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Abstract

Compressive sensing (CS) is to recover a sparse signal from an undetermined linear system, which
has received considerable interest, and some customized iterative methods for solving CS have
been proposed in recent years. In this paper, we further consider an algorithm for solving the
CS. To this end, a new projection-type algorithm (PTA) is proposed to solve CS based on a new
formulation of the problem, which needs only one projection onto the nonnegative quadrant and
only one value of the mapping per iteration. Global convergence results of the new algorithm is
established. Furthermore, we illustrate the efficiency of given algorithm through some numerical
examples on sparse signal recovery.
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1 Introduction

Compressive sensing (CS) is to recover a sparse signal x̄ ∈ Rn from an undetermined linear system
y = Ax̄, where A ∈ Rm×n (m ≪ n) is the sensing matrix. A fundamental decoding model in CS is
the following unconstrained basis pursuit denoising (abbreviated as BPD) problem, which can be
mathematically depicted as

min
x∈Rn

1

2
∥Ax− y∥22 + ρ∥x∥1, (1.1)

where ρ > 0 is a parameter and ∥x∥1 is the ℓ1-norm of the vector x. Throughout this paper, we
assume that the solution set of 1.1 is nonempty.

Obviously, the function ∥x∥1 is convex although it is not differential, 1.1 is a convex optimization
problem, and there are some standard methods such as the smooth Newton-type methods or interior-
point methods to solve it [1, 2, 3, 4]. However, these solvers are not tailored for large-scale cases of CS
and they become inefficient as n increases. In recent years, some customized iterative methods for
1.1 have been proposed [5, 6, 7, 8, 9, 10, 11]. In the following, we briefly summarize some influential
methods for 1.1. Landi [4] propose to solve 1.1 by an efficient modified Newton projection method
only requiring matrix-vector operations. Li, Sun and Toh [5] develop an algorithm for solving large-
scale convex composite optimization models with an emphasis on the ℓ1-regularized least squares
regression (lasso) problems. In [12] a spectral gradient method is applied to solve problem 1.1
without requiring Jacobian matrix information. In [13], based on Bregman iterative regularization,
the authors proposed some efficient methods for solving the compressed sensing. Hale et al. [14]
presented a framework for solving the large-scale ℓ1-regularized convex minimization problem based
on operator-splitting and continuation. Yin et al. [15] presented an iterative method for ℓ1−2

minimization based on the difference of convex functions algorithm. Lou and Yan [16] also give a
method via the proximal operator for the ℓ1 − ℓ2 minimization. For ℓ2 − ℓp minimization problem,
based on fixed-point iterations, a projection-based algorithm was presented by Borges et al. [17].
For the same problem, Chen et al. [18] developed a lower bound to classify zero and nonzero entries
in every local solution, and also develop error bounds. Based on these results, the authors proposed
a hybrid OMP-SG method for solving it. In addition, BPD problem is obvious a special case of the
famous separable convex programming, some the numerical methods which can solve the separable
convex programming are applicable to the above BPD problem (e.g., [19, 20, 21, 22, 23, 24, 25]).
In this paper, we shall propose a new projection-type algorithm for the problem BPD with a
closed form, whose iterative scheme doesn’t also need to perform a backtracking line search at each
iteration.

The rest of this paper is organized as follows. In Section 2, we give some equivalent reformulations
of the problem BPD. In Section 3, some related properties are given, which are the basis of our
analysis. In Section 4, we propose a new projection-type algorithm without the backtracking line
search to find a suitable step size, which needs only one projection onto the nonnegative quadrant
and only one value of the mapping per iteration. We show that the new PTA is global convergence
in detail. In Section 5, some numerical experiments on compressive sensing are given to show the
efficiency of the proposed method. Finally, some conclusions and remarks are presented in Section
6.

To end this section, some notations used in this paper are in order. We use Rn
+ to denote the

nonnegative quadrant in Rn, and the x+ denotes the orthogonal projection of vector x ∈ Rn onto
Rn

+, that is, (x+)i := max{xi, 0}, 1 ≤ i ≤ n; the norm ∥ · ∥ and ∥ · ∥1 denote the Euclidean 2-norm
and 1-norm, respectively. For x, y ∈ Rn, use (x; y) to denote the column vector (x⊤, y⊤)⊤.
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2 Equivalent Reformulations of the Problem BPD

In this section, we will establish some smooth equivalence transformations of the problem BPD.
Firstly, we define two variables µi and νi (i = 1, 2, · · · , n) as [12]:

µi + νi = |xi|, µi − νi = xi, i = 1, 2, · · · , n.

Thus, we can reformulate BPD into

min(µ;ν)∈R2n
1
2
∥(A,−A)(µ; ν)− y∥22 + ρ(e⊤, e⊤)(µ; ν)

s.t. (µ; ν) ≥ 0,
(2.1)

where e ∈ Rn denotes the vector composed by elements 1, i.e., e = (1, 1, · · · , 1)⊤.

To make the description more concise, letting ω = (µ; ν). we have the following equivalent
formulation of (2.1)

min f(ω) = 1
2
(ω⊤Mω − 2p⊤ω + y⊤y)

s.t. ω ∈ R2n
+ ,

(2.2)

where M =

(
A⊤A, −A⊤A

−A⊤A, A⊤A

)
, p =

(
A⊤

−A⊤

)
y − ρ

(
e
e

)
.

Obviously, the problem (2.2) is a convex optimization problem, then the stationary set of 2.2
coincides with its solution set which also coincides with the solution set of the following the problem:
find ω∗ ∈ R2n

+ such that
(ω − ω∗)⊤(Mω∗ − p) ≥ 0, ∀ω ∈ R2n

+ . (2.3)

In the meantime, the system (2.3) can be further written as the following linear complementarity
problem: find ω∗ ∈ R2n

+ such that

ω∗ ≥ 0, Mω∗ − p ≥ 0, (ω∗)⊤(Mω∗ − p) = 0. (2.4)

The solution set of 2.4 is nonempty under the nonempty assumption of the solution of 1.1, and is
denoted by Ω∗. 2.4 is also an equivalent reformulation of the problem BPD.

3 Preliminaries

In this section, based on the equivalent reformulations 2.3) and (2.4 in Section 2, we will give the
definition of projection operator and some related properties [26, 27], which are the basis of our
analysis.

For a nonempty closed convex set K ⊂ Rn and vector x ∈ Rn, the orthogonal projection of x onto
K, i.e., argmin{∥y − x∥|y ∈ K}, is denoted by PK(x).

Proposition 3.1. Let K be a closed convex subset of Rn.For any x, y ∈ Rn and z ∈ K, the
following statements hold.

(i) ⟨PK(x)− x, z − PK(x)⟩ ≥ 0.

(ii) |PK(x)− z∥2 ≤ ∥x− z∥2 − ∥PK(x)− x∥2.

For the classical variational inequality problem(VIP) which is to find a point x∗ ∈ K such that

F (x∗)⊤(x− x∗) ≥ 0,∀x ∈ K,

where K is a closed convex set in Rn, we have the following conclusion.
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Proposition 3.2. (Minty, see, e.g., [28], Lemma 7.1.7) Assume that F : K → Rn is continuous
and monotone mapping. Then x∗ is a solution of VIP if and only if is a solution of the following
problem: find x ∈ K such that

F (x)⊤(x− x∗) ≥ 0, ∀x ∈ K.

For (2.3),(2.4) and ω ∈ R2n, define the projection residue

R(ω) := ω − PR2n
+
(ω − βF (ω)) = min{ω, βF (ω)},

where β > 0 is a constant, F (ω) = Mω − p. The projection residue is intimately related to the
solution of 2.3 and 2.4 as shown by the following well-known result, which is due to Noor [29].

Proposition 3.3. ω∗ is a solution of (2.3) if and only if R(ω∗) = 0 with some β > 0.

By Proposition 3.3, we have that solutions of (1.1) coincide with zeros of the following projected
residual function:

r(ω, z) := ∥z − PR2n
+
(ω − βF (z))∥+ ∥ω − z∥,

where β > 0 is a constant.

4 Algorithm and Global Convergence

In this section, we will propose a new projection-type algorithm (PTA) to solve BPD with a closed
form, and prove global convergence of the new PTA in detail. Now, we formally state our algorithm.

Algorithm 4.1.

Step0. Select ω0 = z0 ∈ R2n, σ > 1, β ∈ (0, (
√
2−1)σ

(σ−1)∥M∥ ),and let k := 0.

Step1. For the current iterate points ωk and zk, compute

ωk+1 = {ωk − βF (zk)}+. (4.1)

If r(ωk, zk) = 0, stop. Then ωk = zk is a solution of (2.3). Otherwise, go to Step 2.

Step2. compute zk+1 ∈ R2n
+ such that zk+1 = 2σ−1

σ
ωk+1 − σ−1

σ
ωk. Go to Step 1 with k

△
= k + 1.

Remark 4.1. It is easy to see that this method needs only one projection onto the set R2n
+ and

only one value of F (ω) per iteration. Therefor, it makes algorithm 4.1 very attractive for cases
when a computation of operator F is expensive.

To establish the convergence of the Algorithm 4.1, we first give the following two lemmas, which is
a basis for further discussion.

Lemma 4.1. Let {ωk} and {zk} be two sequences generated by Algorithm 4.1 . Then

2βF (zk−1)
⊤(zk − ωk+1) ≤ σ

σ−1
{∥ωk+1 − ωk∥2 − ∥ωk − zk∥2 − ∥ωk+1 − zk∥2}. (4.2)

Proof. Applying Proposition 3.1 (i), (4.1) with ωk = PR2n
+
{ωk−1 − βF (zk−1)}, ωk+1 ∈ R2n

+ , and

σ > 1, one has
σ[ωk − (ωk−1 − βF (zk−1)]

⊤(ωk − ωk+1) ≤ 0, (4.3)

(σ − 1)[ωk − (ωk−1 − βF (zk−1)]
⊤(ωk − ωk−1) ≤ 0, (4.4)

Combining (4.3) with (4.4) yields

0 ≥ [ωk − (ωk−1 − βF (zk−1)]
⊤((2σ − 1)ωk − σωk+1 − (σ − 1)ωk−1)

= σ[ωk − (ωk−1 − βF (zk−1)]
⊤(zk − ωk+1)

= σ[(ωk − ωk−1) + βF (zk−1)]
⊤(zk − ωk+1),

(4.5)
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where the first equality is by σzk = (2σ − 1)ωk − (σ − 1)ωk−1. From (4.5), we obtain

2βF (zk−1)
⊤(zk − ωk+1) ≤ 2(ωk − ωk−1)

⊤(ωk+1 − zk)

= 2σ
σ−1

(zk − ωk)
⊤(ωk+1 − zk)

= σ
σ−1

{∥ωk − zk∥2 + ∥ωk+1 − zk∥2 + 2(zk − ωk)
⊤(ωk+1 − zk)}

− σ
σ−1

{∥ωk − zk∥2 + ∥ωk+1 − zk∥2}
= σ

σ−1
{∥(ωk+1 − zk) + (zk − ωk)∥2 − ∥ωk − zk∥2 − ∥ωk+1 − zk∥2},

= σ
σ−1

{∥ωk+1 − ωk∥2 − ∥ωk − zk∥2 − ∥ωk+1 − zk∥2},
(4.6)

where the first equality is by (σ − 1)(ωk − ωk−1) = σ(ωk − zk).

Lemma 4.2. Let {ωk} and {zk} be two sequences generated by Algorithm 4.1. Then

2β[F (zk)− F (zk−1)]
⊤(zk − ωk+1) ≤ (1 +

√
2)β∥M∥∥zk − ωk∥2 + β∥M∥∥ωk − zk−1∥2

+
√
2β∥M∥∥zk − ωk+1∥2.

(4.7)

Proof. By a direct computation yields that

2β[F (zk)− F (zk−1)]
⊤(zk − ωk+1)

≤ 2β∥F (zk)− F (zk−1)∥∥zk − ωk+1∥
≤ 2β∥M∥∥zk − zk−1∥∥zk − ωk+1∥
≤ β∥M∥( 1√

2
∥zk − zk−1∥2 +

√
2∥zk − ωk+1∥2)

= β∥M∥√
2

∥zk − ωk + ωk − zk−1∥2 +
√
2β∥M∥∥zk − ωk+1∥2

= β∥M∥√
2

[∥zk − ωk∥2 + ∥ωk − zk−1∥2 + 2(zk − ωk)
⊤(ωk − zk−1)] +

√
2β∥M∥∥zk − ωk+1∥2

≤ β∥M∥√
2

[∥zk − ωk∥2 + ∥ωk − zk−1∥2 + 2∥zk − ωk∥∥ωk − zk−1∥] +
√
2β∥M∥∥zk − ωk+1∥2

≤ β∥M∥√
2

[∥zk − ωk∥2 + ∥ωk − zk−1∥2 + (
√
2 + 1)∥zk − ωk∥2 + (

√
2− 1)∥ωk − zk−1∥]

+
√
2β∥M∥∥zk − ωk+1∥2

≤ β∥M∥√
2

((
√
2 + 2)∥zk − ωk∥2 +

√
2∥ωk − zk−1∥2) +

√
2β∥M∥∥zk − ωk+1∥2

≤ (1 +
√
2)β∥M∥∥zk − ωk∥2 + β∥M∥∥ωk − zk−1∥2 +

√
2β∥M∥∥zk − ωk+1∥2.

Lemma 4.3. Let {ωk} and {zk} be two sequences generated by Algorithm 4.1, and let ω∗ ∈ Ω∗.
Then

∥ωk+1 − ω∗∥2 ≤ ∥ωk − ω∗∥2 − ( σ
σ−1

− (1 +
√
2)β∥M∥)∥zk − ωk∥2

+ β∥M∥∥ωk − zk−1∥2 − ( σ
σ−1

−
√
2β∥M∥)∥zk − ωk+1∥2

− 2βF (ω∗)⊤(zk − ω∗).

(4.8)
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Proof. Applying Proposition 3.1 (ii) and (4.1), one has

∥ωk+1 − ω∗∥2 = ∥{ωk − βF (zk)}+ − ω∗∥2

≤ ∥ωk − βF (zk)− ω∗∥2 − ∥ωk − βF (zk)− ωk+1∥2

≤ ∥ωk − ω∗∥2 + β2∥F (zk)∥2 − 2βF (zk)
⊤(ωk − ω∗)

− ∥ωk+1 − ωk∥2 − β2∥F (zk)∥2 − 2βF (zk)
⊤(ωk+1 − ωk)

= ∥ωk − ω∗∥2 − ∥ωk+1 − ωk∥2 − 2βF (zk)
⊤(ωk+1 − ω∗)

≤ ∥ωk − ω∗∥2 − ∥ωk+1 − ωk∥2 − 2βF (zk)
⊤(ωk+1 − ω∗)

+ 2β(F (zk)− F (ω∗))⊤(zk − ω∗)

= ∥ωk − ω∗∥2 − ∥ωk+1 − ωk∥2 − 2βF (zk)
⊤(ωk+1 − ω∗)

+ 2βF (zk)
⊤(zk − ω∗)− 2βF (ω∗)⊤(zk − ω∗)

= ∥ωk − ω∗∥2 − ∥ωk+1 − ωk∥2 + 2βF (zk)
⊤(zk − ωk+1)− 2βF (ω∗)⊤(zk − ω∗)

= ∥ωk − ω∗∥2 − ∥ωk+1 − ωk∥2 + 2β(F (zk)− F (zk−1))
⊤(zk − ωk+1)

+ 2βF (zk−1)
⊤(zk − ωk+1)− 2βF (ω∗)⊤(zk − ω∗)

≤ ∥ωk − ω∗∥2 − ∥ωk+1 − ωk∥2 + (1 +
√
2)β∥M∥∥zk − ωk∥2 + β∥M∥∥ωk − zk−1∥2

+
√
2β∥M∥∥zk − ωk+1∥2 + σ

σ−1
{∥ωk+1 − ωk∥2 − ∥ωk − zk∥2 − ∥ωk+1 − zk∥2}

− 2βF (ω∗)⊤(zk − ω∗)

≤ ∥ωk − ω∗∥2 − ( σ
σ−1

− (1 +
√
2)β∥M∥)∥zk − ωk∥2 + β∥M∥∥ωk − zk−1∥2

− ( σ
σ−1

−
√
2β∥M∥)∥zk − ωk+1∥2 − 2βF (ω∗)⊤(zk − ω∗).

(4.9)
where the third inequality holds since the matrix M is positive definite, the fourth inequality is by
(4.2)and (4.7), the last inequality follows from σ > 0.

Now, we give the global convergence result of algorithm 4.1.

Theorem 4.4. Suppose that the solution set of (1.1) is nonempty, and the sequence {ωk} generated
by Algorithm 4.1 is an infinite generates, Then, the sequence {ωk} is bounded and globally converges
to a solution of (2.3).

Proof. Firstly, we prove that the sequence {ωk} is bounded.
From (4.8), by a direct computation yields that

∥ωk+1 − ω∗∥2 ≤ ∥ωk − ω∗∥2 − ( σ
σ−1

− β∥M∥(1 +
√
2))∥zk − ωk∥2

+ β∥M∥∥ωk − zk−1∥2 − ( σ
σ−1

−
√
2β∥M∥)∥zk − ωk+1∥2

− 2βF (ω∗)⊤(zk − ω∗)

≤ ∥ωk − ω∗∥2 − ( σ
σ−1

− β∥M∥(1 +
√
2))∥zk − ωk∥2

+ β∥M∥∥ωk − zk−1∥2 − ( σ
σ−1

−
√
2β∥M∥)∥zk − ωk+1∥2

− 2βF (ω∗)⊤( 2σ−1
σ

ωk − σ−1
σ

ωk−1 − ω∗) + 2βF (ω∗)⊤(ωk−1 − ω∗)

= ∥ωk − ω∗∥2 − ( σ
σ−1

− β∥M∥(1 +
√
2))∥zk − ωk∥2

+ β∥M∥∥ωk − zk−1∥2 − ( σ
σ−1

−
√
2β∥M∥)∥zk − ωk+1∥2

− 2βF (ω∗)⊤[( 2σ−1
σ

ωk − 2σ−1
σ

ω∗)− (σ−1
σ

ωk−1 − σ−1
σ

ω∗)]

+ 2βF (ω∗)⊤(ωk−1 − ω∗)

≤ ∥ωk − ω∗∥2 − ( σ
σ−1

− β∥M∥(1 +
√
2))∥zk − ωk∥2

+ β∥M∥∥ωk − zk−1∥2 − β∥M∥∥zk − ωk+1∥2

− 2(2σ−1)
σ

βF (ω∗)⊤(ωk − ω∗) + 2(2σ−1)
σ

βF (ω∗)⊤(ωk−1 − ω∗).

(4.10)
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where the second inequality follows from the fact zk = 2σ−1
σ

ωk − σ−1
σ

ωk−1, using
σ

σ−1
−
√
2β∥M∥ ≥

β∥M∥, we obtain that the third inequality holds. Using (4.10), one has

∥ωk+1 − ω∗∥2 + β∥M∥∥zk − ωk+1∥2 + 2(2σ−1)
σ

βF (ω∗)⊤(ωk − ω∗)

≤ ∥ωk − ω∗∥2 + β∥M∥∥ωk − zk−1∥2 + 2(2σ−1)
σ

βF (ω∗)⊤(ωk−1 − ω∗)

−( σ
σ−1

− β∥M∥(1 +
√
2))∥zk − ωk∥2.

(4.11)

Letting

ak = ∥ωk − ω∗∥2 + β∥M∥∥ωk − zk−1∥2 +
2(2σ − 1)

σ
βF (ω∗)⊤(ωk−1 − ω∗),

bk = (
σ

σ − 1
− β∥M∥(1 +

√
2))∥zk − ωk∥2.

Combining this with (4.11), we obtain ak+1 ≤ ak−bk. Since
σ

σ−1
−(1+

√
2)β∥M∥ > 0 and σ > 1, so

{an} and {bn} be two non-negative real sequences. Then the nonnegative sequence {an} is strictly
decreasing, so it converges, we also have limn→∞ bn = 0, i.e., limk→∞ ∥zk − ωk∥ = 0. Combining
this with (σ − 1)(ωk − ωk−1) = σ(ωk − zk), we obtain

lim
k→∞

∥ωk − ωk−1∥ =
σ

σ − 1
lim
k→∞

∥zk − ωk∥ = 0. (4.12)

Moreover, {ak} is bounded since it is convergent. By the definition of an, one has

∥ωk − ω∗∥2 ≤ ak,

we obtain the sequence {∥ωk − ω∗∥} is bounded, and the sequence {ωk} is bounded. Thus, there
exists a subsequence {ωki} of {ωk} with ωki → ω̂ as ki → ∞. Combining this with limk→∞ ∥zk −
ωk∥ = 0, one has

lim
ki→∞

∥zki − ω̂∥ ≤ lim
ki→∞

∥zki − ωki∥+ lim
ki→∞

∥ωki − ω̂∥ = 0.

In the following, we will show that ω̂ ∈ Ω∗.

From Proposition 3.1 (i), for any ω ≥ 0, we have

0 ≤ [ωki+1 − (ωki − βF (zki))]
⊤(ω − ωki+1)

= (ωki+1 − ωki)
⊤(ω − ωki+1) + βF (zki)

⊤(ω − ωki+1)

= (ωki+1 − ωki)
⊤(ω − ωki+1) + βF (zki)

⊤(ω − zki) + βF (zki)
⊤(zki − ωki+1)

≤ (ωki+1 − ωki)
⊤(ω − ωki+1) + βF (ω)⊤(ω − zki) + βF (zki)

⊤(zki − ωki+1).

(4.13)

where the last inequality follows from the fact

(F (ω)− F (zki))
⊤(ω − zki) = (ω − zki)

⊤M(ω − zki) ≥ 0.

Applying the fact that limki→∞ ∥ωki+1 − ωki∥ = 0 and limki→∞ ∥zki − ωki∥ = 0, we conclude that

lim
ki→∞

∥zki − ωki+1∥ ≤ lim
ki→∞

∥zki − ωki∥+ lim
ki→∞

∥ωki+1 − ωki∥ = 0.

Combining this with limki→∞ zki = ω̂, and taking the limit as ki → ∞ in (4.13), we have

F (ω)⊤(ω − ω̂) ≥ 0, ∀ω ≥ 0.

Combining this with Proposition 3.2, we obtain ω̂ ∈ Ω∗.

Secondly, From (4.12), we deduce that

lim
k→∞

∥ωk − zk−1∥ lim
k→∞

∥ωk − ωk−1∥+ lim
k→∞

∥ωk−1 − zk−1∥ = 0.

7
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Then the sequence ∥ωk − zk−1∥2 is convergent. From (4.11), since the sequence {ak} is convergent.

Thus, the sequence {∥ωk −ω∗∥2 + 2(2σ−1)
σ

βF (ω∗)⊤(ωk−1 −ω∗)} is convergent. In the following, we

will prove that {ωk} globally converges to ω̂.

Assume that this conclusion is false. Then there exist two subsequences {ωki} and {ωmj} of {ωk}
with limki→∞ ωki = ω̂ ∈ Ω∗ and limmj→∞ ωmj = ω̃ ∈ Ω∗, and ω̃ ̸= ω̃. Similar to discussion

above, we have that both the sequence {∥ωk − ω̂∥2 + 2(2σ−1)
σ

βF (ω̂)⊤(ωk−1 − ω̂)} and {∥ωk − ω̃∥2 +
2(2σ−1)

σ
βF (ω̃)⊤(ωk−1 − ω̃)} are convergent. By a direct computation yields that

limk→∞ ∥ωk − ω̂∥2 + 2(2σ−1)
σ

βF (ω̂)⊤(ωk−1 − ω̂)

= limki→∞ ∥ωki − ω̂∥2 + 2(2σ−1)
σ

βF (ω̂)⊤(ωki−1 − ω̂)

= lim infki→∞ ∥ωki − ω̂∥2 + 2(2σ−1)
σ

βF (ω̂)⊤(ωki−1 − ω̂)

< lim infki→∞ ∥ωki − ω̃∥2 + 2(2σ−1)
σ

βF (ω̃)⊤(ωki−1 − ω̃)

= limki→∞ ∥ωki − ω̃∥2 + 2(2σ−1)
σ

βF (ω̃)⊤(ωki−1 − ω̃)

= limk→∞ ∥ωk − ω̃∥2 + 2(2σ−1)
σ

βF (ω̃)⊤(ωk−1 − ω̃)

(4.14)

Similar to discussion in (4.14), we can also prove that

lim
k→∞

∥ωk − ω̃∥2 + 2(2σ − 1)

σ
βF (ω̃)⊤(ωk−1 − ω̃) < lim

k→∞
∥ωk − ω̂∥2 + 2(2σ − 1)

σ
βF (ω̂)⊤(ωk−1 − ω̂).

(4.15)
Combining (4.14) with (4.15), This is contradiction, and the desired result follows.

Theorem 4.5. The sequence {xk} converges globally to a solution of (1.1), where xk = µk − νk,
(µk; νk) = ωk.

Proof. From Theorem 4.4, we know that

lim
k→∞

ωk = ω̂ := (µ̂; ν̂). (4.16)

Letting x̂ = µ̂− ν̂. A direct computation yields that

∥xk − x̂∥ = ∥(µk − νk)− (µ̂− ν̂)∥
≤ ∥(µk − µ̂)∥+ ∥(νk − ν̂)∥
≤ ∥(µk − µ̂)∥1 + ∥(νk − ν̂)∥1
= ∥(µk − µ̂; νk − ν̂)∥1
≤

√
2n∥(µk − µ̂; νk − ν̂)∥

=
√
2n∥ωk − ω̂∥ → 0(as k → ∞),

(4.17)

where the second and third inequalities follow from the fact that

∥x∥ ≤ ∥x∥1 ≤
√
n∥x∥,∀x ∈ Rn.

Thus, The sequence {xk} converges globally to a solution of (1.1).

5 Numerical Experiments

In this section, we present some numerical experiments about compressive sensing to prove the
efficiency of proposed method. All codes are written by version of Matlab 9.20.538062 and performed
on a Windows 7 PC with AMD FX-7500 Redaon R7, 10 compute Cores 4C+6G, 2.10GHz and 4GB
of memory. For experiments, we set n = 211, m = floor(n/a), k = floor(m/b), and the matrix A is
generated by Matlab scripts:
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[Q, R]=qr(A’,0); A=Q’.

The original signal x̄ is generated by p=randperm(n); x(p(1:k))=randn(k,1). Then, the observed
signal is y = Ax̄ + n̄, where n̄ is generated by a standard Gaussian distribution N(0, 1) and then
it is normalized. The initial points ω0 = (µ0; ν0), where µ0 = max{0, A⊤y}, ν0 = max{0,−A⊤y}.
The stop criterion is

∥fk − fk−1∥
∥fk−1∥

< 10−5,

where fk denotes the objective value of (1.1) at iteration xk. We calculate the relative error

RelErr =
∥x̃− x̄∥
∥x̄∥ ,

where x̃ denotes the recovery signal.

Applying Algorithm 4.1, the original signal, the measurement and the recovery signal (marked by
red point) is given in Fig. 1. From Fig. 1, all the original signals are circled by the red points,
which indicate that the Algorithm 4.1 can recover the original signal quite well. In Tables 1, we
report the number of iterations, the CPU time in seconds, the relative error of the Algorithm 4.1.

Fig. 1. The original signal, noisy measurement and recovery signal

Table 1. Results of algorithm 4.1

σ Time Iter RelErr

1.0001 5.148 572 0.0462
1.01 4.586 496 0.0483
1.1 5.382 534 0.0457
10.1 4.336 478 0.0448
100.1 3.868 431 0.0441
1000.1 6.208 566 0.0501

9
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6 Conclusion

In this paper, we propose a new projection-type algorithm for solving the compressive sensing (CS)
with a closed form, and its global convergence is established in detail. Furthermore, some numerical
results illustrate that the method is efficient for the given tests.

This work has several possible extensions. First, the parameters σ of Algorithm 4.1 is adjusted
dynamically to further enhance the efficiency of the corresponding method. Second, how to extend
Algorithm 4.1 to nonlinear variational inequalities is worthy of research.
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