano, R.; De Sciarra, F.M. Free vibrations of elastic beams by

modified nonlocal strain gradient theory. Int. J. Eng. Sci. 2018, 133, 99–108. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compositesb.2018.02.020
http://dx.doi.org/10.1080/15376494.2018.1432806
http://dx.doi.org/10.1080/15376494.2020.1739357
http://dx.doi.org/10.1016/j.compositesb.2017.03.057
http://dx.doi.org/10.1016/j.compositesb.2017.12.022
http://dx.doi.org/10.1016/j.compstruct.2020.112856
http://dx.doi.org/10.1016/j.physleta.2010.03.064
http://dx.doi.org/10.1016/j.apm.2018.01.021
http://dx.doi.org/10.1016/S0167-6636(02)00278-8
http://dx.doi.org/10.1016/j.compstruct.2019.01.090
http://dx.doi.org/10.1016/j.ijengsci.2016.05.002
http://dx.doi.org/10.1016/0022-460X(90)90583-L
http://dx.doi.org/10.1016/j.ijengsci.2018.09.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Functionally Graded Porous Material 
	Governing Equation 
	Stress-Driven Nonlocal Integral Model 
	Equation of Motion (SDM) 

	Convergence and Comparison Study 
	Results and Discussion 
	Gradient Index and Porosity Volume Fraction 
	Nonlinear Oscillator Amplitude 
	Winkler Elastic Foundation Coefficient 

	Conclusions 
	Solution Procedure 
	References

