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Abstract

In this paper, the limiting behaviour of the Sample Autocorrelation Function(SACF) of the errors
{et} of First-Order Autoregressive (AR(1)), First-Order Moving Average (MA(1)) and First
Order Autoregressive First-Order Moving Average (ARMA(1,1)) stationary time series models
in the presence of a large Additive Outlier(AO) is discussed. It is found that the errors which are
supposed to be uncorrelated due to either white noise process or normally distributed process
are not so in the presence of a large additive outlier. The SACF of the errors follows a particular
pattern based on the time series model. In the case of AR(1) model, at lag 1, the contaminated
errors {et} are correlated, whereas at higher lags, they are uncorrelated. But in the MA(1) and
ARMA(1,1) models, the contaminated errors {et} are correlated at all the lags. Furthermore
it is observed that the intensity of correlations depends on the parameters of the respective models.
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1 Introduction

Outliers can result for many external or internal reasons. Measurement (recording or typing)
errors, classification mistakes in sampling or some non-repetitive exogenous interventions can have
effects in the form of outliers( isolated or patchy). Economic and business time series are sometimes
subject to the influence of strikes, outbreaks of wars, sudden change in the market structure of some
group of commodities, technical change or new equipment in a communication system, or simply
unexpected pronounced changes in weather etc. These unusual observations can significantly affect
the methodology of time series analysis. The presence of outliers can lead to model misspecification,
biased parameter estimation, poor forecasts, etc. Hafner and Preminger [1] have investigated the
impact of outliers (especially additive outlier) on the fractional unit root test. Ledolter [2] discusses
the effect of additive outliers on the forecasts from time series models. The effect of the outliers on
the sampling distribution of the estimated parameters of a time series model is explored by Urooj
and Asghar [3]. It is important to investigate further to understand their impact on other aspects
of time series analysis.

In time series analysis, we either assume that the errors {at} are white noise process or a sequence
of independently and identically distributed normal random variables. In either case, it implies
that the errors are uncorrelated. This assumption would be satisfied, if there are no outliers. It
would be interesting to explore the same when there exists outliers. In this article, we focus on
the limiting behaviour of Sample Autocorrelation Function (SACF) of the errors of stationary time
series models: First-Order Autoregressive (AR(1)), First-Order Moving Average Process (MA(1))
and First Order Autoregressive First-Order Moving Average (ARMA(1,1)) in the presence of a
large Additive Outlier (AO). The motivation for this is due to Chan [4], who discusses the effect
of Additive Outlier (AO), Innovational Outlier (IO), Level Shift (LS) and Temporary Change (TC)
on the SACF of the series. Further, Maronna et al. [5] have discussed the effect of a Patch of AO’s
on the first order SACF of the series. The same has been extended by Suresh [6] to higher orders.
Further, the limiting behaviour of the SACF and Sample Partial Autocorrelation Function (SPACF)
in the presence of a Doublet Outlier is also discussed by Suresh [6]. In this article, along the lines of
Chan [4] and Maronna et al. [5], the impact of a large AO on the SACF of the errors will be explored.

Outliers can take several forms in time series. The formal definitions and a classification of outliers
in a time series context were first proposed by Fox [7]. One can resort to Tsay [8] to know more
about other types of outliers in time series. When outliers or structural changes occur, {Xt} which
is a time series gets disturbed and is unobservable. We assume that the series {Xt} follows Box-
Jenkins univariate time series model [9]. In this case, it is assumed that the observed series {Yt}
follows the model

Yt = f(t) +Xt (1.1)

where f(t) is a parametric function representing the exogenous disturbances of Xt such as outliers
or level changes. The function f(t) may be deterministic or stochastic depending on the types of
disturbances. In practice, f(t) is specified by data analysts based on the substantive information
of the disturbances and the process {Yt}. For the deterministic model, it is assumed that f(t) is of
the form

f(t) = δ0
ω(B)

δ(B)
ITt (1.2)

where

ITt =

{
1 if t = T,
0 if t ̸= T,

(1.3)

is an indicator variable signifying the occurrence of a disturbance at the time point T , ω(B) =
1 − ω1B − ω2B

2 − · · · − ωsB
s and δ(B) = 1 − δ1B − δ2B

2 − · · · − δrB
r are polynomials in B of
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degrees s and r, respectively, and δ0 is a constant denoting the initial impact of the disturbance. A
special case of f(t) is Additive Outlier.

Definition 1.1. Additive Outlier(AO): If δ0 = δ and
ω(B)

δ(B)
= 1 in (1.2), the model turns out

be an Additive Outlier (AO) model. It is the type of outliers that affects a single observation XT .
After this disturbance, the series returns to its normal path as if nothing has happened. A typical
example of AO is the recording error. The effect caused by AO at time t = T , with the magnitude
of the effect denoted by δ is given by

Yt = Xt + δITt . (1.4)

The paper is structured as follows: In section 2, the impact of a large AO on the SACF of the errors
of the time series models: AR(1), MA(1) and ARMA(1,1) is investigated. Finally, the discussion
and conclusions is presented in section 3.

2 Sample Autocorrelation Function (SACF) of the Errors
of Time Series in the Presence of an Additive Outlier

Let {Xt; 1, 2, . . . , n} be any time series data and {Yt; 1, 2, . . . , n} be contaminated data obtained
by superimposing a AO of magnitude of δ at t = T on {Xt}. Suppose, we denote the contaminated
error series as {et; 1, 2, . . . , n}, the following theorems in subsections 2.1 - 2.3 provides the limiting
behaviour of the SACF of {et; 1, 2, . . . , n} as δ tends to infinity under the AR(1), MA(1) and
ARMA(1,1) models respectively.

2.1 SACF of the Errors of AR(1) model

Suppose the time series {Xt; 1, 2, . . . , n} follow an AR(1) model, which is defined as below.

Definition 2.1 (AR(1) Process). : {Xt} is an AR(1) process if {Xt} is stationary and if for
every t, which is defined as

Xt − ϕXt−1 = at, (2.1)

where {at} ∼ WN(0, σ2
a) or {at} ∼ N(0, σ2

a) and ϕ is the autoregressive parameter.

Let {Yt; 1, 2, . . . , n} be contaminated data obtained by superimposing an AO of magnitude of δ at
t = T on {Xt}.

Theorem 2.1. Let us denote the SACF by ρ̂k, k ≥ 1. Then for a fixed n

lim
δ→∞

ρ̂k =

 − ϕ

1 + ϕ2
, k = 1,

0 , k ≥ 2.

Proof. By definition, when k = 1,

ρ̂1 =

∑n−1
t=1 etet+1∑n

t=1 e
2
t

(2.2)

It is known from Janhavi & Suresh [10] the errors of the contaminated series {et} in the AR(1)
model is

et =


at , t < T
δ + at , t = T
−δϕ+ at , t = T + 1
at , t > T.

(2.3)
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Substituting {et; 1, 2, . . . , n} in terms of {at; 1, 2, . . . , n} in (2.2) by using (2.3), we get

ρ̂1 =

∑n−1
t=1 atat+1 + δ(aT−1 + aT+1 − ϕaT − ϕaT+2)− δ2ϕ∑n

t=1 a
2
t + δ2(1 + ϕ2) + 2δ(aT − ϕaT+1)

(2.4)

Now, dividing both numerator and denominator of equation (2.4) by δ2, we get

ρ̂1 =

∑n−1
t=1 atat+1

δ2
+

δ(aT−1 + aT+1 − ϕaT − ϕaT+2)

δ2
− δ2ϕ

δ2∑n
t=1 a

2
t

δ2
+

δ2(1 + ϕ2)

δ2
+

2δ(aT − ϕaT+1)

δ2

Taking limδ→∞ of the above equation, for a fixed n, we get

lim
δ→∞

ρ̂1 = lim
δ→∞

∑n−1
t=1 atat+1

δ2
+

(aT−1 + aT+1 − ϕaT − ϕaT+2)

δ
− ϕ∑n

t=1 a
2
t

δ2
+ (1 + ϕ2) +

2(aT − ϕaT+1)

δ

=
limδ→∞

∑n−1
t=1 atat+1

δ2
+ limδ→∞

(aT−1 + aT+1 − ϕaT − ϕaT+2)

δ
− ϕ

limδ→∞

∑n
t=1 a

2
t

δ2
+ (1 + ϕ2) + limδ→∞

2(aT − ϕaT+1)

δ

lim
δ→∞

ρ̂1 = − ϕ

1 + ϕ2

Hence,

lim
δ→∞

ρ̂1 = − ϕ

1 + ϕ2
(2.5)

Similarly by definition, when k ≥ 2,

ρ̂k =

∑n−k
t=1 etet+k∑n

t=1 e
2
t

(2.6)

Substituting {et; 1, 2, . . . , n} in terms of {at; 1, 2, . . . , n}, it is easy to check that for k ≥ 2,

ρ̂k =

∑n−k
t=1 atat+k + δ(aT−k + aT+k − ϕaT−(k−1) − ϕaT+(k+1))∑n

t=1 a
2
t + δ2(1 + ϕ2) + 2δ(aT − ϕaT+1)

. (2.7)

As before, dividing both numerator and denominator of equation (2.7) by δ2, and taking limδ→∞,
we get

lim
δ→∞

ρ̂k = lim
δ→∞

∑n−k
t=1 atat+k

δ2
+

(aT−k + aT+k − ϕaT−(k−1) − ϕaT+(k+1))

δ∑n
t=1 a

2
t

δ2
+ (1 + ϕ2) +

2(aT − ϕaT+1)

δ

, k ≥ 2

=
limδ→∞

∑n−k
t=1 atat+k

δ2
+ limδ→∞

(aT−k − ϕaT−(k−1) + ϕaT+k −XT+(k+1))

δ

limδ→∞

∑n
t=1 a

2
t

δ2
+ (1 + ϕ2) + limδ→∞

2(aT − ϕaT+1)

δ

lim
δ→∞

ρ̂k =
0 + 0

0 + (1 + ϕ2) + 0
, k ≥ 2

Therefore,
lim
δ→∞

ρ̂k = 0, k ≥ 2 (2.8)

The equations (2.5) and (2.8) prove the theorem.
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2.2 SACF of the Errors of MA(1) model

Assume that the time series {Xt; 1, 2, . . . , n} follow a MA(1) model, defined as

Definition 2.2 (MA(1) Process). : {Xt} is a MA(1) process if for every t,

Xt = at − θat−1, (2.9)

where {at} ∼ WN(0, σ2
a) or {at} ∼ N(0, σ2

a) and θ is the moving average parameter.

Let {Yt; 1, 2, . . . , n} be contaminated data obtained by superimposing a AO of magnitude of δ at
t = T on {Xt}.

Theorem 2.2. Let us denote the SACF by ρ̂k, k ≥ 1. Then for a fixed n

lim
δ→∞

ρ̂k = θk, k ≥ 1.

Proof. By definition, when k = 1,

ρ̂1 =

∑n−1
t=1 etet+1∑n

t=1 e
2
t

(2.10)

The errors of the contaminated series of the MA(1) model given by Janhavi & Suresh [10] are

et =


at , t < T
δ + at , t = T
δθj + at , t = T + j, j = 1, 2, . . . , n− T

(2.11)

Substituting {et; 1, 2, . . . , n} in terms of {at; 1, 2, . . . , n} in (2.10) by using (2.11), we get

ρ̂1 =

∑n−1
t=1 atat+1 + δ

(∑n−T
j=0 θjaT+j−1 +

∑n−(T−1)
j=0 θjaT+j+1

)
+ δ2

∑n−T
j=0 θ2j+1∑n

t=1 a
2
t + δ2

∑n−T
j=0 θ2j + 2δ

∑n−T
j=0 θjaT+j

(2.12)

Now, dividing both numerator and denominator of equation (2.12) by δ2, we get

ρ̂1 =

∑n−1
t=1 atat+1

δ2
+

δ
(∑n−T

j=0 θjaT+j−1 +
∑n−(T−1)

j=0 θjaT+j+1

)
δ2

+
δ2

∑n−T
j=0 θ2j+1

δ2∑n
t=1 a

2
t

δ2
+

δ2
∑n−T

j=0 θ2j

δ2
+

2δ
∑n−T

j=0 θjaT+j

δ2

Taking limδ→∞ of the above equation, for a fixed n, we get

lim
δ→∞

ρ̂1 = lim
δ→∞

∑n−1
t=1 atat+1

δ2
+

δ
(∑n−T

j=0 θjaT+j−1 +
∑n−(T−1)

j=0 θjaT+j+1

)
δ2

+
∑n−T

j=0 θ2j+1∑n
t=1 a

2
t

δ2
+

δ2
∑n−T

j=0 θ2j

δ2
+

2δ
∑n−T

j=0 θjaT+j

δ2

=
limδ→∞

∑n−1
t=1 atat+1

δ2
+ limδ→∞

(∑n−T
j=0 θjaT+j−1 +

∑n−(T−1)
j=0 θjaT+j+1

)
δ

+
∑n−T

j=0 θ2j+1

limδ→∞

∑n
t=1 a

2
t

δ2
+

∑n−T
j=0 θ2j + limδ→∞

2
∑n−T

j=0 θjaT+j

δ

=

∑n−T
j=0 θ2j+1∑n−T
j=0 θ2j

=
θ + θ3 + · · ·+ θ2(n−T )+1

1 + θ2 + · · ·+ θ2(n−T )

=
θ(1 + θ2 + · · ·+ θ2(n−T ))

1 + θ2 + · · ·+ θ2(n−T )

lim
δ→∞

ρ̂1 = θ
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Hence,
lim
δ→∞

ρ̂1 = θ. (2.13)

Similarly by definition, when k ≥ 2,

ρ̂k =

∑n−k
t=1 etet+k∑n

t=1 e
2
t

(2.14)

Substituting {et; 1, 2, . . . , n} in terms of {at; 1, 2, . . . , n}, it is easy to check that for k ≥ 2,

ρ̂k =

∑n−k
t=1 atat+k + δ

(∑n−T
j=0 θjaT+j−k +

∑n−(T−k)
j=0 θjaT+j+k

)
+ δ2

∑n−T
j=0 θ2j+k∑n

t=1 a
2
t + δ2

∑n−T
j=0 θ2j + 2δ

∑n−T
j=0 θjaT+j

. (2.15)

As before, dividing both numerator and denominator of equation (2.15) by δ2, and taking limδ→∞,
we get

lim
δ→∞

ρ̂k = lim
δ→∞

∑n−k
t=1 atat+k

δ2
+

δ
(∑n−T

j=0 θjaT+j−k +
∑n−(T−k)

j=0 θjaT+j+k

)
δ2

+
δ2

∑n−T
j=0 θ2j+k

δ2∑n
t=1 a

2
t

δ2
+

δ2
∑n−T

j=0 θ2j

δ2
+

2δ
∑n−T

j=0 θjaT+j

δ2

=
limδ→∞

∑n−k
t=1 atat+k

δ2
+ limδ→∞

(∑n−T
j=0 θjaT+j−k +

∑n−(T−k)
j=0 θjaT+j+k

)
δ

+
∑n−T

j=0 θ2j+k

limδ→∞

∑n
t=1 a

2
t

δ2
+

∑n−T
j=0 θ2j + limδ→∞

2
∑n−T

j=0 θjaT+j

δ

=

∑n−T
j=0 θ2j+k∑n−T
j=0 θ2j

=
θk + θ2+k + · · ·+ θ2(n−T )+k

1 + θ2 + · · ·+ θ2(n−T )

=
θk(1 + θ2 + · · ·+ θ2(n−T ))

1 + θ2 + · · ·+ θ2(n−T )

lim
δ→∞

ρ̂k = θk

Therefore,
lim
δ→∞

ρ̂k = θk, k ≥ 2 (2.16)

The equations (2.13) and (2.16) prove the theorem.

2.3 SACF of the Errors of ARMA(1,1) model

Let the time series {Xt; 1, 2, . . . , n} follow an ARMA(1,1) model, which is defined as

Definition 2.3 (ARMA(1, 1) Process). : {Xt} is an ARMA(1, 1) process if {Xt} is stationary
and if for every t,

Xt − ϕXt−1 = at − θat−1, (2.17)

where {at} ∼ WN(0, σ2
a) or {at} ∼ N(0, σ2

a) and ϕ and θ are the autoregressive and moving average
parameters respectively.

Assume that {Yt; 1, 2, . . . , n} is contaminated data, obtained by superimposing an AO of magnitude
of δ at t = T on {Xt}.
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Theorem 2.3. Let us denote the SACF by ρ̂k, k ≥ 1. Then for a fixed n

lim
δ→∞

ρ̂k =
−θk−1(1− θ2)(ϕ− θ) + θk(ϕ− θ)2(1− θ2(n−T ))

(1− θ2) + (ϕ− θ)2(1− θ2(n−T ))
, k ≥ 1

Proof. By definition, when k = 1,

ρ̂1 =

∑n−1
t=1 etet+1∑n

t=1 e
2
t

(2.18)

It is known from Janhavi & Suresh [10] the errors of the contaminated series {et} in the ARMA(1,1)
model is

et =


at , t < T
δ + at , t = T
−δπj + at , t = T + j, j = 1, 2, . . . , n− T

(2.19)

Substituting {et; 1, 2, . . . , n} in terms of {at; 1, 2, . . . , n} in (2.18) by using (2.19), we get

ρ̂1 =

∑n−1
t=1 atat+1 − δ

(∑n−T
j=0 πjaT+j−1 +

∑n−(T−1)
j=0 πjaT+j+1

)
+ δ2

∑n−T
j=0 πjπj+1∑n

t=1 a
2
t + δ2

∑n−T
j=0 π2

j + 2δ
∑n−T

j=0 πjaT+j

(2.20)

Now, dividing both numerator and denominator of equation (2.20) by δ2, we get

ρ̂1 =

∑n−1
t=1 atat+1

δ2
−

δ
(∑n−T

j=0 πjaT+j−1 +
∑n−(T−1)

j=0 πjaT+j+1

)
δ2

+
δ2

∑n−T
j=0 πjπj+1

δ2∑n
t=1 a

2
t

δ2
+

δ2
∑n−T

j=0 π2
j

δ2
+

2δ
∑n−T

j=0 πjaT+j

δ2

Taking limδ→∞ of the above equation, for a fixed n, we get

lim
δ→∞

ρ̂1 = lim
δ→∞

∑n−1
t=1 atat+1

δ2
−

δ
(∑n−T

j=0 πjaT+j−1 +
∑n−(T−1)

j=0 πjaT+j+1

)
δ2

+
∑n−T

j=0 πjπj+1∑n
t=1 a

2
t

δ2
+

δ2
∑n−T

j=0 π2
j

δ2
+

2δ
∑n−T

j=0 πjaT+j

δ2

=
limδ→∞

∑n−1
t=1 atat+1

δ2
− limδ→∞

(∑n−T
j=0 πjaT+j−1 +

∑n−(T−1)
j=0 πjaT+j+1

)
δ

+
∑n−T

j=0 πjπj+1

limδ→∞

∑n
t=1 a

2
t

δ2
+

∑n−T
j=0 π2

j + limδ→∞
2
∑n−T

j=0 πjaT+j

δ

=

∑n−T
j=0 πjπj+1∑n−T

j=0 π2
j

lim
δ→∞

ρ̂1 =
π0π1 +

∑n−T
j=1 πjπj+1

π2
0 +

∑n−T
j=1 π2

j

(2.21)

Note that

πj =

{
−1 , j = 0
θj−1(ϕ− θ) , j > 0.

(2.22)

Using (2.22) in (2.21), we get

lim
δ→∞

ρ̂1 =
−1(ϕ− θ) + (ϕ− θ)2

∑n−T
j=1 θj−1θj+1−1

1 + (ϕ− θ)2
∑n−T

j=1 θ2(j−1)

=
−(ϕ− θ) + (ϕ− θ)2

∑n−T
j=1 θ2j−1

1 + (ϕ− θ)2
∑n−T

j=1 θ2(j−1)
(2.23)
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Consider

n−T∑
j=1

θ2j−1 = θ + θ3 + θ5 + · · ·+ θ2(n−T )−1

= θ(1 + θ2 + θ4 + · · ·+ θ2(n−T ))

Note that, the above series is a geometric series with the common ratio θ2. Further, −1 < θ < 1 ⇒
0 < θ2 < 1. Therefore

n−T∑
j=1

θ2j−1 =
θ(1− θ2(n−T ))

(1− θ2)
(2.24)

Similarly,
n−T∑
j=1

θ2(j−1) =
(1− θ2(n−T ))

(1− θ2)
(2.25)

Using (2.24) and (2.25) in (2.23)

lim
δ→∞

ρ̂1 =

−(ϕ− θ) + (ϕ− θ)2
θ(1− θ2(n−T ))

(1− θ2)

1 + (ϕ− θ)2
(1− θ2(n−T ))

(1− θ2)

lim
δ→∞

ρ̂1 =
−(1− θ2)(ϕ− θ) + θ(ϕ− θ)2(1− θ2(n−T ))

(1− θ2) + (ϕ− θ)2(1− θ2(n−T ))
(2.26)

Similarly by definition, when k ≥ 2,

ρ̂k =

∑n−k
t=1 etet+k∑n

t=1 e
2
t

(2.27)

Substituting {et; 1, 2, . . . , n} in terms of {at; 1, 2, . . . , n}, it is easy to check that for k ≥ 2,

ρ̂k =

∑n−k
t=1 atat+k − δ

(∑n−T
j=0 πjaT+j−k +

∑n−(T−k)
j=0 πjaT+j+k

)
+ δ2

∑n−T
j=0 πjπj+k∑n

t=1 a
2
t + δ2

∑n−T
j=0 π2

j + 2δ
∑n−T

j=0 πjaT+j

.

As before, dividing both numerator and denominator of the above equation by δ2, and taking
limδ→∞, we get

lim
δ→∞

ρ̂1 = lim
δ→∞

∑n−k
t=1 atat+k

δ2
−

δ
(∑n−T

j=0 πjaT+j−k +
∑n−(T−k)

j=0 πjaT+j+k

)
δ2

+
∑n−T

j=0 πjπj+k∑n
t=1 a

2
t

δ2
+

δ2
∑n−T

j=0 π2
j

δ2
+

2δ
∑n−T

j=0 πjaT+j

δ2

=
limδ→∞

∑n−k
t=1 atat+k

δ2
− limδ→∞

(∑n−T
j=0 πjaT+j−k +

∑n−(T−k)
j=0 πjaT+j+k

)
δ

+
∑n−T

j=0 πjπj+k

limδ→∞

∑n
t=1 a

2
t

δ2
+

∑n−T
j=0 π2

j + limδ→∞
2
∑n−T

j=0 πjaT+j

δ

=

∑n−T
j=0 πjπj+k∑n−T

j=0 π2
j

lim
δ→∞

ρ̂1 =
π0π1 +

∑n−T
j=1 πjπj+k

π2
0 +

∑n−T
j=1 π2

j

(2.28)
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Using (2.22), in (2.28) and simplyfying, we get

lim
δ→∞

ρ̂k =
−θk−1(1− θ2)(ϕ− θ) + θk(ϕ− θ)2(1− θ2(n−T ))

(1− θ2) + (ϕ− θ)2(1− θ2(n−T ))
, k ≥ 2 (2.29)

The equations (2.26) and (2.29) prove the theorem.

3 Discussion and Conclusions

The errors {et} are usually either white noise or normal process. They are independent and hence,
they are uncorrelated. The main aim of this article is to shed light on the violation of this aspect.
It is shown that the errors are correlated in the presence of a large AO. One large AO can cause
the uncorrelated errors to be correlated, this is a serious problem. Furthermore, the pattern of
the correlation between the errors depends on the time series model as well. The result of this
paper is purely of theoretical interest. The consequences and applications of this work are yet to
be explored. The same will be addressed in future.
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