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Abstract
We present the enhanced feature quantum autoencoder, or EF-QAE, a variational quantum
algorithm capable of compressing quantum states of different models with higher fidelity. The key
idea of the algorithm is to define a parameterized quantum circuit that depends upon adjustable
parameters and a feature vector that characterizes such a model. We assess the validity of the
method in simulations by compressing ground states of the Ising model and classical handwritten
digits. The results show that EF-QAE improves the performance compared to the standard
quantum autoencoder using the same amount of quantum resources, but at the expense of
additional classical optimization. Therefore, EF-QAE makes the task of compressing quantum
information better suited to be implemented in near-term quantum devices.

1. Introduction

Large-scale fault-tolerant quantum computation is a rather distant dream, typically estimated to be a few
decades ahead. A reasonable question then is whether we can do something useful with the existing noisy
intermediate-scale quantum (NISQ) [1, 2] computers. The main proposal is to use them as a part of a hybrid
classical-quantum device. The variational quantum algorithms (VQAs) [3] are a class of algorithms that use
such hybrid devices, which manage to reduce the requisites of quantum computational resources at the
expense of classical computation.

The general rationale of a VQA is to define a parametrized quantum circuit whose architecture is dictated
by the type and size of the quantum computer that is available. This quantum circuit, in turn, will depend on
a set of classical parameters that can be adjusted using a quantum–classical optimization loop by minimizing
a cost function. In this manner, we look for a quantum circuit that allows to perform a particular task, given
the available quantum resources. Let us remark here that several VQAs have already been proposed in the
context of making NISQ computers practically useful for real applications [4–19].

Recently, much attention has been paid to data encoding in VQAs [20, 21], since it was proven that data
encoded into the model alters the expressive power of parameterized quantum circuits [22, 23]. Specifically,
this idea has been implemented for classification of data [24, 25], and to study energy profiles of quantum
Hamiltonians [26].

In this paper, we will explore how data encoding influences a quantum autoencoder (QAE) [9]. The QAE
is a VQA designed to compress the input quantum information through a smaller latent space. In this
scheme, we look for a parameterized quantum circuit U(θ⃗) that encodes an initial input state into an
intermediate latent space, after which the action of the decoder, U†(θ⃗), attempts to reconstruct the input.
A graphical depiction of a QAE is shown in figure 1. For readers interested in experimental applications, a
QAE implementation in a photonic device can be seen in [27].

Note that the motivation for a QAE is to be able to recognize patterns beyond the capabilities of a
classical autoencoder, given the different properties of quantum mechanics. Moreover, recall that for NISQ
devices, any tool that can reduce the amount of quantum resources can be considered valuable. For instance,
QAEs could be used as a state preparation engine in the context of other VQAs. That is, we could combine,
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Figure 1. Circuit implementation of a QAE with a two-qubit latent space. The unitary U(θ⃗) encodes a six-qubit input state ρin

into a two-qubit intermediate state, after which the decoder U†(θ⃗) attempts to reconstruct the input, resulting in the output
state ρout .

Figure 2. Schematic representation of the EF-QAE. The input to EF-QAE is a set of initial states ρin, a feature vector x⃗ that
characterizes the initial states, and a shallow sequence of quantum gates U. The feature vector x⃗ is encoded together with the

variational parameters θ⃗, where the latter are adjusted in a quantum–classical optimization loop until the local cost C(θ⃗)

converges to a value close to 0. When this loop terminates and the optimal parameters θ⃗opt are found, the resulting circuit

U(θ⃗opt, x⃗) prepares compressed states |ϕ⟩ of a particular model. Moreover, we may apply U†(θ⃗opt, x⃗)|0 . . .0⟩⊗ |ϕ⟩ to recover
ρout ≈ ρin.

say, a Variational Quantum Eigensolver [4] with a pretrained QAE, where now the only active parameters are
associated with the latent space.

This paper is organized as follows. In section 2 we introduce the enhanced feature quantum autoencoder
(EF-QAE). As we will see, its key ingredient is to include a feature vector into the variational quantum circuit
that characterizes the model we aim to compress. Next, in sections 3 and 4 we compare and assess the
performance of the EF-QAE and the standard QAE in simulations, by compressing ground states of the 1D
Ising model and classical handwritten digits, respectively. Finally, in section 5, we present the conclusions of
this work.

2. EF-QAE algorithm

2.1. Overview
Here, we present the EF-QAE. A schematic diagram of the EF-QAE can be seen in figure 2. The algorithm
can be initialized with a set of initial states ρini , a feature vector x⃗, and a shallow sequence of quantum gates U.

In this scheme, we define a unitary U(θ⃗,x) acting on the initial state ρini , where x⃗ is a feature vector that
characterizes the set of input states. For instance, as we will see in section 3, x⃗may be the transverse field λ of
the 1D Ising spin chain. Once the trial state is prepared, measurements are performed to evaluate the cost
function C(θ⃗). This result is then fed into the classical optimizer, where the parameters θ⃗ are adjusted. This
quantum–classical loop is repeated until the cost function converges to a value close to 0. When the loop
terminates, U(θ⃗opt, x⃗) prepares compressed states |ϕ⟩ of a particular model.

A summary comparing EF-QAE and QAE proposed in [9] can be seen in appendix A. Note that the main
difference between EF-QAE and QAE is the presence of a feature vector x⃗ in the sequence of gates U. This will
allow us to study and explore how data encoding influences the behavior of a QAE.

2.2. Cost function
The goal of a QAE is to store the quantum information of the input state through the smaller latent space.
Therefore, it is important to quantify how well the information is preserved. This in general is quantified by a
cost function that one has to minimize. In [9], this cost function evaluates the fidelity of the input and
output states, and it is constructed from global operators. However, it is known that global cost functions
lead to trainability issues even for shallow depth quantum circuits [28, 29].

To address this issue, we use a cost function designed from local operators, proposed in [29].
As mentioned therein, there is a close connection between data compression and decoupling. That is,
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Figure 3. Variational quantum ansatz employed for the EF-QAE model. As indicated by the dashed box, each layer is composed of
CZ gates acting on the trash qubits preceded by Ry qubit rotations, Ry(θj) = e−iθjY/2. A cascade of CZ gates is then applied
between the trash qubits and the qubits containing the final compressed state. After implementing the layered ansatz, a final layer
of Ry qubit gates is applied to the trash qubits. Note that the sequence of entangling gates can be applied mostly in parallel.

if the discarded qubits, from now on referred to as trash qubits, can be perfectly decoupled from the rest,
the autoencoder reaches lossless compression. For instance, if the output of the trash subsystem is a fixed
pure state, say |0...0⟩, then it is decoupled and consequently, the input state has been successfully
compressed.

A figure of merit to quantify the degree of decoupling, or data compression, when training is simply the
total amount of non-zero measurement outcomes on the nt trash qubits, which will be minimized. To design
the cost function to be local, different outcomes may be penalized by their Hamming distance to the |0⟩⊗nt

state, which is just the number of symbols that are different in the binary representation. Thus, the local cost
function C to be minimized is

C≡
∑
k,j

dHjMk,j ≡
1

2

nt∑
k=1

(1−⟨Zk⟩) , (1)

where dHj denotes the Hamming distance andMk,j are the results of the jth measurement on the k trash qubit
in the computational basis. Equivalently, it can also be defined in terms of local Z Pauli operators. Finally,
notice that this cost function delivers direct information on how the compression of the trash qubits is
performed and has a zero value if and only if the compression is completed.

2.3. Ansatz
To implement the EF-QAE model on a quantum computer, we must define the form of the parametrized
unitary U(θ⃗,x), decomposing it into a quantum circuit suitable for optimization. Recall that a QAE may be
thought of as a disentangling unitary. The complexity of the circuit thus limits this property. Given the
limited available quantum resources in practice, due to the coherence times and gate errors, we will look for a
circuit structure that maximally exploits entanglement while maintaining a shallow depth.

A primitive strategy to construct a variational circuit in a more general case may consist of building a
circuit of arbitrary two- and one-qubit gates characterized by some parameters. However, this is a naive
approach. The action of the EF-QAE on the original state is

U|ψ⟩= |0⟩⊗ . . .⊗ |0⟩⊗ |ϕ⟩ . (2)

Thus, it is clear that the entangling gates should mostly act between each of the trash qubits, and between the
trash qubits and the qubits containing the final compressed state. Subsequently, we may avoid using
entangling gates between the qubits that are not trash while maximizing the entangling gates on the ones of
interest. This could be done using a similar structure to that depicted in figure 3. Notice that most of the
sequence of entangling gates can be applied in parallel at the same step, and that the number of quantum
gates is linear with the number of qubits and layers.

In this work, we follow a similar encoding strategy to that in [25]. That is, we encode the feature vector x⃗
into each of the single Ry qubit rotations by using a linear function as

R(i,j)
y

(
θ⃗, x⃗
)
= Ry

(
θ(i)x( j) + θ(i+1)

)
, (3)

where i, j indicates a component of the vector, and θ⃗ are the parameters adjusted in the optimization loop.
The rationale behind choosing this kind of encoding is that it has been shown to provide universality,

provided enough layers, and with a single qubit [25]. Here, although we use multiple qubits, and
entanglement is allowed, we expect a similar behavior as the number of layers increases. Note as well
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that this encoding is clearly analogous to that used in classical neural networks. That is, θ⃗ plays the role
of the weights and biases, while the rotation gate plays the role of the non-linear activation function. On the
other hand, the role of the feature vector x⃗ is inspired by feed-forward classical neuronal networks.
Specifically, in this type of classical network, data is reintroduced and processed by many layers of neurons,
similar to what our quantum circuit is doing. From a quantum mechanical perspective, we can say that the
quantum data compression is tailored to a particular input, informed by the feature vector x⃗. That is,
EF-QAE is applying different unitary operations U(θ⃗, x⃗) to different input states, depending on the
extra information delivered by the feature vector x⃗, and by doing so, improving the compression
performance.

Lastly, let us remark that other encoding strategies of the feature vector can be considered, for instance,
using a non-linear encoding [26].

3. 1D ising spin chain

The EF-QAE can be verified on simulations. We utilized the open-source Python API Qibo [30, 31] for the
simulation of the quantum circuits. Here, we benchmark both the EF-QAE and the standard QAE in the case
of a paradigmatic quantum spin chain with six qubits, the transverse field Ising model. The 1D Ising model is
described by the following Hamiltonian

HIsing =
∑
j

σz
j σ

z
j+1 +λ

∑
j

σx
j , (4)

where λ is the transverse field. In the thermodynamic limit, the system has a quantum phase transition
exactly at λ= 1.

The EF-QAE and QAE are optimized over a training set of ground states of the Ising model. Specifically,
we have considered N = 20 equispaced ground states in between λ= 0.5 and λ= 1.0, with initial random
parameters. For the cost function, we computed equation (1) for each training state and then averaged
them as

CN =

∑N
i Ci

N
. (5)

Nonetheless, notice that for other models, sophisticated cost functions could be more convenient to
implement. We have considered the variational quantum circuit in figure 3 with three layers, and therefore,
the resulting compressed state contains four qubits. Here, the feature vector x⃗ for the EF-QAE is a scalar that
takes the value of the transverse field λ.

The classical technique employed in the optimization loop is the BFGS method, which is
gradient-based and involves estimation of the inverse Hessian matrix [32]. Let us also briefly comment here
on the training required for both QAE and EF-QAE. Indeed, although the depth of the circuit is equivalent,
the number of trainable parameters is not. In this sense, QAE has one trainable parameter on each
rotation-gate, whereas EF-QAE has dim(⃗x)+ 1 trainable parameters. For this example, dim(⃗x)= 1, since x⃗ is
just a scalar value, and therefore, the number of trainable parameters is 2. For gradient-based optimizers, this
may imply the computation of extra gradients, and therefore, extra cost function evaluations. Recall,
however, that this possible classical overhead is only present during the training procedure, and hence, we
will not face any overhead when using a pretrained EF-QAE in combination with other machine learning
tasks.

In figure 4, we show the cost function value as a function of the number of evaluations. The EF-QAE∗ is
the EF-QAE initialized with the optimal parameters of QAE. This way, the EF-QAE∗ will always improve the
QAE performance. As can be seen, the EF-QAE achieves almost twice the compression of the QAE.
Nevertheless, notice that for the EF-QAE, the number of function evaluations required to achieve higher
compression is larger. Recall that this is simply a trade-off between classical and quantum resources. That is,
using the same quantum resources we improve the compression performance at the expense of additional
classical optimization.

To quantify these expectations, we assess both EF-QAE and QAE with the optimal parameters against two
test ground states of the Ising model, specifically, with λ= 0.60 and λ= 0.75. The results are shown in
figure 5. Here, we show a density matrix visualization of the trash space. The EF-QAE achieves better
compression to the |00⟩ trash state, and therefore, higher fidelity on the output state. As we change the values
of the transverse field, we note however that compression differs. In appendix B we discuss and provide the
output fidelities of the training and 60 test ground states.
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Figure 4. Cost function value as a function of the number of evaluations. Here, we consider the standard QAE, EF-QAE, and
EF-QAE∗. The EF-QAE∗ is the EF-QAE initialized with the optimal parameters of QAE. The EF-QAE achieves almost twice the
compression of the QAE using the same quantum resources, at the expense of additional classical optimization.

Figure 5. Visualization of the trash space for the EF-QAE and QAE, considering two different test ground states of the 1D Ising
model corresponding to (a) λ= 0.60 and (b) λ= 0.75. The size of the register is two qubits. The space is characterized as the
density matrix of the trash state. Integer labels denote the binary representation of the computational basis states.

4. Handwritten digits

In this section, we benchmark EF-QAE and QAE models in the case of 8× 8 handwritten digit compression
with six qubits using four layers. The data comprising each digit consists of a matrix with values from 0 to 16
corresponding to a gray map. Each value of this matrix is encoded in the amplitude of a 6-qubit state, further
restricted to normalization.

The EF-QAE and QAE are optimized over a training set of handwritten digits obtained from the Python
package Scikit Learn [33]. Specifically, we have considered N = 20 handwritten digits, 10 of each
corresponding to 0 or 1. The simulation details are equivalent to those in section 3. Here, the feature vector
for the EF-QAE corresponds to x= 1,2. That is, we simply input a value of x= 1 (x= 2) if the handwritten
digit corresponds to 0 (1). The reason to choose x= 1,2 is that no obvious feature distinguishes both digits.
Nonetheless, more convenient strategies could be used in future work. For instance, one may allow the
feature vector x⃗ to be a free variational parameter.

In figure 6, we show the cost function value as a function of the number of evaluations. Recall that
EF-QAE∗ is simply the EF-QAE initialized with the optimal parameters of QAE. We note that EF-QAE
achieves three times the compression of QAE using the same quantum resources. However, in contrast to the
previous Ising model case, EF-QAE requires even fewer function evaluations to improve over the standard
QAE. This is due to the fact that, although the parameter search space is larger, by including the feature
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Figure 6. Cost function value as a function of the number of evaluations. Here, we consider the standard QAE, EF-QAE, and
EF-QAE∗. The EF-QAE∗ is the EF-QAE initialized with the optimal parameters of QAE. The EF-QAE achieves three times the
compression of the QAE using the same quantum resources, at the expense of additional classical optimization.

Figure 7. Images of 0 and 1 handwritten test digits encoded into a 6-qubit state (8× 8 pixels). Images shown correspond to the
input state, and the output states of the EF-QAE and QAE models. As can be seen, the fidelity of the EF-QAE output state is
improved compared to QAE.

vector we are affecting the parameter landscape in such a way that now it is well-behaved, and therefore, the
optimization procedure leads to faster convergence.

Once again, to gain insight into the compression process, we assess both EF-QAE and QAE with the
optimal parameters against two handwritten test digits corresponding to 0 and 1. The results are shown in
figure 7. Here, we plot the output digit of the EF-QAE and QAE. Once more, since EF-QAE achieves better
compression to the |00⟩ trash state, we obtain higher fidelity on the output state. Remarkably, in both cases,
the performance of the EF-QAE is improved with respect to the QAE. In appendix B we discuss and provide
the output fidelities of the training and 60 test handwritten digits.

5. Conclusion

We have presented a VQA called EF-QAE capable of compressing quantum data of a parameterized model. In
contrast to standard QAE, EF-QAE achieves this compression with higher fidelity. Its key idea is to define a
parameterized quantum circuit that depends upon adjustable parameters and a feature vector that
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characterizes such a model. In this way, the data compression can be tailored to the particular input,
informed by the feature vector, and the compression performance is enhanced.

We have validated the EF-QAE in simulations by compressing ground states of the 1D Ising spin chain,
and classical handwritten digits encoded into quantum states. We compared the results with the standard
QAE. The results show that EF-QAE achieves better compression of the initial state, and therefore, the final
output state is recovered with higher fidelity. Moreover, the learning task of EF-QAE can be initialized with
the optimal QAE parameters. In this manner, EF-QAE will always improve the QAE performance.
Nonetheless, the encoding strategy of the feature vector is amenable to be improved, for instance, allowing
the feature vector to be a free variational parameter or using a non-linear encoding. We leave the study of
encoding strategies for future work.

The EF-QAE may need additional classical optimization compared to QAE. In contrast, we increase the
compression performance using the same amount of limited quantum resources. In this sense, EF-QAE is a
step toward what could be done on NISQ computers, shortening the distance between current quantum
devices and practical applications.

Code availability

The code is available in GitHub [34].

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.
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Appendix A. Comparison table for QAE and EF-QAE

In this section we summarize QAE and EF-QAE similarities and differences. The summary is shown in
table 1.
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Table 1. Summary for QAE and EF-QAE similarities and differences.

QAE EF-QAE

Quantum resources (circuit depth) Equal

Unitary operation U(θ⃗) U(θ⃗, x⃗)
No. trainable parameters (in each rotation gate) 1 dim(⃗x)+ 1
Classical optimization EF-QAE generally needs additional optimization
Compression performance EF-QAE has always higher compression performance

Figure 8. Fidelity of the output state for different 0 handwritten digits, using the EF-QAE and QAE. We have considered 10
training and 30 test digits.

Figure 9. Fidelity of the output state for different 1 handwritten digits, using the EF-QAE and QAE. We have considered 10
training and 30 test digits.

Appendix B. Output fidelities of test and training sets

In this section, we provide the output fidelities of the training and test sets for the handwritten digit and Ising
model examples.

Handwritten digits: In figure 8 we show the output fidelities of 10 training and 30 test digits
corresponding to the 0 digit. As can be seen, the performance of the EF-QAE is better, compared to the
standard QAE. Similarly, in figure 9, we plot the output fidelities of 10 training and 30 test digits
corresponding to the 1 digit. Here, we observe again that the EF-QAE performance is preferable.

Ising model: In figure 10 we show the output fidelities of 20 training and 60 test Ising ground states. As
can be seen, the output fidelities of the EF-QAE are higher, except for a few outlier values around λ= 0.7.
This could be improved, for instance, by simply increasing the number of training states, or by populating
values around λ= 0.7 taking nonequispaced training ground states.

Appendix C. Resilience to noise

It has been shown recently that specific VQAs can exhibit noise resilience [35]. That is, the optimal
parameters are unaffected by certain noise models. Here we prove that the local cost function C is resilient to
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Figure 10. Fidelity of the output state for Ising ground states with different transverse field λ, using the EF-QAE and QAE. We
have considered 20 training and 60 test ground states.

global depolarizing noise. Let us rewrite C from equation (1) as

C=
1

2

nt∑
k=1

(1− ζ(k)) , (C1)

where ζ(k) = ⟨0|U†(Zk ⊗1k)U⟨0|. From now on, we refer to C̃ and ζ̃ as the noisy versions of these quantities.
Recall that global depolarizing noise transforms the state according to ρ→ qρ+(1− q)1/d. If we consider a
circuit that has depth D, then the final state is qDρ+(1− qD)1/d. Notice as well that ζ̃(k) is estimated simply
by executing the circuit in figure 3 and measuring in the computational basis. The maximally mixed state has
zero expectation value, since we measure Pauli Z operators. Therefore, we obtain that ζ̃(k) = qDζ(k), where D
is the depth of the circuit used to estimate ζ(k). This implies

C̃=
1

2

nt∑
k=1

(1− qDζ(k)). (C2)

From this expression, we see that

arg min
θ⃗

C̃ =
arg max

θ⃗

(
nt∑

k=1

ζ(k)

)
. (C3)

It is clear as well that

arg min
θ⃗

C =
arg max

θ⃗

(
nt∑

k=1

ζ(k)

)
. (C4)

Hence we arrive at

arg min
θ⃗

C̃ =
arg min
θ⃗

C. (C5)

This proves our statement of global depolarizing noise resilience since it shows that the optimal parameters
are unaffected.

ORCID iD

Carlos Bravo-Prieto  https://orcid.org/0000-0003-1041-2044

References

[1] Preskill J 2018 Quantum 2 79
[2] Bharti K et al 2021 (arXiv:2101.08448)
[3] Cerezo M et al 2020 (arXiv:2012.09265)
[4] Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 Nat. Commun. 5 4213
[5] Kokail C et al 2019 Nature 569 355

9

https://orcid.org/0000-0003-1041-2044
https://orcid.org/0000-0003-1041-2044
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/2101.08448
https://arxiv.org/abs/2012.09265
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1038/s41586-019-1177-4


Mach. Learn.: Sci. Technol. 2 (2021) 035028 C Bravo-Prieto

[6] Higgott O, Wang D and Brierley S 2019 Quantum 3 156
[7] Jones T, Endo S, McArdle S, Yuan X and Benjamin S C 2019 Phys. Rev. A 99 062304
[8] Li Y and Benjamin S C 2017 Phys. Rev. X 7 021050
[9] Romero J, Olson J P and Aspuru-Guzik A 2017 Quantum Sci. Technol. 2 045001
[10] Khatri S, LaRose R, Poremba A, Cincio L, Sornborger A T and Coles P J 2019 Quantum 3 140
[11] LaRose R, Tikku A, O’Neel-Judy E, Cincio L and Coles P J 2018 Quantum Inf. 5 1
[12] Bravo-Prieto C, García-Martín D and Latorre J I 2020 Phys. Rev. A 101 062310
[13] Bravo-Prieto C, LaRose R, Cerezo M, Subasi Y, Cincio L and Coles P J 2019 (arXiv:1909.05820)
[14] Cirstoiu C, Holmes Z, Iosue J, Cincio L, Coles P J and Sornborger A 2020 npj Quantum Inf. 6 1
[15] Carolan J et al 2020 Nat. Phys. 95 322
[16] McArdle S, Jones T, Endo S, Li Y, Benjamin S C and Yuan X 2019 npj Quantum Inf. 5 1
[17] Endo S, Sun J, Li Y, Benjamin S C and Yuan X 2020 Phys. Rev. Lett. 125 010501
[18] Uvarov A, Biamonte J D and Yudin D 2020 Phys. Rev. B 102 075104
[19] Borzenkova O, Struchalin G, Kardashin A, Krasnikov V, Skryabin N, Straupe S, Kulik S and Biamonte J 2021 Appl. Phys. Lett.

118 144002
[20] Lloyd S, Schuld M, Ijaz A, Izaac J and Killoran N (arXiv:2001.03622)
[21] LaRose R and Coyle B 2020 Phys. Rev. A 102 032420
[22] Schuld M, Sweke R and Meyer J J 2020 (arXiv:2008.08605)
[23] Goto T, Tran Q H and Nakajima K 2020 (arXiv:2009.00298)
[24] Havlí̌cek V, Córcoles A D, Temme K, Harrow AW, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209
[25] Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E and Latorre J I 2020 Quantum 4 226
[26] Cervera-Lierta A, Kottmann J S and Aspuru-Guzik A 2020 (arXiv:2009.13545)
[27] Pepper A, Tischler N and Pryde G J 2019 Phys. Rev. Lett. 122 060501
[28] McClean J R, Boixo S, Smelyanskiy V N, Babbush R and Neven H 2018 Nat. Commun. 9 4812
[29] Cerezo M, Sone A, Volkoff T, Cincio L and Coles P J 2020 (arXiv:2001.00550)
[30] Efthymiou S, Ramos-Calderer S, Bravo-Prieto C, Pérez-Salinas A, García-Martín D, Garcia-Saez A, Latorre J I and Carrazza S 2020

Quantum-TII/qibo onGithub Zenodo (www.doi.org/10.5281/zenodo.3997194)
[31] Efthymiou S, Ramos-Calderer S, Bravo-Prieto C, Pérez-Salinas A, García-Martín D, Garcia-Saez A, Latorre J I and Carrazza S 2020

(arXiv:2009.01845)
[32] Nocedal J and Wright S 2006 Numerical Optimization (New York: Springer) (https://doi.org/10.1007/978-0-387-40065-5)
[33] Pedregosa F et al 2011 J. Mach. Learn. Res. 12 2825
[34] Bravo-Prieto C 2020 Quantum autoencoders with enhanced data encoding (available at: https://github.com/Quantum-TII/qibo/

tree/master/examples/EF_QAE)
[35] Sharma K, Khatri S, Cerezo M and Coles P 2020 New J. Phys. 22 043006

10

https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.1103/PhysRevA.99.062304
https://doi.org/10.1103/PhysRevA.99.062304
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.22331/q-2019-05-13-140
https://doi.org/10.22331/q-2019-05-13-140
https://doi.org/10.1038/s41534-019-0167-6
https://doi.org/10.1038/s41534-019-0167-6
https://doi.org/10.1103/PhysRevA.101.062310
https://doi.org/10.1103/PhysRevA.101.062310
https://arxiv.org/abs/1909.05820
https://doi.org/10.1038/s41534-020-00302-0
https://doi.org/10.1038/s41534-020-00302-0
https://doi.org/10.1038/s41567-019-0747-6
https://doi.org/10.1038/s41567-019-0747-6
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1103/PhysRevLett.125.010501
https://doi.org/10.1103/PhysRevLett.125.010501
https://doi.org/10.1103/PhysRevB.102.075104
https://doi.org/10.1103/PhysRevB.102.075104
https://doi.org/10.1063/5.0043322
https://doi.org/10.1063/5.0043322
https://arxiv.org/abs/2001.03622
https://doi.org/10.1103/PhysRevA.102.032420
https://doi.org/10.1103/PhysRevA.102.032420
https://arxiv.org/abs/2008.08605
https://arxiv.org/abs/2009.00298
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2020-02-06-226
https://arxiv.org/abs/2009.13545
https://doi.org/10.1103/PhysRevLett.122.060501
https://doi.org/10.1103/PhysRevLett.122.060501
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4
https://arxiv.org/abs/2001.00550
www.doi.org/10.5281/zenodo.3997194
https://arxiv.org/abs/2009.01845
https://doi.org/10.1007/978-0-387-40065-5
https://github.com/Quantum-TII/qibo/tree/master/examples/EF_QAE
https://github.com/Quantum-TII/qibo/tree/master/examples/EF_QAE
https://doi.org/10.1088/1367-2630/ab784c
https://doi.org/10.1088/1367-2630/ab784c

	Quantum autoencoders with enhanced data encoding
	1. Introduction
	2. EF-QAE algorithm
	2.1. Overview
	2.2. Cost function
	2.3. Ansatz

	3. 1D ising spin chain
	4. Handwritten digits
	5. Conclusion
	Acknowledgments
	Appendix A. Comparison table for QAE and EF-QAE
	Appendix B. Output fidelities of test and training sets
	Appendix C. Resilience to noise
	References


