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Abstract 
 

It is not uncommon to encounter data where the distribution of the responses is not known to completely 
follow any of the common probability models. While there are general classes of models, such as the 
Tweedie distribution, which can be adopted in such cases, many approximations have been proposed 
based on the fact that they are often easier to obtain. We bring to the discussion a three-parameter power 
variance representation of the gamma distribution �(�, �) that has a general mean-variance relationship 
���(�) = ���, where � = �(�) is the mean or expected value of �, � is a scale parameter, and � is the 
degree of power of the expression. This power variance formulation is a flexible extension of the gamma 
distribution, and are used to approximate various models and determine significant predictors even when 
the distribution is not fully realized. We present a comparison of the power variance model to several 
known distributions which have similar mean-variance. In addition, we provide a more general 
representation of the relation ���(�) = ���(�), where ��(�) is the variance function indexed by the 
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parameter � . We demonstrate the performance of the power variance modeling approach through a 
simulation and evaluate two numerical examples, including high school absenteeism and concrete 
compression strength. 
 

 
Keywords: Positive random variables; three-parameter gamma; mean-variance relationship; Tweedie 

distribution. 
 

1 Introduction 
 
It is common to begin the analysis of data by assuming that the responses follow an assumed distribution. 
This is usually influenced by certain defining features. For example, it is well known that the evaluation of 
count data begins with the assumption of the responses following a Poisson distribution. This may include 
the number of days until a patient is released from the hospital or the number of complications a patient 
experiences post-surgery. Although these types of data are commonly analyzed using Poisson regression 
with the count as the outcome, it may be the case that the data do not have follow our assumption of the 
standard Poisson distribution [1, 2]. This may be due to a certain extraneous factors, including the presence 
of overdispersion based on the survey design or the fact that the data were obtained based on some 
hierarchical structure. More so, it may be the case that the distribution selected to describe the responses in 
the data lacks the appropriate shape due to deviations in skewness or kurtosis. For example, although we 
often select the Poisson distribution in the evaluation of count data, the fit is affected when dealing with 
count data with an excess of zeroes.  
 
To characterize data, one often describes the distribution by relying on a description of the first two 
moments, the mean � and variance ���(�). As in the exponential family of distributions, the variance is 
often related to some function of the mean, and such is the parameterization implemented in the Tweedie 
distribution. The Tweedie distribution [3], a class of exponential dispersion models, is characterized by the 
parameters �, �, and � such that a mean-variance relationship is ���(�) = ��(�) = ���, where �(�) =
�. The Tweedie probability density function is not available in closed form, except in special cases, and then 
requires complex numerical approximations to evaluate the density. In particular, for the case where 
1 < � < 2, the density function is written as a function of � , � , and �  where �  is a function of � and 

� =
���

���
 such that 

 

��(�; �, �, �) = ∑
��

�

�
�
���

����
�
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Where 
 

��(�) =
���

�
�

�

���
�
�

, �� = �����, 

 
and � is the prior weight [4]. The special cases of the Tweedie distribution include the normal (� = 0), 
Poisson (� = 0 and � = 0), gamma (� = 2), and inverse Gaussian (� = 3). Thus, for these density functions (� 
= 0, 1, 2, 3) one can directly compute the Tweedie distribution. Alternative estimation methods include 
series expansions, maximum likelihood estimation, and quasi-likelihood estimation [5-7]. Also, there is 
software available to evaluate the Tweedie distribution for � ≥ 1 [8]. 
 
It is often necessary in the data analysis to have at least some partial distributional assumption for the 
response even when the probability model is not completely realized. In those case one can rely on the 
Tweedie distribution to describe the mean and variance of the data, if one is comfortable with estimation 
under the special cases. However, making use of general forms of alternative distributions has shown to 
produce good approximations and are often easier to estimate. Stacy [9] proposed a three-parameter gamma 
distribution which includes many distributions as special cases. Stacy and Mihram [10] examined the 
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generalization of the gamma distribution and derived a parameter estimation technique using a modified 
method of moments approach with a graphical aid. They demonstrated that enlarging the group of 
probability distributions and considering alternative estimation methods improve the accuracy of numerical 
analyses. Wilks [11] investigated various three-parameter probability distributions and found that they 
provided additional flexibility and improved probability predictions compared to traditional distributions. 
These studies demonstrate the tractability of the generalized gamma distribution. We focus on the gamma 
distribution as it has many different parameterizations and its flexibility allows it to be used in the 
approximation of many distributions and in modeling unknown cases.  
 
As such, we present the power variance (PV) distribution, a three-parameter gamma distribution 
parameterized using the mean and variance relationship with parameters �, � and �. This power variance 
form provides an extension to the gamma family, but has an additional flexibility due to the relationship of 
the parameters � and � in the mean and variance relationship, such that ���(�) = ���. While the Tweedie 
distribution allows us to model the data exactly, the PV distribution provides an adequate approximation and 
is easily estimated through the use of the gamma probability density function. Moreover, this form allows us 
to analyze data without requiring the assumption that the data follow a known standard distribution. The 
motivation for this approximation arose from work in the analysis of exponential dispersion models with 
mean-variance relationships. More so, Jørgensen [12] proved that such distributions having the power 
variance form with 0 < �  < 1 cannot correspond to an exponential family distribution. This flexible 
formulation is useful in many practical applications. 
 
The moments and properties of the gamma in its PV form are reproduced in Section 2. In Section 3, the PV 
form is compared to several known distributions in the exponential family. In Section 4, the model 
parameter estimation for the PV distribution using generalized least squares is described. A simulation study 
is conducted in Section 5. Two numerical examples are analyzed in Section 6, including applications in 
education and physical science. Some comments are given in Section 7. 

 

2 Three-Parameter Gamma Distribution 
 
In this section, we consider the gamma distribution in its power variance form and examine its properties 
under this formulation. Although this is the same parameterization as the Tweedie distribution [3], it differs 
in that the PV distribution is written in a closed form and thereby provides an approximation to distributions 
which can be described by the Tweedie distribution. 
 

2.1 Density Function 
 
Let � denote a positive random variable with power variance of the form with the density function  
 

��(�; �, �, �) =
�(������)/�	���	(��	����/�)

��
����

�
�	�

����

� 	�(���)����/�

, � > 0                                                                  (2.1) 

 
within a parameter space Ω� × Ω� × Ω� ≡ �� × �� × �. We postulate that the density function (2.1) 

represents random variables with the mean-variance relationship 
 

���(�) = 	���, 
 
where � = �(�), � is a positive scale parameter, and � is a real-valued parameter. The ��(�; �, �, �) is a 
density function for the gamma distribution in a different form as it represents a re-parameterization of the 
two-parameter gamma	�(�, �) with density function,  
 

��(�; �, �) =
����	���	(��/�)

�(�)	�� , � > 0,			� > 0,			� > 0                                                     (2.2) 
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where the gamma distribution shape parameter � = ����/� and the gamma distribution scale parameter 
� = ����� [13]. 
 

2.2 Moments and properties 
 
The density function ��(�; �, �, �) (2.1) has as its moment generating function 
 

��(�) = �(���) = ∫
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� ������	�
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�
= (1 − �����	�)�(����)/�,                         (2.3) 

 
for � < 	����/�. From	��(�), we obtain the cumulants of � as  
 

��(�) = ���[��(�)] = 	− �
����

�
� 	���	[1 − �	�����].                            (2.4) 

 
In its general form, the �-th cumulant for the random variable � has the form 
 

�� = ��
(�)(0) = (� − 1)! (�	����)���	� 

 

for � = 1, 2, 3, … where ��
(�)

 denotes the �-th derivative of ��  with respect to the parameter �. Thus, the 
random variable �, has its mode at	���	(�� − 	�	��), provided that 
 

���(�) = ��� < ��. 
 

3 Comparison to the Exponential Family of Distributions 
 
Let �� for � = 1,2, …� be a set of continuous � random variables. The family of distributions �� for � ∈ � 
belongs to the one parameter exponential family if the density of �� is of the form  
 

�(�|�) = ��(�)�(�)��(�)ℎ(�)                                                                                (3.1) 
 
for some real valued functions �(�), �(�), �(�), and ℎ(�) ≥ 0. The exponential family is a family of 
distributions on the finite dimensional Euclidean space, parameterized by a finite dimensional parameter 
vector. The family provides a framework that makes it useful and convenient in statistical analyses [14-17]. 
The exponential family contains as special cases most of the standard discrete and continuous distributions 
typically used for statistical modeling, such as the normal, Poisson, exponential, gamma, among others. The 
PV distribution is an extension of the gamma distribution. It is parameterized in the form (3.1) and is a 
member of the exponential family of distributions. We provide comparisons of the PV form to several 
common distributions in the exponential family as these distributions are widely used in modeling and have 
known mean-variance relationships. 
 

3.1 Comparisons to the exponential, chi-square, and euler distributions 
 
The PV distribution provides approximations to several known distributions. The most general family is the 
two-parameter gamma family, (2.2). The parameterization of the PV model is an alternative to the two-
parameter representation of the gamma distribution [18]. They parameterized the �(�, �) distribution in 
terms of the mean and dispersion of the random variable as � = �/�  and � = 1/�  respectively. The 
exponential and chi-square distributions are special cases of the two-parameter gamma family, and as such 
have an obvious representation in the PV distribution family. The Euler distribution is also a special case of 
the PV distribution. It has the form 
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��(�; 	�, �) = 	
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���	(−�/�)

� �
�

�
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�

�

, � > 0, � > 0, � > 0, 

 
with mean �(�) = � and variance ���(�) = ��� which presents a special case of the PV distribution with 
� = 1. The parameter correspondences of the Euler, exponential, gamma, and chi-square distributions are 
summarized in Table 1. 
 

Table 1. Parameter correspondence among PVτ distribution and special cases 
 

Distribution Mean �(�) Variance ���(�) � �  � 

PV � ��� � � � 

Exponential  � �� � 1 2 

Euler � �� � � 1 

Gamma  �� ��� � � 2 

Chi-square � 2� �  2 1 

 

3.2 Mean-Variance relationship  
 
Several exponential family distributions have the mean-variance relationship of the power form ���(�) =
���  with the parameter �  restricted to integer values. We denote the distribution as the power variance 
distribution PVτ with power parameter �. For � = 0, 1, 2, and 3, we have approximations of the Gaussian, 
Poisson, gamma, and inverse Gaussian distributions, respectively.  

 

3.2.1 Gaussian distribution  
 

Fig. 1 shows plots for the PV0 (the PV distribution with power parameter � = 0) and the Gaussian densities 
with mean � = 3 and different variances (���). Although the Gaussian and PV distributions have the same 
means and variances in each of the three illustrations, it is clear that the distributions are quite different in 
their respective shapes as one nears the zero boundary of the PV distribution. The differences between the 
shapes of the two distributions become less pronounced as one moves further from zero or as the coefficient 
of variation, �(�)/�(�), decreases. In the three panels, Fig. 1, the means are equal to 3, while the variances 
are: (a) 3, (b) 1 and (c) 1/3. The red line represents the Gaussian curve, while the black line is the PV0 curve. 
The coefficient of skewness, �� = �(� − �)�/���(�)�/�, for the PV0 model approaches infinity as � tends 
toward zero. As the mean � tends towards infinity, the PV0 distribution is similar to the Gaussian distribution 
as is shown in Fig. 1(c).  

 

3.2.2 Poisson distribution  
 
Fig. 2 provides a comparison of the PV1 density and the Poisson mass function. In this illustration, the scale 
parameter � was fixed to 1 so the two distributions have the same mean-variance relationships. The means 
are: (a) 2, (b) 5, and (c) 8. The red lines correspond to the Poisson mass function and the black line 
corresponds to the PV1 density function. The plots show that the PV1 distribution approximates the Poisson 
distribution as their relative shapes are similar, even when the mean approaches 0. The PV1 distribution is 
slightly more skewed and platykurtic than the Poisson distribution. The differences become negligible as the 
means of the distributions become larger. 
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Fig. 1. Comparisons of the PV0 distribution and the Gaussian distribution 
 

 
 

Fig. 2. Comparisons of the PV1 distribution and the Poisson distribution 
 
3.2.3 Log normal distribution 
 
Fig. 3 shows plots of the PV2 distribution and log normal ��(�, �) distributions. We chose to use the log 
normal distribution because it is represented in the same power variance form with mean �(�) = ����/� =

� and variance	���(�) = (�� − 1) ����
�

��
�

= ���. The means are equal to 4 in all panels, Fig. 3, while the 

scale parameters are: (a)	� = 1/4, (b) � = 1/2 and (c) � = 1. In Fig. 3, the red line is the log normal density 
and the black line is the PV2 density. For these distributions, the scale parameter is the square of the 
coefficient of variation. The two distributions within each panel have the same mean and variance, although 
there are pronounced differences in the shapes of the distributions as the means approach zero. The two 
distributions are closer to each other when the coefficient of variation is small as in Fig. 3(a), compared to 
when the coefficient of variation is large as shown in Fig. 3(c). 
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Fig. 3. Comparisons of the PV2 distribution and the Log normal distribution 
 
3.2.4 Moments of the PV distribution and comparative distributions 
 
Table 2 provides higher-order moments and standardized moments for the PV distribution with various 
parameter values, as well as the Gaussian, Poisson, gamma, and inverse Gaussian distributions [19]. 
 

Table 2. Moments of the power variance and standard exponential family distributions 
 

Distribution ���(�) �(� − �)� �(� − �)� ��
a ��

b 

Normal � 0 3�� 0 3 

PV(� = 0) � 2����� 3��(1 + 2����) 2��/���� 3(1 + 2����) 

Poisson � � 
3�� �1 +

���

3
� 

���/� 3(1 + ���/3	) 

PV(�, 1,1) � 2� 3��(1 + 2���) 2���/� 3(1 + 2���) 

Inverse 

Gaussian 

��� 3���� 3����(1 + 5��) 3��/���/� 3(1 + 5��) 

PV(�, �, 3) ��� 2���� 3����(1 + 2��) 2��/���/� 3(1 + 2��) 

Eulerc �� 2��� 3����(1 + 2����) 2��/����/� 3(1 + 2����) 

Gammad ��� 2���� 3����(1 + 2�) 2��/� 3(1 + 2�) 

PV(�, �, �) ��� 2������� 3�����(1 + 2�����) 2��/��
�

�
�� 3(1 + 2�����) 

a�� =
�(���)�

����(�)�
�/�, coefficient of skewness; b�� =

�(���)�

����(�)�
�, standardized fourth moment; cEuler= ��(�, �, 1); dGamma=

��(�, �, 2) 

 

4 Generalized Least Squares Parameter Estimation 
 
Due to the flexibility of the PV distributions, they are used to approximate other distributions. Thus, to 
estimate the parameters of the underlying distribution of the responses in the data, we present a regression 
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type estimator of these parameters from the mean variance relationship. Smyth [20] and Wilson and Koehler 
[21] among others have modeled dispersion based on multiple parameters as it pertains to different 
subpopulations instead with the use of a single constant factor. We obtain regression types estimators of the 
parameters � and �.  
 
We consider a consistent estimator for the vector of parameters � = (�, �)′ from a generalized least squares 
regression which allows the errors to have non-constant variance ���(�) = ���. The variance parameters 
are obtained through the linearized mean-variance relationship 
 

	���(���(�)) = ���� + � ����. 
 

For each subpopulation, we let the response vector � has elements the log of the variance of the observed 
data with data matrix �, consisting of a column of ones and a column of ��� �, is nonrandom with the vector 
of regression parameters �∗ = (��, 	��)′ where �� = ���� and �� = �. Group sizes are allowed to vary [22]. 
Thus, the estimates of our dispersion parameter and power parameter are obtained from an approximate 
generalized least squares estimator for �, 
 

�� = ��′������
��

������ 

 
where the ��  is a consistent estimator for the covariance matrix for �. The variance of �� is ��(�′����)�� 
[23,24]. 
 

The generalized least square estimates ��  and �̂  are parameter estimates for the PV distribution, and 
regression coefficients for the data are obtained through minimizing the log likelihood of the PV 
distribution. Since the PV distribution is limited to positive values, values of � = 0 may be adjusted by a 
factor of 0.5 [25].  

 

5 Simulation Study 
  
The PV representation of the gamma distribution is flexible and can be used to approximate many 
distributions through the mean-variance relationship. We illustrate the applicability of the PV distribution 
through a simulation study. Data were simulated from a Poisson distribution Y with mean parameter �, such 
that ���(�) = 1 + 2� where � is generated from an uniform (0, 1) distribution. We assume that the PV 
distribution is of form ���. The simulation was conducted for a total of 10,000 iterations, where the values 
of Y were predicted by: 
 

a) Poisson distribution with a log link 
b) PV distribution with a log link.  

 
Parameter estimates were compared over three sample sizes (100, 250, 500) and four subgroup sizes (5, 10, 
15, 20) to estimate the mean-variance relationship parameters � and �. The average generalized least squares 
estimates for the mean-variance parameters for each simulation condition are reported in Table 3. 
 
In each simulation condition, the mean-variance parameters are estimated close to the true values of � = 1 
and � = 1. Estimates of the power parameter � improved as the number of subgroups in the data increased. 
The average regression parameter estimates and standard errors from each simulation condition are reported 
in Table 4. The model fit, measured through the mean square error (MSE), is also reported.  
 
As expected, the Poisson distribution produced the most accurate parameter estimates. However, the PV 
distribution had comparable standard errors compared to the Poisson distribution. We note that the PV 
parameter estimates deviated further from the true values of �� = 1 and �� = 2 as the number of subgroups 
increased. Improved estimates were obtained with a larger number of observations in each subgroup (less 
subgroups) and larger sample sizes.  
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Table 3. Estimates of mean-variance parameters 
 

Number of Subgroups Sample Size � � 
5 100 1.01 1.10 

250 0.95 1.10 
500 0.94 1.10 

10 100 1.02 1.03 
250 0.98 1.03 
500 0.98 1.03 

15 100 0.97 1.02 
250 0.97 1.02 
500 0.98 1.01 

20 100 0.93 1.01 
250 0.97 1.00 
500 0.98 1.01 

 
Table 4. Simulation results by number of subgroups and sample size 

 
Number of Subgroups Distribution Sample Size �� = 1.000 �� = 2.000 MSE 

Est SE Est SE 
5 Poisson 100 0.997 0.092 2.002 0.130 8.470 

250 0.999 0.058 2.001 0.082 8.582 
500 0.999 0.041 2.000 0.058 8.641 

PV 100 0.951 0.089 2.063 0.129 8.514 
250 0.950 0.057 2.066 0.082 8.612 
500 0.950 0.040 2.067 0.058 8.666 

10 Poisson 100 0.998 0.092 2.001 0.130 8.484 
250 1.000 0.058 2.000 0.082 8.596 
500 0.999 0.041 2.001 0.058 8.643 

PV 100 0.935 0.084 2.076 0.121 8.537 
250 0.941 0.055 2.072 0.078 8.628 
500 0.941 0.039 2.072 0.056 8.671 

15 Poisson 100 0.997 0.092 2.003 0.130 8.492 
250 1.000 0.058 1.999 0.082 8.608 
500 0.999 0.041 2.001 0.058 8.639 

PV 100 0.924 0.082 2.086 0.116 8.558 
250 0.937 0.054 2.074 0.077 8.645 
500 0.938 0.039 2.074 0.055 8.668 

20 Poisson 100 0.996 0.092 2.004 0.130 8.484 
250 0.999 0.058 2.000 0.082 8.589 
500 1.000 0.041 2.000 0.058 8.647 

PV 100 0.914 0.079 2.094 0.112 11.166 
250 0.931 0.053 2.079 0.076 8.630 
500 0.936 0.039 2.075 0.055 8.678 

 
We compare the model fits of the PV distribution compared to the true distribution using the MSE. From the 
MSEs across the simulation conditions, we see that the PV distribution provides a comparable fit to the 
Poisson regression model in most cases. The model fit deviated the most between the two approaches in the 
case with a sample size of 100 and 20 subgroups. Under these conditions, there are only 5 observations per 
subgroup which can result in unreliable estimates for the mean-variance relationship parameters and impact 
the PV model fit. However, in all other simulation conditions, the PV model provided a good approximation. 
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6 Numerical Examples 
 
We present two numerical examples demonstrating the use of the PV distribution in regression models for 
count and continuous data. We examine absenteeism among high school students and the compression 
strength of high-performance concrete. These examples demonstrate the use of the PV distribution as an 
approximation for different outcome types across various applications.  
 

6.1 Absenteeism 
 
Data were obtained from 316 9th-grade students enrolled in two high schools in the Los Angeles area in Fall 
1995. Each student took the California Test of Basic Skills and received scores for the mathematics and 
language sections. We wish to explain the varying number of absences during the school year based on the 
student demographics and their academic performance as it pertains to ethnicity (a binary measure, 
Caucasian or Filipino versus other), the school, mathematics and language exam scores (percentile rank), 
and bilingual status.  
 
The number of absences are evaluated using a generalized linear model with a Poisson distribution as the 
random component and a PV distribution model. We use the PV distribution as a flexible method to estimate 
the regression parameters and compare the results between the two approaches, Table 5. To estimate the 
mean-variance relationship parameters �  and �  based on the generalized least squares, we split the 

subpopulations into nine subgroups by ethnicity and school. We estimate the mean-variance parameters as �� 
= 1.79 and �̂ = 1.84, and obtain the PV model parameters by maximizing the log likelihood with parameters 

��, �̂, and �̂. 
 

Table 5. Parameter estimates, standard errors (SE), and p values for Poisson and PV models 
 

Variables Poisson PV 
Estimate SE P Estimate SE P 

Intercept 2.189 0.140 <.001 2.187 0.374 <.001 
Ethnicity 0.679 0.079 <.001 0.758 0.186 <.001 
School -0.477 0.065 <.001 -0.451 0.175 .01 
Mathematics 
Percentile Rank 

-3.292×10-3 1.319×10-3 .01 -3.129×10-3 3.602×10-3 .39 

Language 
Percentile Rank 

3.298×10-5 1.383×10-3 .98 -1.200×10-3 3.781×10-3 .75 

Bilingual -0.212 0.049 <.001 -0.320 0.140 .02 
 
The PV distribution allows additional flexibility in the model and provides a reasonable approximation to the 
Poisson model. The regression coefficient estimates are similar for both the Poisson and the PV models. We 
find that the model fit is similar for both models as the PV model has a MSE of 48.47 while the Poisson 
model has a MSE of 48.16.  
 

6.2 Concrete compressive strength 
 
High-performance concrete is a complex material which has increased compressive strength compared to 
conventional concrete. We are interested in predicting the strength of high-performance concrete, measured 
in megapascals, based on the content of 1,030 concrete samples [26]. The components (measured in kg/m3) 
include cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate. The 
age of the concrete in days is also recorded. Using 14 subgroups based on the age of the concrete, the 

variance parameters were estimated as �� = 17.77 and �̂ = 0.35. The regression parameter estimates for both 
models are reported in Table 6. 
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Table 6. Parameter estimates, standard errors (SE), and P values for Gaussian and PV models 
 

Variables Gaussian PV 
Estimate SE P Estimate SE P 

Intercept -23.331 26.586 .38 -23.337 18.499 .21 
Cement 0.120 0.008 <.001 0.116 0.006 <.001 
Blast Furnace Slag 0.104 0.010 <.001 0.093 0.007 <.001 
Fly Ash 0.088 0.013 <.001 0.082 0.009 <.001 
Water -0.150 0.040 <.001 -0.128 0.028 <.001 
Superplasticizer 0.292 0.093 .002 0.323 0.067 <.001 
Coarse Aggregate 0.018 0.009 .05 0.014 0.007 .04 
Fine Aggregate 0.020 0.011 .06 0.022 0.008 .004 
Age 0.114 0.005 <.001 0.116 0.004 <.001 

 

The MSEs for the Gaussian and PV models are 107.20 and 109.23, respectively, indicating that both 
approaches provide comparable model fits. The parameter estimates are fairly similar between the two 
models, although the PV approach produces smaller standard error estimates. The PV standard error 
estimates for the covariates are between 20 percent and 31 percent lower than the standard errors for the 
Gaussian model.  
 

7 Conclusions  
 
The PV form provides the flexibility to address the extra variation through the mean-variance relationship, 
as used in the Tweedie distribution, but easily estimated from a closed form of a gamma probability density 
function. We present the parameterization of the PV distribution and verify that it provides a good 
approximation of many other distributions described through the Tweedie distribution. We introduce a 
generalized least squares estimation method to estimate a two-parameter mean-variance relationship in � 
and �. Our simulation demonstrates the applicability of the PV distribution for estimating parameters in the 
data model from other distributions in the exponential family. In addition, the examples of modeling counts 
and continuous data pinpoint the flexibility that the PV distribution provides for a wide class of mean-
variance relations. 
 
This paper suggests that the PV distribution is useful to examine the performance of regression models for 
data that do not necessarily follow an exponential family but have a mean-variance relationship that may be 
related. While the PV distribution is used to simulate data that have a power form other than � = 0, 1, 2, and 
3, it is trivial to generate data that have a mean-variance relationship	���(�) = ����/�. Additionally, one 
can generate data with an alternative mean and variance relationships other than the power form. In 
particular, setting � = ��/���(�) , and � = ����(�) , yields a gamma model with a mean-variance 
relationship equal to ���(�) = ���(�) where ��(�) is the variance function indexed by the parameter � 
[18]. It encompasses the negative binomial mean-variance relationship ���(�) = 	�(1 + ��) where the free 
scale parameter �  is set to unity. Similarly, one could generate data with mean �(�) = 	�  and 
variance 	���(�) = �{�(1 − �)}� . This manipulation of the mean-variance relationship through this PV 
model allows one to address overdispersed or underdispersed binomial.  
 
The robustness of the quasi-likelihood function [27] and related methods, including the extended quasi-
likelihood function [28] and the pseudo-normal likelihood [29] for non-exponential data, continues to be 
enhanced. Our discussion expands on this type of modeling. 
 

Disclaimer 
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