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Abstract

We present a Finite Difference Fictitious Domain Wavelet Method (FDFDWM) with penalty for
solving two dimensional (2D) Dirichlet problem for linear elliptic PDE on irregular geometric
domains. In this method, the 2-D Dirichlet problem is discretized along one of the spatial
variables, reducing it to a 1-D problem. The problem and the boundaries of the irregular domain
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are approximated using compactly supported wavelets. Results from the numerical analysis
indicate that, our method performs better in terms of accuracy and convergence of the
approximate solution compared with finite element method.

Keywords: Dirichlet problem; penalty; fictitious domain; PDEs; Daubechies wavelet function; irregular
domain; finite difference.
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1 Introduction

The linear elliptic partial differential equation (PDE) with Dirichlet boundary condition, commonly
referred to as the Dirichelt problem (DP) is an age long problem that has significant application
in myriads of fields. For instance, in the area of fluid dynamics it is applied in calculating forces
and moments on aircraft, predicting weather patterns, determining the mass flow rate of petroleum
through pipeline and modeling fission weapon denotation [1, 2, 3]. Other applications are found in
electrostatics, Newtonain gravity, hydrodynamics, diffusion, etc.

In recent times, the emphasis on solving the Dirichlet problem using analytical methods is diminishing.
This is due to the availability of high speed computers and workstations which make numerical
solutions to this problem more attractive [4]. However, numerical computations is known to generate
approximate solutions. The Finite Difference Method(FDM), Spectral Method (SM) and Finite
Element Method (FEM) are some of the classical methods used to solve this problem. The SM is
used for the discretization of spatial variables in Dirichlet Problem for elliptic PDE in 2D, in the
Hilbert space. Notwithstanding, this method has some limitations which makes FDM and FEM
preferable in many areas [5, 6]. One drawback is that it generates large systems of linear or non-
linear equations involving full matrices. In contrast, FDM and FEM, lead to systems involving
sparse matrices. Another limitation of spectral methods is its inability to handle irregularly shaped
domains. The FDM also has some difficulties in handling problems with complex geometric domains.
This is due to the fact that the FDM uses topologically square network of lines to discretize the
Dirichlet problem. In the case of FEM, irregular domains can be handled by generating complex grid
adapted to the geometry of the domain, however this process is cumbersome and time consuming
[7].

Due to the difficulties associated with problems defined on irregular domains, methods that are
efficient and offer high accurate and stable solution to the Dirichlet Problem are desired. Over the
past two decades, wavelets have been used by a number of researchers including [8, 9, 10, 11, 12, 13]
as preferred functions for the approximation of PDEs. In wavelet methods, we are able to obtain
information in both time and frequency domains [14]. Notably, the vanishing moment property of
wavelet contributes significantly to the rapid convergence of wavelet series solution to a point in the
domain as compared to the classical numerical methods mentioned earlier for solving the Dirichlet
Problem for linear elliptic PDE in 2D on irregular domains. This paper therefore seeks to develop
a wavelet-based numerical method that generates more accurate approximate solution to the DP
on irregular domains compared with the aforementioned traditional methods.

2 The FDFDWM with Penalty on Irregular Domain

We present in this paper a Finite Difference Fictitious Domain Wavelet Method (FDFDWM) with
penalty term to approximate the Dirichlet problem for linear elliptic PDE defined on irregular
domains. The penalty term incorporated in this method regularizes the irregular boundary. Boundary
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measure theory is apply to the boundary integral obtained from the boundaries of the irregular
domains. These boundary integral are approximated using wavelet functions.

We consider first, the Dirichlet Problem in an irregular domain which is defined as follows:

Definition 2.1. Let Ω be a bounded domain in R2 with boundary ∂Ω. The Dirichlet problem for
linear second order elliptic PDE in two dimensional coordinates is given as{

−∇ · (a∇ϕ) + b∇ϕ+ cϕ = f in Ω
ϕ(x, y) = g on ∂Ω

(1)

where the coefficients a = a(x, y), b = b(x, y) and c = (x, y) are smooth in ∂Ω̄ which satisfy

a(x, y) ≥ a0 > 0, c(x, y)− 1

2
∇ · b(x, y) ≥ 0, for all x, y ∈ Ω (2)

and where f is a given function and g is the boundary data.

A function ϕ(x, y) ∈ C2(Ω̄) that satisfies the second order elliptic PDE and the Dirichlet
boundary condition in (1) is called the classical solution of the Dirichlet problem. The existence,
uniqueness and stability of the solution obtained from the Dirichlet problem heavily depends on its
well-posedness. The notion of well-posedness in the sense of Hadamard can be defined as follows.

Definition 2.2 (Hadamard’s well-posedness). A Dirichlet problem (1) is said to be well-posed
if:

1. a solution exists,

2. the solution is unique,

3. the solution depends continuously on the given data,

otherwise it is ill-posed.

If the Dirichlet problem is well-posed, obtaining a numerical approximation of the exact solution
is possible as long as the boundary data to the problem are approximated suitably.

We begin the FDFDWM solution process by reducing equation (1) to a system of ordinary differential
equations. This is accomplished by discretising along one of the spatial variable (say y) having
equally spaced sample, yi = i∆y with Ny = 2m subintervals, where m is the resolution of the
wavelet function employed. The discretization of the spatial variable y is carried out using central
difference approximation to obtain

−∇ · (β1∇ϕi) + β2∇ϕi + ϕi
Σ = β6f

i for i = 1, 2, . . . , Ny. (3)

where

β1 = a∆y2

β2 = b∆y2

β3 = b
∆y

2
− a

β4 = 2a+ c∆y2

β5 = −(a+ b
∆y

2
)

β6 = ∆y2

and
ϕi
Σ(x) = β3ϕ

i+1 + β4ϕ
i + β5ϕ

i−1. (4)
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2.1 Fictitious Domain and Penalty Formulation of the DP

We proceed to the next stage of the FDFWDM by writing equation (3) in a weak form and seek a
solution in a larger class H1. This is achieved by multiplying (3) by a test function, v ∈ H1

0 and
integrating over the domain Ω to give∫

Ω

(
−∇ · (β1∇ϕi) + β2∇ϕi + ϕi

Σ

)
vdx =

∫
Ω

β6f
iv dx (5)

We apply the divergence theorem and setting v = 0 on the ∂Ω to obtain the following weak form,{
find ϕi ∈ H1(ΩF ) such that∫
Ω

(
β1∇ϕi∇v + β2∇ϕiv + ϕi

Σv
)
dx =

∫
Ω
β6f

iv dx ∀v ∈ H1
0 .

(6)

We introduce a bilinear form α : V × V → R and a linear functional L : V → R, such that α(·, ·) is
continuous over V . Then we express equation (6) in a bilinear form as

α(v, η) =

∫
Ω

(β1∇v∇η + β2∇vη + vη) dx ∀v, η ∈ V (7)

and

L(v) = β6

∫
Ω

fvdx (8)

We note from (1) that when b = 0, the bilinear becomes symmetrical. That is α(v, η) = α(η, v).

We apply the fictitious domain approach to the DP formulated in a weak form by embedding the
original domain, Ω of the DP (1) in a slightly larger but simple (rectangular) domain, ΩF . The
fictitious domain ΩF is defined as a subspace of the Hilbert space. That is, we let V be a closed
subspace H1

p (ΩF ) such that
{v : v = ṽ|Ω, ṽ ∈ V } = H1

p (ΩF )

The choice for V , considering the Dirichlet boundary condition is H1
0 (Ω) and the space Vp (ΩF )

defined by
Vp (ΩF ) = {v ∈ H1

0 (ΩF ) : v is periodic on ∂Ω} (9)

Given some s > 0, suppose that ΩF = (0, s)2 then the periodicity property in (9) implies that
v (0, y) = v (s, y) and v (x, 0) = v (x, s). Combining equations (7) and (8), the problem (6) can be
formulated as a variational problem. That is,{

find ϕi ∈ H1(ΩF ), ∀v ∈ H1
0 so that

α(ϕi, v) = L(v).
(10)

Now, we consider the already embedded reduced dimension DP (10) with an irregular domain. We
reformulate the problem by applying a penalty term, ϵ to regularize the irregular domain [15]. For
ϵ > 0, {

find ϕi
ϵ ∈ V so that

ϵα(ϕi
ϵ, v) + ρ(ϕi

ϵ, v) = ϵL(v) + l(v) ∀v ∈ V.
(11)

Then we show by the following theorem that ϕi
ϵ converges to a function ϕ whose restriction to Ω is

the solution we seek.

Theorem 2.1. Suppose that Ω is a C0,1 domain, suppose also that the hypothesis on α, ρ, L, l in
(11) hold. Then we have

lim
ϵ→0

∥ϕi
ϵ − ϕi∥H1(ΩF ) = 0, (12)

lim
ϵ→0

ϵ−1/2∥ϕi
ϵ − ϕ∥H1(Ω) = 0, (13)

where ϕ, ϕi and ϕi
ϵ are the solution to DP (1), (10) and (11) respectively.
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Proof. We apply Lax-Milgram theorem for the proof of this theorem [16].

1. Boundedness of {ϕi
ϵ}ϵ>0:

Let ϕi be the solution of the problem (10). Setting v = ϕi
ϵ − ϕi in (11), we obtain

ϵα(ϕi
ϵ − ϕi, ϕi

ϵ − ϕi) + ρ(ϕi
ϵ − ϕi, ϕi

ϵ − ϕi) = ϵ
[
L(ϕi

ϵ − ϕi)− α(ϕi, ϕi
ϵ − ϕi)

]
+ l(ϕi

ϵ − ϕi)− ρ(ϕi, ϕi
ϵ − ϕi). (14)

Since ϕi in the domain Ω give the solution ϕ, it follows from (6), (7) and (9) that

ρ(ϕi, v) = l(v), v∀v ∈ V. (15)

Replacing v by ϕi
ϵ − ϕi in (9) and combining with (14) we have

α(ϕi
ϵ − ϕi, ϕi

ϵ − ϕi) +
1

ϵ
ρ(ϕi

ϵ − ϕi, ϕi
ϵ − ϕi) = L(ϕi

ϵ − ϕi)− α(ϕi, ϕi
ϵ − ϕi). (16)

Considering the ellipticity and continuity properties of α, ρ, L and the positivity of ϵ, it
follows from (16) that

γ∥ϕi
ϵ − ϕi∥2V ≤ (∥L∥+ ∥α∥∥ϕi∥V )∥ϕi

ϵ − ϕi∥V , ∀ϵ > 0, (17)

where in (17), γ > 0 and where ∥L∥ and α are defined by

∥L∥ = sup
v

|L(v)|
∥v∥V

, ∀v ∈ V \ {0},

and

∥ρ∥ = sup
v,η

|α(v, η)|
∥v∥V ∥η∥V

, ∀v ∈ V \ {0}, ∀η ∈ V \ {0},

The inequality (17) implies
∥ϕi

ϵ − ϕi∥V ≤ C, ∀ϵ > 0,

hence
∥ϕi

ϵ∥H1(Ω) ≤ C, ∀ϵ > 0, (18)

2. Weak convergence of {ϕi
ϵ}ϵ>0:

It follows from (18), and from the closedness of V in H(ΩF ) that there exist ϕ∗ ∈ V and a
subsequence, also represented by {ϕi

ϵ}ϵ>0, such that

lim
ϵ→0

ϕi
ϵ = ϕ∗ weakly in H1(ΩF ). (19)

Combining (19) and (11) we obtain at the limit in (11) that

ρ(ϕ∗, v) = l(v), ∀v ∈ V,

That is
ϕ∗ =∈ H (20)

Substituting v = ϕi
ϵ − ϕi in (11) and considering the ellipticity of ρ(·, ·), we obtain

α(ϕi
ϵ, v) = L(v − ϕi

ϵ) + α(ϕi
ϵ, ϕ

i
ϵ) +

1

ϵ
ρ(ϕi

ϵ, ϕ
i
ϵ)

+
1

ϵ

[
l(v − ϕi

ϵ)− ρ(v, v − ϕi
ϵ)
]
≥ L(v − ϕi

ϵ) + α(ϕi
ϵ, ϕ

i
ϵ)

+
1

ϵ

[
l(v − ϕi

ϵ)− ρ(v, v − ϕi
ϵ)
]
, ∀v ∈ V. (21)
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Suppose now that v ∈ H, then we have v|Ω = ϕ which implies that

ρ(v, v − ϕi
ϵ) = l(v − ϕi

ϵ), ∀v ∈ H,

which combined with (21) implies in turn that

α(ϕi
ϵ, v) ≥ L(v − ϕi

ϵ) + α(ϕi
ϵ, ϕ

i
ϵ) ∀v ∈ H. (22)

Since α(·, ·) is positive over V × V we have, from (19),

lim inf
ϵ→0

α(ϕi
ϵ, ϕ

i
ϵ) ≥ α(ϕ∗, ϕ∗),

which combined with (22) implies

α(ϕ∗, v) ≥ L(v − ϕ∗) + α(ϕ∗, ϕ∗) ∀v ∈ H.

Hence, considering (20) ϕ∗ is a solution of (10). Since (10) has a unique solution, we have
ϕ∗ = ϕi, which implies that the sequence {ϕi

ϵ}ϵ>0 converges to ϕi.

3. Strong convergence of {ϕi
ϵ}ϵ>0:

Following from inequality (16); we have established that ϕi
ϵ converges weakly to ϕi. Combining

this result with (16), and taking into account the ellipticity properties of α(·, ·) and ρ(·, ·),
we finally obtain the convergence properties (12) and (13).

Having shown that the solution of the FDFDWM with penalty formulation given by (11) exist,
we proceed to write the problem in an expanded form as follows: For ϵ > 0, find ϕi

ϵ ∈ V such that∫
Ω

(
β1∇ϕi

ϵ∇v + β2∇ϕi
ϵv + ϕi

Σ,ϵv
)
dx+

1

ϵ

∫
∂Ω

ϕi
ϵvds = β3

∫
ΩF

f̃vdx+
1

ϵ

∫
∂Ω

gvds (23)

for every v ∈ H1
p(Ω), where f̃ is an arbitrary L2-extension of f in ΩF . Substituting equation (4)

into (23) we obtain∫
Ω

(
β1∇ϕi

ϵ∇v + β2∇ϕi
ϵv
)
dx +

∫
ΩF

(
β3ϕ

i+1
ϵ + β4ϕ

i
ϵ + β5ϕ

i−1
ϵ

)
vϵdx

+
1

ϵ

∫
∂Ω

ϕi
ϵvds = β3

∫
ΩF

f̃vdx+
1

ϵ

∫
∂Ω

gvds (24)

2.2 Wavelet Approximation of the DP

Now that we are done with the penalty formulation of the DP embedded in a fictitious domain,
we proceed to approximate the weak formulation using compactly supported wavelet introduced by
Daubechies [17]. We assume ΩF = (0, s)2, where s is a positive integer. Let

V i
p = {v ∈ L2(Ω) : v(x) =

∑
k

ckφk,j(x), x ∈ (0, s),with ck = ck+2is} (25)

We write the approximate solution to the penalty problem at a fixed value of yi as

ϕ̃ϵ(x, y
i) = 2

m
2

∑
k

ξϵ,ik,mφ(2mx− k) ∈ V i
p (26)

where m and k represent resolution and scaling parameter respectively. Similarly, the boundary
measure µi,

µ(x, yi) = 2
m
2

∑
k

µi
k,mφ(2mx− j) ∈ V i

p (27)
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where the coefficient µi
k,m can be computed from the approximation of the boundary measure ∥∂Ω∥

at a fixed value of yi and level m, given by

∥∂Ω∥im =
∑
k

µi
k,m(2m − k) (28)

We recall from [16] that

∥∂Ω∥im = −∇χi
Ω,m · ni

m (29)

We can write

∇χi
Ω,m =

∂χi
Ω,m

∂x
(x)

=
∑
k

(
∂χ

∂x

)i

k,m

φ(2m − k) (30)

The coefficient of (30) can be written in terms of the connection coefficients as

(
∂χ

∂x

)i

k,m

=
∑
k

Ωd
k−mχi

k,m (31)

We approximate the normal vector n⃗ at level m and fixed value of yi by

ni
m(x) =

∑
k

(
∂Υ
∂x

)i
k,m

|∇Υ|ik,m
φ(2m − k) (32)

where

|∇Υ|ik,m =

√√√√((∂Υ

∂x

)i

k,m

)2

(33)

Therefore from (29), (30) and (32), we have

−∇χi
Ω,m · ni

m(x) = −
∑
k

[((
∂χ

∂x

)i

k,m

(
∂Υ

∂x

)i

k,m

)
/|∇Υ|ik,m

]
φ(2m − k) (34)

Hence

µi
k,m = −

[((
∂χ

∂x

)i

k,m

(
∂Υ

∂x

)i

k,m

)
/|∇Υ|ik,m

]
(35)
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Now substituting equations (26) and (27) into (24) we obtain,

β1

∑
k

ξϵ,ik,m

∫
φ′(2mx− k)φ

′
(2mx− j)dx

+β2

∑
k

ξϵ,ik,m

∫
φ′(2mx− k)φ(2mx− j)dx

+β3

∑
k

ξϵ,i+1
k,m

∫
φ(2mx− k)φ(2mx− j)dx

+β4

∑
k

ξϵ,i+1
k,m

∫
φ(2mx− k)φ(2mx− j)dx

+β5

∑
k

ξϵ,i−1
k,m

∫
φ(2mx− k)φ(2mx− j)dx

+
1

ϵ

∑
k

µi
k,mξϵ,ik,m

∫
φ(2mx− k)φ(2mx− j)dx

= β6

∑
k

f̃ i

∫
φ(2mx− k)φ(2mx− j)dx

+
1

ϵ

∑
k

µi
k,mgi

∫
φ(2mx− k)φ(2mx− j)dx (36)

We introduce a shift to handle the exterior nodes ξi+1
k,m and ξi−1

k,m, which are given by

ξi+1
k,mφ(2mx− k)φ(2mx− j) = ξik,mφ(2mx− k + 1)φ(2mx− j) (37)

and

ξi−1
k,mφ(2mx− k)φ(2mx− j) = ξik,mφ(2mx− k − 1)φ(2mx− j) (38)

In addition, we introduce the following connection coefficients into equation (36) ,

Ω2
k−j =

∫ ∞

−∞
φ′(X − k)φ′(X − j)dx, for derivative d = 2,

Ωk−j =

∫ ∞

−∞
φ′(X − k)φ(X − j)dx, for derivative d = 1

and the Kronecker-delta function,

δk,j =

∫ ∞

−∞
φ(X − k)φ(X − j)dx

where we set X = 2mx

Equation (36) becomes,

β1

∑
k

ξϵ,ik,mΩ2
k−j + β2

∑
k

ξϵ,ik,mΩk−j + β3

∑
k

ξϵ,ik,mδk+1,j

+β4

∑
k

ξϵ,ik,mδk,j + β5

∑
k

ξϵ,ik,mδk−1,j +
1

ϵ

∑
k

ξϵ,ik,mµi
k,mδk,j

= β6

∑
k

f̃ iδk,j + 2
m
2
1

ϵ

∑
k

µi
k,mgiδk,j (39)
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We express equation (39) as a linear system in a vector form, given by

A1ξ⃗ +A2ξ⃗ +A3ξ⃗ +A4ξ⃗ +A5ξ⃗ +
1

ϵ
Mξ⃗ = F +

1

ϵ
MG (40)

where A1, A2, A3, A4 and A5 are sparse coefficient matrices. The matrix M corresponds to the
boundary integral. We can write equation (40) compactly as

Aξ⃗ +
1

ϵ
Mξ⃗ = F +

1

ϵ
MG (41)

where
A =

∑
i

Ai, i = 1, . . . , 5

3 Numerical Results

In this section, we present the results obtained from numerical experiments performed using the
FDFDWM with penalty on two dimensional Dirichlet boundary value problems defined on irregular
domains. In these experiments we consider two irregular domains; the star shaped and the diamond
shaped domains which in each of the test cases are embedded in a slightly larger rectangular domain
often described as the fictitious domain. The experiments are done using Daubechies wavelet of
order D6, with varying levels of resolution (i.e: m = 1,m = 2 and m = 3) at each penalty parameter
value, ϵ = 100, 10−1, . . . , 10−10. The results from the FDFDWMwith penalty are compared with the
results from the classical FEM, to determine the level of accuracy and the rate of convergence of the
approximate solutions. The FDFDWM algorithm is implemented by pre-computing the connection
coefficients, resulting in the generation of the sparse coefficient matrix A in the linear system (41).
In addition the boundary integrals are computed from the differentials of the characteristic function
of the domain. Consequently, we present the results of the experiments in a form of two dimensional
graphs and tables. The MATLAB software was used to carry out all the numerical experiments in
the paper.

Test Case 1
In this test, we consider a Dirichlet problem defined on a star shaped domain which is centered

at the origin and described by the equation, 2e−a2

≤ e−b2x2

+ e−c2y2

, where the constants, a, b
and c are positive real numbers and only the constant a is restricted by the following condition;
|a| <

√
loge 2 = 0.8326. This domain is embedded in a slightly larger rectangular domain ΩF =

[−8, 8]× [−8, 8]. We write the problem as{
−∆ϕ+ ϕ = x2 + y2 − 4 in Ω

ϕ(x, y) = g on ∂Ω
(42)

The analytical exact solution of (42) is given by

ϕ(x, y) =

{
x2 + y2 (x, y) ∈ Ω

0 (x, y) /∈ Ω
(43)

where the domain is described by

Ω = {(x, y) : 2e−a2

≤ e−b2x2

+ e−c2y2

, a = 0.82, b = 0.39 and c = 0.39}.

Using the FDWDWM with penalty parameter, ϵ = 1, Daubechies wavelet coefficient of order
D6 and varying levels of resolution (i.e: m = 1,m = 2 and m = 3) the approximate solutions are
displayed in Fig. 1.
It can be seen from Fig. 1 that, the FDFDWM with penalty offers satisfactory approximation
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Fig. 1. The FWDFDM with penalty approximation for the exact solution ϕ = x2 + y2

on a star domain for ϵ = 1, D6 and m = 1, 2 and 3

to the exact solution, ϕ = x2 + y2 which has been restricted to a star shaped geometric domain.
Varying the resolution from m = 1 to m = 3 at ϵ = 1 as displayed in Fig. 1, we observe that the
accuracy of the approximation is being enhanced.

Test Case 2
A diamond shaped domain centered at the origin is considered as the defined domain for solving
the Helmholtz equation (42). The diamond domain, Ω = {(x, y) : x + y < 5} is embedded in a
fictitious domain ΩF = [−8, 8]× [−8, 8]. The analytical exact solution of (42) is given by

ϕ(x, y) =

{
x2 + y2 (x, y) ∈ Ω

0 (x, y) /∈ Ω
(44)

The approximate solution generated from FDWDWM with penalty, using ϵ = 1, Daubechies
wavelet coefficient of order D6 and resolution at levels m = 1,m = 2 and m = 3 are shown in Fig. 2.

The FDFDWM with penalty approximation for test case 2 restricted to a diamond shaped
geometric domain with radius 5 has also proven to generate reasonable results. It is apparent
from the graphs that FDFDWM with penalty provides better approximation to the PDEs under
consideration as the resolution of the scaling function gets bigger. Moreover, we need to know the
effect of the penalty parameter, ϵ on the accuracy of our method. Analysis of ϵ and the error of
approximation are discussed in the succeeding section.

3.1 Error Analysis for FDFDWM with Penalty

In the previous section our concern was on whether the FDFDWM with penalty could give any
meaningful results. From Figs. 1 and 2, it is quite clear that the FDFDWM with penalty also
does well with the approximation of solutions of linear elliptic PDEs. Notwithstanding, the level of
accuracy needs to be dealt with thoroughly. In this section, we look at the impact of the variations
in the value of the penalty parameter, ϵ on the error of approximation. We use the relative L2 norm
error defined as

10
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Fig. 2. The FWDFDM with penalty approximation for the exact solution ϕ = x2 + y2

on a star domain for ϵ = 1, D6 and m = 1, 2 and 3

E =
∥ϕ− ϕi

ϵ∥L2(Ω)

∥ϕ∥L2(Ω)

,

to estimate the error incurred as a result of the FDFDWM with penalty approximations.

In Table 1 and 2, varying value of ϵ = 1, 10−1, . . . , 10−10 used at resolution m = 1, 2 and 3, with
D6 for test case 1 and 2 respectively, are presented.

Table 1. Relative L2 error for ϕ = x2 + y2 on a star domain for FDFDWM with penalty

ϵ m = 1 m = 2 m = 3

1 7.58149693473e-01 5.74277100332e-01 2.67247288780e-01

10−1 2.81518911453e-01 1.57494742054e-01 9.11708734045e-02

10−2 9.02774513126e-02 7.91268150045e-02 3.12707768725e-02

10−3 5.22544449106e-02 1.25749497856e-02 9.29208462855e-03

10−4 1.62747016103e-02 6.57439692367e-03 1.38665331242e-03

10−5 8.30166592833e-03 1.49495664433e-03 6.40764505323e-04

10−6 6.14114138804e-03 8.27628725474e-04 2.29516508279e-04

10−7 3.79895398076e-03 3.40098639815e-04 8.11607886747e-05

10−8 1.93646526326e-03 1.70588726909e-04 5.78102675002e-05

10−9 9.70349204229e-04 3.76045664285e-05 9.30121680285e-06

10−10 8.94335308894e-04 3.00351056878e-05 8.68786307716e-06

From Tables 1 and 2, we can deduce that the variations in the value of ϵ from 101 to 10−10 has
positive impact on the accuracy of the FDFDWM with penalty approximation. The error decays
along the variations of ϵ and across the resolution of the scaling function (i.e m = 1, 2 and 3 ).
This is in accordance with theorem 2.1, which shows that as ϵ → 0 the error diminishes and the

11
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Table 2. Relative L2 error for ϕ = x2 + y2 on a star domain for FDFDWM with penalty

ϵ m = 1 m = 2 m = 3

100 3.60393185120e-01 1.57526431008e-01 2.80294932785e-02

10−1 9.14834373283e-02 2.79415498199e-02 9.78191153461e-03

10−3 8.34997200329e-03 5.08279077499e-03 1.02863049976e-03

10−4 6.12478672023e-03 1.16822499992e-03 8.85375864579e-04

10−5 3.49964476727e-03 9.05540325570e-04 2.67528659132e-04

10−6 1.06020473732e-03 6.78838868034e-04 7.53398665800e-05

10−7 8.34793559933e-04 5.89344934266e-04 1.78517329863e-05

10−8 4.61203933311e-04 1.60769210262e-04 9.84145837122e-06

10−9 1.18175358943e-04 7.58924274663e-05 3.81498060525e-06

10−10 9.43750721999e-05 4.86807935714e-05 3.78343920292e-07

approximate solution approaches the exact solution. These results agree with with the findings of
a number of studies including, [18, 15, 16, 7].

We now look at the performance of the FDFDWM with penalty as against FEM. Here we are
not considering the FDM because it is not a suitable method for solving PDEs defined on complex
domains as discussed in the introductory chapter. The relative L2 norm error has been estimated for
both the penalized FDFDWM and FEM at varying penalty parameter, ϵ = 1, 10−1, . . . , 10−10 using
resolution m = 1 and scaling function order, D6 for test case 1 and 2 respectively as shown in Fig. 3.

Fig. 3. Relative L2 error of FDFDWM with penalty and FEM for Test Cases 1 and 2
with varying penalty parameter, ϵ = 1 to ϵ = 10−10 at resolution m = 1

Considering Fig. 3, both penalized FDFDWM and FEM decay in L2 norm error with varying
ϵ = 10−0 to ϵ = 10−10. However, FDFDWM with penalty converges rapidly to the exact solution
than that of the FEM. This to buttress the trend that emblematic with FDFDWM with penalty
approximations.

4 Conclusions

In this paper, we have shown that the FDFDWM with penalty generates reasonable approximation
to the Dirichlet problem defined on irregular domains. The FDFDWM with penalty has proven
to converge rapidly and generates more accurate approximate solutions compare with the classical
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FEM. Handling the boundary integrals resulting from the boundaries of the irregular domains
using derivatives of the characteristic function and wavelet approximation has been implemented
successfully.
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[6] Süli E. Finite element methods for partial differential equations. Lecture Notes. Mathematical
Institute University of Oxford; 2012.

[7] Wells Jr. RO, Zhou X. Wavelet solutions for the Dirichlet problem. Numerical Math.
1995;70:379-396.

[8] Burrus CS, Gophinath RA, Guo H. Wavelets and wavelet transforms, creative commons
attribution license, OpenStax-CNX; 2015.

[9] Debnath L, Shah FA. Wavelet transforms and their application, 2nd Edition, Springer
Science+Business Media New York. 2015;151-152.

[10] Mishra V, Sabina. Wavelet-Galerkin finite difference solutions of ODEs. AMO-Advanced
Modeling and Optimization. 2011;13(3):539-549.

[11] Sabina, Mishra V. Wavelets and the evaluation of filter coefficients. International Journal of
Mathematical Archieve. 2011;2(10):1776-1793.

[12] Wale SS, Asutkar GV. Evaluation of wavelet connection coefficients by wavelet Galerkin
approximation. Annual IEEE India Conference (INDICON); 2014.

[13] Walnut DF. An introduction to wavelet analysis, Birkhäuser Boston; 2002.
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