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ABSTRACT 
 

Flood frequency analysis is a crucial component of flood risk management which seeks to establish 
a quantile relationship between peak discharges and their exceedance (or non-exceedance) 
probabilities, for planning, design and management of infrastructure in river basins. This paper 
evaluates the performance of five probability distribution models using the method of moments for 
parameter estimation, with five GoF-tests and Q-Q plots for selection of best –fit- distribution. The 
probability distributions models employed are; Gumbel (EV1), 2-parameter lognormal (LN2), log 
Pearson type III (LP3), Pearson type III(PR3), and Generalised Extreme Value( GEV). The five 
statistical goodness – of – fit tests, namely; modified index of agreement (Dmod), relative root 
mean square error (RRMSE), Nash – Sutcliffe efficiency (NSE), Percent bias (PBIAS), ratio of 
RMSE and standard deviation of the measurement (RSR) were used to identify the most suitable 
distribution models. The study was conducted using annual maximum series of nine gauge stations 
in both Benue and Niger River Basins in Nigeria. The study reveals that GEV was the best – fit 
distribution in six gauging stations, LP3 was best – fit distribution in two gauging stations, and PR3 
is best- fit distribution in one gauging station. This study has provided a significant contribution to 
knowledge in the choice of distribution models for predicting extreme hydrological events for design 
of water infrastructure in Nigeria. It is recommended that GEV, PR3 and LP3 should be considered 
in the development of regional flood frequency using the existing hydrological map of Nigeria. 
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1. INTRODUCTION 
 
Floods are the overflowing of the normal confines 
of a stream or other body of water or the 
accumulation of water over areas that are not 
normally submerged. Floods include river (fluvial) 
floods, flash floods, urban floods, pluvial floods, 
sewer floods, coastal floods, and glacial lake 
outburst floods [1]. The focus of this paper is 
fluvial flooding. Intense and long – lasting rainfall 
is the common cause of river (fluvial) floods in 
large river basins, for example, the Niger river 
basin, while floods in small basins are generated 
by short – duration, highly intense rainfall [2]. 
Floods are responsible for 20 – 30% of economic 
losses caused by natural hazards globally and 
they are also responsible for more than 50% of 
all fatalities due to natural disasters [1] and [3]. 
Similarly, [4] reported that the proportion of the 
world‘s population living in flood – prone river 
basins has increased by 114% , while those 
living on cyclone – exposed coastlines have 
grown by 192% since the 1980s and flooding is 
the most frequent and greatest hazard for the 
633 largest cities or urban agglomerations. 
Furthermore [5] and [6] reported that since 1990, 
the United States floods have caused more than 
10,000 deaths and losses over US470 billion. In 
Europe, 264 flood disasters were reported in the 
last 30 years, with the number increasing from 31 
in the period of 1973 – 1982 to 179 during the 
last decade [7]. Also [3] reported that in 2010, a 
destructive flood in Pakistan affected up to 20 
million people and left more than 1500 dead. The 
impacts of floods are expected to increase due to 
population growth, population migration to 
coastal areas, and climate change effects                  
[8]. 

 
Furthermore, [3] reported that in 2012, “killer 
floods”, inducing more than 50 fatalities each, 
occurred in Madagascar, Niger and Nigeria in 
Africa; Bangladesh, China, India, North and 
South Korea, the Philippines and Russia in Asia; 
and Argentina, the United States and Haiti in the 
Americas. Similarly, [9] reported that the 2012 
floods in Nigeria affected 7.7 million people, 363 
fatalities were recorded and approximately 
600,000 houses were damaged or destroyed. 
This disaster greatly worsened an already 
existing housing deficit thereby placing                     
huge pressure on all levels of government to 
address the sharp increase in housing                
demand. 

The application of probability distribution model 
to annual flood flow presupposes screening and 
application of non – parametric tests of 
randomness, independence, homogeneity and 
stationarity. It is only when empirical evidence 
was found to rule out the non – parametric tests, 
before the available data is considered fit for 
flood frequency analysis.  
  
The two data types commonly used in flood 
frequency analysis; Annual Maximum Series 
(AMS) and Partial-duration series (POT). The 
AMS is used when only one damaging flood 
event per year is possible, while the POT is used 
when more than one damaging flood event per 
year is possible. The AMS is adopted in this 
study, because it is consistent with the 
occurrence of floods in Nigeria wherein one 
damaging fluvial flood event occurs annually [10]. 
 

The choice of suitable probability distribution 
model and parameter estimation method is 
crucial to a successful model selection exercise , 
because the parameters of the distribution and 
its uncertainty assessment are determined by the 
candidate distribution model.  
 

Several probability distribution models have been 
considered in different situations, for the 
probabilistic modelling of extreme events, such 
as GEV, LN2 and LN3), Gamma (Gam), EV1, 
LP3, PR3. Reviews of pertinent works include 
[11 - 21]. Assessment of cited literatures, show 
that there is no distribution that universally fits all 
the long - term series of flood data. Therefore, a 
number of commonly used distributions are 
evaluated, and then the best – fit distribution is 
selected amongst the candidate distributions. 
[22] presented the state-of-the-art review of 
current practice with regard to use of distribution 
types for frequency analyses on extremes of 
precipitation and floods. The Review reported six 
most frequently used distribution type for flood 
frequency analysis in the order of popularity as: 
EV1, LP3, LN2, P3, GEV and Gamma. 
Furthermore, [22] and [14] observed that there 
has been no consensus about a globally 
accepted probability distribution model for flood 
frequency analysis across various sites, thus the 
true model of the data at a site is unknown. 
Consequently, for flood frequency analysis to be 
of practical use, commonly used distributions 
have been evaluated to establish the best – fit 
distribution. [15] studied the selection of 
probability distribution for at-site flood frequency 
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analysis in Australia and identified LP3,GEV and 
generalized pareto-distribution (GPO) as the top 
three best-fit distributions. [11] evaluated various 
statistical distributions for determination of best-
fit probability distribution from 19 stations all over 
the world and found GEV distribution superior to 
other six distributions examined. [13] studied the 
probability distribution of annual maximum, 
mean, and minimum stream flows in the United 
States and (LN3) and LP3 distributions good 
approximations to the distribution of annual 
maximum series. [23] undertook a pan-European 
comparison and evaluation of methods of flood 
frequency estimation and found no standardized 
European flood frequency estimation approach. It 
reported that in a number of countries (i.e 
Australia, Germany, Italy and Spain), GEV 
distribution is among the recommended choices, 
and a variety of 2- or 3- parameter distributions. 
[24] studied regional flood frequency distributions 
for different zones in Tunisia and found the GEV 
and GLO superior to the other candidate 
distributions. Previous flood frequency studies 
conducted in Nigeria worthy of mention are [25] 
who found LN2, LP3 and EV1 the best-fit 
distributions for the Benue River Basin.  
 

Several methods have been developed to 
estimate the parameters of probability distribution 
functions. They are: (i) Methods of Moments 
(MoM), ( ii) The Maximum Likelihood Method 
(MLM) (iii) The Probability Weighted Moments 
Method (PWM) and method of L – moments, see 
[26] and [27] for details. A brief review by [28] 
and [29] revealed that PWM or L- moments is 
preferred to other parameter estimators while 
MLE are not recommended for small sample 
sizes less than 25). Furthermore, MLE is 
generally best for fitting LN2 for sample sizes 
longer than 25 years. Also, MoM performs best 
for Log – normal distributions with low skewness 
coefficient. Similarly LP3 applies to hydrologic 
frequency analysis only when λ (shape ) › 1.0 
and 1/(scale factor) › 0.0. [30] and [31], reported 
that the MoM was more suitable for data with 
lower skewness values and small sample sizes, 
whereas the method of L-moments was more 
suitable for data with higher skewness values 
and is appropriate for all sample sizes. In this 
study, MoM is used because of its simplicity and 
being relatively easy to apply by equating the 
sample moments with the moments of the 
population distribution functions. 
 
The performances of fitted probability distribution 
models are compared using different accuracy 
measures, to identify the best – fit model among 

the employed probability distribution models. 
These measures may be categorised as follows; 
(i) graphical assessments (ii) statistical goodness 
–of – fit tests (iii) hypothesis-based oodness -of – 
fit tests and (iv) information –based criteria. The 
commonly used statistical indices are (i) Relative 
Root Mean Square error (RRMSE) (ii) Nash – 
Sutcliffe efficiency (NSE) (iii) Percent bias 
(PBIAS) (vi) ratio of the root mean square error 
to the standard deviation of measured data 
(RSR)[32-33]. Each method has its strengths and 
weaknesses when applied to model selection. 
Therefore the selection of the best efficiency 
measures should reflect the intended use of the 
model and should concern model quantities 
which are deemed relevant for the study at hand. 
[34] recommended calculating statistical 
goodness – of – fit for quantitative evaluation of 
the differences between observed and simulated 
discharges. The statistical goodness –of – fit 
tests and PPCC test is adopted in this study. 
Flood flow model selection studies in Nigeria is 
still at infancy level as there is no established 
probability distribution model for accurate 
prediction of flood quantiles, while the country 
continues to suffer devastating floods. Besides 
the 2012 “killer floods” the frequency of flooding 
has been [9]. The objective of this paper is to 
evaluate the performances of five commonly 
used probability distribution models to find the 
best – fit distribution(s) that could be adopted in 
practice to accurately simulate or model flood 
flow in Nigeria. The introductory section presents 
a literature review and background information 
on flood frequency analysis, together with a 
statement of the problem. The study area, brief 
description of Benue and Niger river basins and 
data description are presented in section 2. 
Section 3 provides a synthesis of the 
methodology comprising the probability 
distribution functions used, parameter estimation 
method, goodness -of – fit tests, and procedure 
for estimation of flood quantiles.. Section 4 
contains results and discussion comprising 
derived flood quantiles, results of goodness – of 
– fit tests. The conclusion derived in this study 
and recommendations are presented in section 
5. The results of this study will be useful in 
hydraulic engineering and design of 
infrastructure to control the devastating impacts 
of floods. 
 

2. DATA DESCRIPTION AND STUDY 
AREA 

 

The Niger River Basin covers a total area of 
approximately 2,156,000km

2
, only about 
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1,270,000km
2
 actively contributes to runoff and 

river discharge. The whole basin is spread over 
the territory of ten countries. Nigerian shares 
about 28.3% of the active Niger River Basin 
(424,500km2). The Niger Basin extends across 
20 out of 36 states of Nigeria and comprises two 
main rivers; the Niger and Benue [35]. Table 1 
shows the distribution of the gauging stations, 
the geographical and background information 
and the descriptive statistics of both Niger and 
Benue river basins. The data length of the 
gauging station is 30 years each. For the Niger 
river basin the Coefficient of Variation (CV) 
ranges between 0.219 and 0.321 except at 
Asamabiri with 0.151. Thus the year-to-year 
variation of the AMS is moderately variable. The 
coefficient of skewness ranges between 0.162 
and 0.480, all positive values, which implies non 
– normal probability distribution. 
 

The Benue River Basin is a major tributary of the 
River Niger forming a confluence at Lokoja and it 
contributes more than the actual Niger River 
discharges at the confluence. It originates from 
the Adamawa Plateau in Cameroun and has a 
total length of about 1200km from origin to the 
confluence at Lokoja with about 4.4 percent ( 
66,000km

2
 ) of the Benue Basin lies in 

Cameroun [35]. In terms of the descriptive 
statistics the coefficient of variation (CV) ranges 
between 0.194 and 0.313, which implies that the 
year-to-year variation of the AMS is also 
moderately variable. The coefficient of skewness 
(CS) ranges between 0.301 and 0.575, all 

positive values, which also implies non – normal 
probability distribution. The AMS data used in 
this study, was obtained from the Nigerian Inland 
Waterways Authority ( NIWA), Lokoja Nigeria. 
The NIWA authority operates the river gauging 
stations in Nigeria. 

 
3. METHODOLOGY 
 
3.1 Probability Distribution 

Functions(PDFs) 
 
The five PDFs employed in this study comprised; 
EVI, LN2, LP3, PR3 and GEV. Table 2 shows the 
probability distribution models, sample 
parameters and quantile estimators. Detailed 
procedures for flood frequency analysis may be 
found in [26,36] and [37]. 

 
3.2 Parameter Estimation Method 
 
The central moments of a distribution are given 
by:  

 
r = E(Q - )

r
 = (Q - )

r
 fQ (Q)dQ                      (1) 

 
Variance: 2 = 2 
 

Skewness: 
2/3

2

3
1




 

                                (2) 

 

 
 

Fig. 1. Map of Nigeria showing the studied stations 
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Table 1. Characteristics of selected gauge stations 
 

(1) (2) (3) (4) (5) (6) (7) (8)  (9) 
S/N Station Latitude Longitude River Catchment Annual Streamflow Co. of Var. Skewness 

(N) (E) Km
2
 Max. m

3
/s Min. m

3
/s (cv)  (cs) 

1 Asamabiri 05
o
32ʹ 06

o
31ʹ Niger  1,112,830 18671.41 12281.48 0.151 0.480 

2 Baro 08o35ʹ 06o23ʹ Niger 729,510 8852.21 103.45 0.321 0.162 
3 Idah 07

o
06ʹ 06

o
43ʹ Niger 1,105,780 26,760.24 826.32 0.252 0.174 

4 Lokoja 07
o
49ʹ 06

o
44ʹ Niger 750,790 28,360 248.75 0.219 0.337 

5 Onitsha 06o10ʹ 06o45ʹ Niger 1,125,170 26,607.53 426.84 0.237 0.164 
6 Ibi 08

o
11ʹ 09

o
45ʹ Benue 275,370 12,454.94 12.68 0.251 0.575 

7 Makurdi 07o45ʹ 08o32ʹ Benue 317,430 16,034.93 30.48 0.194 0.469 
8 Umaisha 08

o
00ʹ 07

o
14ʹ Benue 343,210 18,408.97 7.71 0.254 0.349 

9 Yola 09o14ʹ 12o28ʹ Benue 112,680 6641.30 8.93 0.313 0.301 
Extracted from hydrological year books (1914 – 1989); NlWA, Lokoja, Nigeria 
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Table 2. Probability models, sample parameters and moments 
 

Probability Model Probability Density Function Range MoM Quantile Function (QT) 
Lognormal (LN2) 



























 





22
1

2
exp*

2

1
)(

Q

Q

Q

Q

Q
Qf







 

Q = LnQ 

- ≤ Q ≤ 
(0 ≤ x ≤) 

)1( 2  VQ CLn  

2

2
Q

y QLN


   

LnQT - Q + ZQ 
)( QQ z

T eQ
 

  
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

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 
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




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



Q
expexp  F(Q)  
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 = β + 0.5772 
Q

2
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2
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
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1  

 

Log Pearson (LP3)  

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
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

 
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
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2
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Indirect MoM, 
z =  +  β 

2
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2
2









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  

ZTZTT KLnQZ    

TZ
T eQ   

Pearson Type III (PR3) 1

)(

1
)( 
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
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Equations 31 – 33 
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Where β,α, and k are the location, scale, and shape parameters of the distributions 
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Kurtosis: 
2
2

4
2




 

 
 
The sample moment are calculated using 
Equations 1 and 2: 
 

iQnQ  1
_

                                                     (3) 
 

r
ir QQnm )(

_
1  

  
 
The sample moments are corrected for bias 
following [26]. The unbiased estimators for some 
central moments are calculated as follows: 

 
2

_
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*
3
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m

nn

n
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
                                        (4)  

 


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
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2
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m

n
  

 
The conventional moment ratio defined by (i) 
coefficient of variation (cv); (ii) Skewness (Cs) 
and (iii) coefficient of kurtosis (Ck) are 
respectively: 

 
_

/ QSCv                                                       (5) 

3*
3 / SmCs                                                  (6)  

  

3/ 4*
4  SkCk                                              (7) 

 
The moments for the selected distributions are 
shown in Table 2. 
 
3.3 Goodness-of-fit-tests 
 
The GoF measures are selected to give sound 
comparative evaluation study with quantities 
deemed relevant to objective estimates of the 
“closeness” of the simulated discharges to 
observed flood flow [34]. Details about the 
selected GoF measures may be found in 
[33,36,38-40].  

3.3.1 Nash-sutcliffe efficiency (NSE) 
 

NSE= 

 
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




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i
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i
simiobsi
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1
,,
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…... (8) 
  
3.3.2 RMSE – observation standard deviation 

ratio (RSR) 
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1
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.

1

2
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(9) 
 
3.3.3 Modified index of agreement (Dmod)  
 

 

 












n

i
iobsobsisim

n

i
iobsisim

obs
QQQQ

QQ

D

1
,,,

1
,,

,

1mod

(10) 
 
3.3.4 Relative-root-mean-square error 

(RRMSE) 
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3.3.5 Percent bias (PBIAS) 
 

PBIAS  
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3.3.6 Probability plot correlation coefficient 

(PPCC) test 
 
The PPCC (r ) statistic is calculated as: 
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i
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3.3.7 Plotting position formulae 
 
The unbiased plotting position formulas have the 
general formula [41]. 
 

Pi = 
an

ai

21



                                               (14) 
 
Where “a” varies from 0 to 0.5; Pi is the plotting 
probability and i is the rank in ordered 
observation with i = 1 for the smallest 
observation in data sample.  
 
In Equation 14; when a = 0.375; Blom formula 
was used for LN2 distribution, when a = 0.44, 
Gringorten formula was used for Gumbel (EVI) 
distribution; for a = 0.4, Cunnane formula , was 
used for LP3 and GEV distributions. The 
unbiased plotting formula for PR3are Cunnane 
and IN-NA and Ngugen formulas: [42]. Where Cs 
is coefficient of skewness, N is sample size and i 
is rank with i = 1 indicating the smallest sample 
number.  
 

3.4 Flood Quantile Estimation 
 
The estimation of flood quantiles and related 
equations for various life expectancies of civil 
engineering systems can be found in the 
following texts [26,36,37,43] and [44]. The 
exceedance probability is P(QT›Q) = 1/T. The 
cumulative probability of non – exceedance is 
F(QT) is given by; 
 
F(QT) = P(QT ‹ Q) =1-P(QT › Q) = (1-1/T)        (15) 
 
Equation 15 is the basis for estimating the 
magnitude of a flood , QT given its exceedance 
or non – exceedance probabilities. 
 
The quantile estimate for T years is calculated by 
substituting the value of F = (1-1/T) into the 
quantile functions in Table 2. 
 

3.5 Uncertainty Assessment 
 
The confidence interval specify the probability 
that the quantiles estimates lie within the upper 

and lower confidence interval coefficients; K
U

Tr,β 
and KL

Tr,β using the non – central t distribution. 
Confidence limits are computed as follows; 
 

UTr,β(Q) = Q + K
U

Tr,β *σ                                   (16) 

 

LTr,β(Q) = Q + K
L
Tr,β *σ                                    (17) 

 

Where Q , and σ are the log base – 10 mean 

and standard deviation, UTr,β(Q) and LTr,β(Q) are 
the upper and lower limits respectively. More 
details may be found in [26], p200.  
 

4. RESULTS AND DISCUSSION 
 

4.1 Quantile Estimates 
 
The estimated parameters for each distribution 
across the hydrological stations and the quantile 
relations expressed in the form of QT – T 
reationships are presented in Table 3. The 
quantile relations for the probability models were 
derived via unbiased position formulas given in 
subsection 3.3.7 using the cumulative probability 
of non – exceedance. The predictive 
performances of the probability distribution 
models were evaluated using the statistical 
performance evaluation criteria, stated in section 
3.3. These indices are recommended 
standardized guidelines for judging model 
performance and comparing various models [45] 
and [32]. A ranking scheme was devised to rank 
the distributions based on their test values. 
Ranking scores are assigned to each distribution 
according to the optimal value of the statistical 
criteria. For example, the distribution with the 
lowest RRMSE, RSR or PBIAS values close to 
zero, and highest NSE, Dmod, and total 
accuracy of 1.0 is given a rank of 5. Accordingly, 
for each criterion, the overall ranks associated 
with each distribution is computed by summing 
the individual ranks obtained for each study 
station. The highest score implies the best – fit 
distribution. Using this ranking scheme, it was 
plausible to find the best distribution for each 
station [32]. Tables 4 and 5 show the ranking 
scores of probability distributions models for both 
Niger and Benue river basins.  
 

Columns 9 and 10 of Table 4 present the PPCC 
calculated test statistics and critical test statistics, 
at the 5% significance level of probability 
distributions across the study stations. The 
critical test statistics were obtained from various 
approximating equations, see [36], pp. 299 -300). 
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Table 4 also shows that the 2-parameter 
distributions; LN2 and EV1 performed better than 
their 3-parameter counterpart; LP3, PR3, GEV. 
The decision on the 3-parameter distributions 
just satisfactory, as the PPCC calculated test 
statistics are very close to their critical values. 
Figs. 2 – 4 show the graphical plots of observed 
and simulated discharges of Lokoja station, while 
Figs. 5 and 6 show the corresponding plots for 
Umaisha station . Due to lack of space, only the 

plots for GEV, PR3 and LP3 for Lokoja and 
Umaisha stations are displayed. Figs. 9 – 15 
show the 95% confidence interval for GEV, PR3 
and LP3 distributions. The total ranked scores 
presented in Column 8 of both in Tables 4 and 5 
are graphical displayed in Fig. 7 for Niger river 
basin and Fig. 8 for Benue river basin. Figs. 7 
and 8 both indicate that GEV is best best – fit –
distribution, seconded by PR3 and thirdly LP3 for 
both Niger and Benue river basins. 

 
Table 3. Distribution parameter and quantile relations 

 

Station  Distribution Parameters  

PDF   K (or ) QT  – T  Models 

Lokoja EV 1 

LN 2 

LP 3 

PR 3 

GEV 

146.77 

9.69 

9.749 

105.47 

15211.62 

3343.02 

0.26 

0.0899 

417.55 

4421.78 

– 

– 

8.806 

– 27431.25 

0.353 

QT  =  14677.07 + 3343.02YT 

LnQT =  9.69 + 0.26ZT 

QT  =  9.68 + 0.281KT 

QT  =  16606 + 4288.15KT 

QT  =  15211.62 + 12909.76�1 −

−���−1�0.353 

Baro EV 1 

LN 2 

LP 3 

PR 3 

GEV 

4343.91 

8.49 

2.64 

152.35 

4538.50 

1272.03 

0.32 

0.24 

132.18 

1674.12 

– 

– 

7.85 

– 15059.25 

0.3313 

QT  =  84343.91 + 1272.05YT 

LnQT =  8.48 + 0.32KT 

QT  =  8.47 + 0.383KT 

QT  =  5058.03 + 1631.48 KT 

QT  =  4538.50 + 5052.68 �1 −

−���−1�0.331 

Idah EV 1 

LN 2 

LP 3 

PR 3 

GEV 

14480.30 

9.67 

6.31 

132.82 

14979.09 

3209.98 

0.25 

0.110 

357.23 

4231.93 

–  

– 

8.97 

– 31113.95 

0.335 

QT  =  14480.30 + 3209.98YT 

LnQT =  9.67 + 0.25ZT 

QT  =  9.67 + 0.28KT 

QT  =  16332.85 + 4116.94 KT 

QT  =  14979.09 + 12623.09 

�1 − �−�� �
���

�
��
�.���

� 

Onitsha EV 1 

LN 2 

LP 3 

PR 3 

GEV 

15077.08 

9.71 

41.87 

148.29 

15364.91 

3126.02 

0.24 

0.038 

329.24 

3883.13 

–  

– 

8.12 

– 31940.62 

0.227 

QT  =  15077.08 + 3126.02YT 

LnQT =  9.71 + 0.24ZT 

QT  =  9.71 + 0.25KT 

QT  =  16.881.17 + 4009.25KT 

QT  =  15364.91 + 17147.41 

�1 − �−�� �
���

�
��
�.���

� 

Asamabi
ri 

EV 1 

LN 2 

LP 3 

PR 3 

GEV 

14347.69 

9.63 

3.70 

17.33 

14755.66 

1812.51 

0.15 

0.084 

558.46 

5584.09 

– 

– 

9.32 

5717.31 

0.444 

QT  =  14347.69 + 1812.51YT 

LnQT =  9.63 + 0.15ZT 

QT  =  9.63 + 0.16KT 

QT  =  15393.73 + 2324.63KT 

QT  =  14755.66 + 5584.09  �1 −

−���−1�0.444 
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Station  Distribution Parameters  

PDF   K (or ) QT  – T  Models 

Umaisha EV 1 

LN 2 

LP 3 

PR 3 

GEV 

8879.041 

9.18 

141.97 

32.819 

9007.563 

1989.390 

0.260 

0.022 

445.378 

13729.01 

– 

– 

6.10 

– 4589.79 

0.173 

QT  =  8879.04 + 39YT 

LnQT =  9.18 + 39KT 

LnQT =  9.18 + 0.259KT 

QT  =  10027.17 + 2551.48KT 

QT  =  9007.563 + 137291.81 

�1 − �−�� �
���

�
��
�.���

� 

Makurdi EV 1 

LN 2 

LP 3 

PR 3 

GEV 

9197.077 

9.20 

8853.63 

18.31 

9273.04 

1526.42 

0.193 

0.0021 

457.48 

1777.89 

– 

– 

– 8.98 

1700.29 

0.142 

QT  =  9197.077 + 1526.42YT 

LnQT =  9.22 + 0.104 KT 

LnQT =  9.20 + 193KT 

QT  =  10078.01 + 1957.71KT 

QT  =  9273.04 + 12545.67 �1 −

−���−1�0.142 

Ibi EV 1 

LN 2 

LP 3 

PR 3 

GEV 

7415.658 

9.0 

1.67 

12.109 

7826.864 

1657.342 

0.25 

0.236 

610.844 

2285.596 

– 

– 

8.60 

975.426 

0.479 

QT  =  7415.658 + 1657.34YT 

LnQT =  9.0 + 0.25KT 

LnQT =  8.994 + 0.305KT 

QT  =   8372.148 + 2125.616KT 

QT  =  7826.864 + 4771.643  

�1 − �−�� �
���

�
��
�.���

� 

Yola EV 1 

LN 2 

LP 3 

PR 3 

GEV 

2987.238 

8.125 

18.337 

44.141 

3066.43 

1111.29 

0.379 

0.0997 

214.524 

1342.044 

– 

– 

6.287 

–5840.754 

0.187 

QT  =  2987.258 + 1111.283YT 

LnQT =  8.125 + 0.379 KT 

LnQT =  8.115 + 0.427 KT 

QT  =   3628.605 + 1425.273KT 

QT  =  3066.43 + 7192.97 �1 −

−���−1�0.187 

 
4.2 Results 
 
Tables 4 and 5 shows the performance ranking 
of the five distributions across the hydrological 
stations. The best –fit distribution is identified 
based on the total score obtained using the GOF 
tests. Column 8 of Table 4 and column 9 of Table 
5 show the total scores for each distribution 
across the nine hydrological stations. On 
assessment of the total scores in Table 4 shows 
that GEV is best-fit distribution for Lokoja, Baro 
and Asamabiri stations with a total score of 25 
each. LP3 is best-fit distribution in Idah and 
Onitsha stations scoring 19 and 20 respectively. 
In terms of PPCC Gof test, the 2-parameter 
distributions have larger margins between the 
calculated test statistics and critical values than 
the 3-parameter distributions. Consequently, the 
decision to reject the null hypothesis for EV1 and 
LN2 is unquestionable but just satisfactory for 

GEV. Table 5 shows that GEV is the best – fit 
distribution for Umaisha, Makurdi and Yola 
hydrological stations with total scores of 29 and 
27 respectively, while PR3 is best – fit 
distribution for Ibi station. The total scores for 
each distribution across the 9 hydrological 
stations are graphically displayed in Figs. 7 and 
8, for the two basins. Finally, Tables 4 and 5 
show that GEV is best – fit distribution for Lokoja, 
Baro, Asamabiri, Umaisha, Makurdi, and Yola ( 
total 6), LP3 is best – fit distribution for Idah and 
Onitsha( Total 2), and PR3 is best – fit 
distribution fir Ibi station ( 1 station). The results 
also show that no single probability distribution 
model emerged the best – fit distribution across 
all the stations. Figs. 9 – 15 show the 95% 
confidence interval for the hydrological stations 
for Lower Niger basin. It shows the estimated 
quantiles lie within the computed ranges of upper 
and lower confidence limits. 
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Table 4. Ranking scores of probability distribution models and total scores 

 
Station PDF dmod RRMSE NSE PBIAS RSR Total Score PPCCcrit PPCCcal Decision 
 EV1 2 2 2 2 2 10 0.9218 0.9826 Reject 
 LN2 3 3 3 3 3 15 0.9345 0.9965 Reject 
Lokoja LP3 1 1 1 1 1 5 0.9844 0.9910 Ha 
 PR3 4 4 4 4 4 20 0.9738 0.9880 Ha 
 GEV 5 5 5 5 5 25 0.9295 0.9815 Reject 
 EV1 1 1 2 1 1 6 0.9325 0.9995 Reject 
 LN2 2 2 3 2 2 11 0.9203 0.9901 Reject 
Baro LP3 3 3 4 3 3 16 0.9899 0.9865 Ha 
 PR3 4 4 5 4 4 21 0.9900 0.9780 Ha 
 GEV 5 5 5 5 5 25 0.9245 0.9655 Reject 
 EV1 4 5 1 4 1 15 0.9552 0.9838 Reject 
 LN2 5 4 3 1 3 16 0.9680 0.9839 Reject 
Idah LP3 3 3 5 3 5 19 0.9845 0.9841 Ha 
 PR3 1 1 4 5 4 15 0.9765 0.9839 Ha 
 GEV 2 2 2 4 2 12 0.9675 0.9900 Reject 
 EV1 5 5 4 1 4 19 0.9526 0.9924 Reject 
 LN2 5 4 3 2 3 17 0.9741 0.9925 Ha 
Onitsha LP3 4 3 5 3 5 20 0.9736 0.9937 Ha 
 PR3 1 1 2 4 2 10 0.9748 0.9924 Ha 
 GEV 3 2 1 5 1 12 0.9720 0.9938 Reject 
 EV1 1 1 1 2 1 6 0.9658 0.9680 Ha 
 LN2 2 2 2 3 2 11 0.9613 0.9678 Ha 
Asamabiri LP3 2 2 4 1 4 17 0.9735 0.9636 Ha 
 PR3 3 3 3 4 3 16 0.9672 0.9681 Ha 
 GEV 5 5 5 5 5 25 0.9462 0.9786 Reject 



Table 5. Evaluation of 

Station PDF Dmod NSE 
 EV1 1 2 
 LN2 2 3 
Umaisha LP3 3 3 
 PR3 4 4 
 GEV 5 5 
 EV1 2 2 
 LN2 4 4 
Makurdi LP3 3 2 
 PR3 4 4 
 GEV 5 5 
 EV1 1 1 
 LN2 2 2 
Ibi LP3 3 3 
 PR3 5 5 
 GEV 4 4 
 EV1 2 2 
 LN2 1 1 
Yola LP3 5 3 
 PR3 3 4 
 GEV 4 5 

 

 
Fig. 2. Observed and 

 

 
Fig. 3. Observed and 

Ologhadien; JERR, 20(5): 76-94, 2021; Article no.

 
87 

 

Evaluation of probability distribution models 
 

 PBIAS Tot. Accuracy RSR RRMSE 
2 1 1 2 
3 2 2 3 
1 3 3 4 
5 4 4 4 
4 5 5 5 
2 1 1 1 
4 4 5 5 
1 2 3 2 
3 3 4 3 
5 5 5 4 
3 1 1 1 
4 2 2 2 
1 3 3 3 
2 5 5 5 
5 4 4 4 
3 2 2 2 
1 1 1 1 
2 4 4 5 
5 3 3 3 
4 5 5 4 

 

Observed and simulated discharge(lokoja) 

 

Observed and simulated discharge(lokoja) 
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Total Score 
9 
15 
17 
25 
29 
9 
26 
13 
21 
29 
8 
14 
16 
27 
25 
13 
6 
23 
21 
27 



 

Fig. 4. Observed and 
 

 
Fig. 5. Observed and 

 

 
Fig. 6. Observed and 
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Observed and simulated discharge(lokoja) 

 

Observed and simulated discharges (Umaisha) 

 

Observed and simulated discharges(Umaisha) 
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Fig. 7. Total 

 

 
Fig. 8. Total 

 

 
Fig. 9. 95% confidence band for 
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Total scores all distribution on river Niger 

 

Total scores all distribution on river Benue 

 

confidence band for GEV at Lokoja Station 
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Fig. 10. 95 % confidence band for GEV at Umaisha Station 
 

 
 

Fig. 11. 95 % confidence band for GEV at Baro Station 
 

 
 

Fig. 12. 95 % confidence band for GEV at Yola Station 
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Fig. 13. 95 % confidence band for PR3 at Ibi Station 
 

 
 

Fig. 14. 95 % confidence band for LP3 at Idah Statio 
 

 
 

Fig. 15. 95 % confidence band for LP3 at Onitsha 
 

4.3 Discussion 
 

The discussion is presented in the following 
order: 
 

4.3.1 Comparison with previous studies in 
Nigeria 

 

The hydrological stations evaluated have not 
been systematically studied. However, two 
previous studies worthy of mention in the Niger 

river basin, are [46], who conducted flood 
frequency analysis of Niger River at Shintaku 
and found LP3, the best - fit distribution [47] 
conducted a similar study at Agenebode using 
LN2, LP3 and EV1 distributions and found LN2, 
the best – fit distribution. This study aggress with 
[46] who found LP3, the best – fit distribution for 
Shintaku gauging station. But disagrees with [47] 
who found LN2, the best – fit model for 
Agenebode.  
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4.3.2 Suitability of selected distributions 
 

The best-fit distributions found in this study are 
GEV, PR3 and LP3 distributions. The choice of 
GEV distribution agrees with [48] who reported 
that GEV has a convincing relevance to the peak 
of floods, as most other probability distributions 
are not true depictions of flood peaks from the 
theoretical cause – effect standpoint. The GEV 
distribution is used as standard probability 
distribution model in 1 country. PR3 is a standard 
probability model in 7 countries while LP3 in 7 
countries. The optimum distribution found in this 
study are in line with global practice for utility of 
probability distributions according to [22,16] and 
[11]. 
 

5. CONCLUSION 
 

This paper presents the evaluation of probability 
distribution models of flood flow in Nigeria, 
comprising Niger and Benue river basins, EV1, 
LN2, LP3, PR3 and GEV. The performances of 
the five probability distribution models are 
compared using the GOF tests, namely Dmod, 
RRMSE, NSE, PBIAS, RSR and PPCC to 
identify the best-fit probability distribution model 
with MoM for parameter estimation. The study 
was conducted using AMS of five hydrological 
stations in Niger river basin and four hydrological 
stations in Benue river basin. The study found 
GEV is best – fit distribution for Lokoja, Baro, 
Asamabiri, Umaisha, Makurdi, and Yola ( total 6), 
LP3 is best – fit distribution for Idah and Onitsha( 
total 2), and PR3 is best – fit distribution fir Ibi 
station ( 1 station).The study recommends the 
development of a regional GEV, PR3 and LP3 
distributions using the existing hydrological map 
of Nigeria which had demarcated the country into 
eight homogenous hydrological regions. The 
results of this study would be useful for at – site 
flood frequency analysis on other stations in the 
lower Niger river basin in Nigeria. 
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