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Abstract
The prediction of chemical properties using machine learning techniques calls for a set of
appropriate descriptors that accurately describe atomic and, on a larger scale, molecular
environments. A mapping of conformational information on a space spanned by atom-centred
symmetry functions (SF) has become a standard technique for energy and force predictions using
high-dimensional neural network potentials (HDNNP). An appropriate choice of SFs is
particularly crucial for accurate force predictions. Established atom-centred SFs, however, are
limited in their flexibility, since their functional form restricts the angular domain that can be
sampled without introducing problematic derivative discontinuities. Here, we introduce a class of
atom-centred SFs based on polynomials with compact support called polynomial symmetry
functions (PSF), which enable a free choice of both, the angular and the radial domain covered. We
demonstrate that the accuracy of PSFs is either on par or considerably better than that of
conventional, atom-centred SFs. In particular, a generic set of PSFs with an intuitive choice of the
angular domain inspired by organic chemistry considerably improves prediction accuracy for
organic molecules in the gaseous and liquid phase, with reductions in force prediction errors over a
test set approaching 50% for certain systems. Contrary to established atom-centred SFs,
computation of PSF does not involve any exponentials, and their intrinsic compact support
supersedes use of separate cutoff functions, facilitating the choice of their free parameters. Most
importantly, the number of floating point operations required to compute polynomial SFs
introduced here is considerably lower than that of other state-of-the-art SFs, enabling their
efficient implementation without the need of highly optimised code structures or caching, with
speedups with respect to other state-of-the-art SFs reaching a factor of 4.5 to 5. This low-effort
performance benefit substantially simplifies their use in new programs and emerging platforms
such as graphical processing units. Overall, polynomial SFs with compact support improve
accuracy of both, energy and force predictions with HDNNPs while enabling significant speedups
compared to their well-established counterparts.

1. Introduction

In the past decade, computational chemistry has seen a tremendous increase in use of machine learning (ML)
techniques to overcome the length- and timescale problem burdening first principlesmethods [1–4]. As such,
ML techniques have seen particularly beneficial use in molecular dynamics (MD) simulations in the
condensed phase. By providing highly elaborate fitting mechanisms, ML allows for accurate interpolation
between training points on the potential energy surface (PES) generated from a computationally more
expensive reference method. This enables, e.g. , MD simulations of water to be performed at the nano- rather
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than the picosecond scale with forces and energies of first principles accuracy [5, 6]. While still more
expensive than classical force fields, ML techniques can incorporate information from the underlying PES
well outside of local minima, making the simulation of chemical reactions possible. In contrast to reactive
force-fields, no assumptions on the functional form of the interactions and therefore, the underlying PES,
have to be made [7, 8]. Instead, the fit is carried out mostly in a black-box manner, with one of the most
prominent adjustable input parameters being a set of functions that uniquely describe the environment of
every atom in a manner that is invariant both to permutation, rotation and translation [4, 9, 10].

Machine learning techniques commonly used to interpolate between first principles data include
kernel-based methods [11–14] and neural network potentials (NNP) [15, 16]. A prominent framework of
the latter is due to Behler and Parrinello [17, 18], who advocated the use of high-dimensional neural network
potentials (HDNNP) in combination with atom-centred input functions. In the context of HDNNPs, these
functions are commonly referred to as symmetry functions (SF) [19]. Ideally, these functions provide a
unique description of the atomic environment of every structure in the training set. Several functional forms
have been proposed [20, 21], which commonly include a radial and angular part multiplied by a cutoff
function that ensures that the former are naught outside of predefined bounds. SFs are therefore commonly
a product of up to three different types of functions, and parametrising them properly for a given chemical
system can become non-trivial. An intuitive construction of SFs can be based on structural features of the
system at hand. For instance, sufficient spatial resolution could be obtained by taking into account all
relevant peaks in the radial distribution function of the system and by covering all chemically relevant angles
spanned by an atom and two of its neighbours. Note that in the context of HDNNPs, the term neighbour
may refer to any atom in the vicinity of another atom. A neighbouring atom may hence belong either to the
same or a different molecule, and it may be chemically connected to its neighbour by some kind of bond or
not at all. The width and centre of a SF should then reflect fluctuations of the quantities in the training data
that a given SF is expected to capture. Such a strategy has successfully been used, e.g. for the construction of
a neural network of water and ice, including different ice phases [5, 22, 23].

However, whereas such a non-automated approach can yield SF sets much smaller than those generated
using automated procedures [21, 24], there are some pitfalls associated to an intuitive approach: while the
position of the maxima of radial functions can generally be freely chosen within the cutoff radius, this is not
necessarily the case for angular terms, which are commonly based on a cosine and which are therefore
restricted to peak at either 0 or π. Introducing a simple phase shift in the cosine has been shown to work well
for energy evaluations [25], but it would be bound to fail for force predictions, since any shift in a cosine will
inevitably introduce derivative discontinuities at 0 and π: The evaluation of angles is restricted to a domain
of [0,π], imposing symmetries in the angular functions of the form f(ϑ) = f(−ϑ) and f(π+ϑ) = f(π−ϑ).
Phase shifts break this symmetry and introduce non-zero derivatives at f(0) and f(π). Since derivatives of the
angular functions are used to compute forces (vide infra), this results in non-unique descriptions at ϑ= 0
and ϑ= π.

In order to account for equilibrium angles that are not centred on either 0 or π and which only fluctuate
over a few degrees — e.g. in a double bond — one therefore uses linear combinations of angular SFs which
are centred on either 0 or π, increasing the overall number of SFs used. The presence of cutoff functions also
obfuscates the choice of input SF parameters: If the SFs are constructed from structural properties such as the
radial distribution function of a liquid, the position of the radial peaks is not easily deduced from the input
parameters, since the product of radial term and cutoff function may exhibit a shifted maximum and a more
rapid decay compared to the Gaussian function alone. In particular, if the Gaussian is not centred on the
origin, this may lead to a SF that is not symmetric with respect to its peak. Therefore, it is usually necessary to
plot every single SF in order to monitor the correspondence between the input parameters and the final
system setup. Hence, parametrising SFs based on structural properties can be a cumbersome procedure.
While universal rules to generate input SFs have been proposed [21, 24], they often increase the number of
SFs needed when compared to an optimal, tailored set of parameters. This can hamper performance.

When using high-quality first principles methods to generate the training set, the first principle
calculations usually represent the computational bottleneck. However, both the training of the neural
network itself as well as its use in productive calculations carry a certain overhead that is typically larger than
that of classical force fields. The computational cost of the training is in part associated to the number of SFs
used, as well as their computational complexity. While it is possible to store the values of all SFs during
training [26], making their calculation necessary only once at the very beginning of the training procedure,
this is evidently impossible when the NNP is used to predict unknown structures e.g. during a MD run.
Factors that contribute to the overhead of SF evaluation are two-fold: The most popular choice for the radial
term are Gaussian functions. However, exponentials are comparably expensive to compute. Furthermore, the
calculation of a cutoff function (often cosines or hyperbolic tangents) introduces an additional overhead
with respect to bare radial functions. To this end, optimised cutoff functions based on polynomials have
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already been proposed. Still, the disadvantages of the evaluation of exponentials for the radial terms, their
possibly becoming asymmetric due to multiplication with a cutoff function and the impracticability of
introducing phase shifts in the angular components remain. While strategies to reduce the large number of
floating point operations during SF evaluation have been developed, e.g. by grouping and caching [26, 27],
this involves intermediate storage of quantities, loop breaks and many if-statements, rendering their
implementation cumbersome, reducing code readability and making performance benefits both
problem- and architecture dependent.

It would therefore be desirable to have a framework at hand where the number of floating point
operations in SF evaluations is substantially reduced, where the SF remain symmetric with respect to their
maxima, where the input parameters directly reflect the shape of the resulting function, and where the
maximum of the angular component can be adjusted to reflect equilibrium angles. This would alleviate the
need to plot every SF during construction, making the resulting procedure more efficient and less
error-prone, greatly simplifying the choice of parameters based on structural properties of the system at
hand. Most importantly, a reduction of floating point operations supersedes the need of complex code
optimisation and renders the efficient implementation of SFs architecture-independent.

In the following, we will demonstrate that further simplifications to existing SFs are possible by replacing
the product-based ansatz of radial, angular and cutoff function by a product of polynomials with compact
support, making the use of cutoff functions obsolete. Such polynomial symmetry functions (PSFs) have the
advantage of allowing for angular terms to be centred anywhere within ϑ∈ [0,π] without introducing
derivative discontinuities at ϑ= 0 and ϑ= π. The latter is of particular importance for force evaluations, as
discontinuities in SF derivatives will directly impact the forces computed. The evaluation of these PSFs does
not involve exponentiation. Instead, the most demanding low-level operation becomes the calculation of an
arccosine when computing angular terms. The use of one simple functional form for both angular and radial
terms considerably reduces the number of floating point operations associated to the evaluation of a single
SF. This does not only result in significant simplifications in the underlying code, but comes at the benefit of
speedups of up to a factor of about 4.5 to 5, while their performance with respect to highly optimised cache
and grouping based SF implementations still reaches a factor of almost 2 without the need of further
algorithmic optimisations.

This text is organised as follows: first, we briefly introduce the concept of HDNNPs and describe the
mathematical form of commonly used SFs first proposed by Behler and Parrinello [4, 17]. We then introduce
our new PSFs. We will go on to demonstrate that use of PSFs can improve accuracy of NNPs when compared
to conventional SFs. To this end, both dynamic and static properties will be compared for a water and copper
sulphide model system. By training a HDNNP for the rotation of the amino group of the organic dye
DMABN [28, 29], we will show that the angular flexibility of PSFs simplifies the choice of angular parameters
compared to Behler–Parrinello type symmetry functions (BPSF). HDNNPs for liquid ethyl benzene and
anisole that were trained using both PSF and BPSF will further support this perspective. Finally, we will show
that use of PSF in conjunction with recently proposed weighted atom-centred symmetry functions
(wACSF)[21] can further improve performance of HDNNPs for predicting enthalpies of formation of the
QM9 [30] database. We will conclude the discussion by comparing execution times for the evaluation of the
NNPs between BPSFs and PSFs, showing that the execution time per SF is substantially reduced for our
polynomial ansatz.

2. Symmetry functions for high-dimensional neural network potentials

2.1. Neural networks in a nutshell
First applications of NNPs in computational chemistry date back as far as 1995 [15]. A considerable advance
in the prediction of molecular forces and energies was made in 2007, when Behler and Parrinello [17]
proposed to use HDNNP in combination with a fictitious decomposition of the potential energy V from N
individual atoms:

V=
N∑
i

Vi(Gi). (1)

The atomic contribution Vi depends on the chemical environment of atom i, which is described by a tuple of
Nj input values Gi = {G1, . . . ,Gj}. The forces on the kth atom follow from the gradient:

−∇kV=−
N∑
i

Nj∑
j

∂Vi

∂Gi,j
∇kGi,j. (2)
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Figure 1. Schematic representation of a Behler–Parrinello HDNNP for a given element i. Three SFs Gi are used as input, and the
atomic contribution to the total potential energy V i is predicted. Labels correspond to equation (3).

The Gi are used as the input layer of a feed-forward neural network (figure 1) that yields the scalar Vi.
The network itself is constituted by multiple layers of nodes, which are connected to each other by virtue of
weights anm. Starting from a set of input values (Gi), the data is propagated to node n of hidden layer k as
follows:

ykn = fa

(
bkn +

Ml∑
m

alknmy
l
m

)
, (3)

where l= k− 1, ykn represents the value of the node and fa is a non-linear activation function. b
k
n denotes the

bias associated to ykn andMl is the number of neurons in layer l. One independent neural network per
element is used. Together with the biases bkn, the weights anm are the fitting parameters of the HDNNP.

The atomic environment descriptors Gi are commonly called SFs. In order to ensure permutational
symmetry, the SFs are identical for all atoms of the same element. However, in order to account for varying
chemical environments (bond lengths, van-der-Waals radii, relevant bond angles), they can differ between
different elements. An appropriate choice of SFs is crucial in order to reliably discriminate between unique
points on the PES.

2.2. Behler–Parrinello symmetry functions
In the case of Behler–Parrinello HDNNPs, the input layer consists of scalars obtained from a predetermined
set of atom-centred SFs. The choice of SFs should discriminate between all relevant structural features, such
that every distinct point on the PES is described by a unique tuple of SF values. In practice, this is achieved by
combining a set of spherically symmetric and angle-dependent functions that have to be parametrised
appropriately. Some examples are given in figure 2. For the radial part, Behler and Parrinello suggested:

f radB (r, rs) = e−η(r−rs)
2

, (4)

where r is an interatomic distance and rs its reference point. An angular dependency can be introduced by a
function of the form:

f angB (ϑ,λ,ζ) = (1+λcos(ϑ))ζ , (5)

where ϑ is the angle formed by any three atoms, bound by [0,π]. This function appropriately has
∂f angB /∂ϑ|ϑ=0= ∂f angB /∂ϑ|ϑ=π= 0. For λ= 1, maximum and minimum of the function lie at 0 and π,
respectively; for λ=−1 the inverse holds. Choosing ζ > 1 allows to contract the function, resulting in a
more rapid decay. Values of ζ < 1 are not possible, since this would result in non-zero derivatives at the
boundaries.

While the form of f angB (ϑ,λ,ζ) guarantees zero derivatives at the boundaries for appropriate choices of λ
and ζ , the exponential in f radB (r, rc) is finite everywhere. Therefore, a cutoff function with cutoff radius rc is
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Figure 2. Radial (left), cutoff (middle) and angular (right) functions proposed by Behler. Left: due to the repulsive exchange wall,
regions around r= 0 are never sampled, and the radial function therefore need not be 0 at r= 0.Middle: a simple cutoff function
with continuous derivatives at 0 and rc is multiplied with the radial term to obtain a function with compact support. Note that
this multiplication shifts the maxima of Gaussians that are not centred on r0 = 0. Right:minimum and maximum of the cosine
are swapped for λ=−1. Specifying ζ > 1 contracts the function towards its maximum.

introduced, which ensures that the radial term and its derivatives are zero for all r> rc. Common choices of
cutoff function fc(r, rc) include:

fc(r, rc) =

{
1
2

[
cos
(

πr
rc

)
+ 1
]

for r⩽ rc

0 for r> rc
, (6)

or

fc(r, rc) =

{
tanh3

(
1− r

rc

)
for r⩽ rc

0 for r> rc
. (7)

With this choice of functions, the radial SF Gi centred on an atom i is given by a sum over all its
neighbours j that are within rc of i:

Grad
i (rc, rs) =

∑
j ̸=i

f radB (rij, rs)fc(rij, rc). (8)

Note that such a product may have a width and a maximum different from f radB alone, see also figure 2. The
angular SF is constructed from a product of angular and radial terms, with the sum encompassing all
neighbours j and k ̸= j. Depending on the radial term, two types of angular SFs can be distinguished, namely
narrow n,

Gang.n
i (rc, rs,λ,ζ) = 2(1−ζ)

∑
j ̸=i,k>j

f radB (rij, rs)f
rad
B (rik, rs)f

rad
B (rjk, rs) (9)

× f angB (ϑijk,λ,ζ)fc(rij, rc)fc(rik, rc)fc(rjk, rc), (10)

which also constrains the interatomic distance between atoms j and k, and the wide form w:

Gang.w
i (rc, rs,λ,ζ) = 2(1−ζ)

∑
j̸=i,k>j

f radB (rij, rs)f
rad
B (rik, rs)f

ang
B (ϑijk,λ,ζ)fc(rij, rc)fc(rik, rc), (11)

the evaluation of which is more computationally expedient due to the lack of a radial term for jk. These SFs
have successfully been applied in a wide variety of contexts. Note that the distribution of SF values at λ=−1
is not symmetric with respect to λ=+1 due the presence of a radial function [21]. Figure 3 displays the
dependency of BPSFs on the position of atomic neighbour(s).

Recently, Singraber et al have introduced a simple expression for fc based on polynomials [27]:

fpolyc (r, rc) =

{
f poly2

(
r
rc

)
for 0⩽ r⩽ rc

0 for r> rc,
(12)
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Figure 3. Radial (upper rows) and angular (lower rows) SFs of the Behler–Parrinello type. The reference atom i is positioned at
the origin. For radial functions, the plot shows the dependency of f radB on the position of neighbour j. For angular functions, it is
assumed that one neighbouring atom j has a fixed position at x= 0, y= 1, with the plot showing the dependency of f angB on the
position of the second neighbour k. Parameters were chosen as follows; distances are in arbitrary units: (a) 1/η= 4000, rs = 0;
(b) 1/η= 20, rs = 4; (c) 1/η= 8, rs = 8; (d) 1/η= 12, rs = 0, λ= 1, ζ= 1; (e) 1/η= 10, rs = 0, λ=−1, ζ= 3; (f) 1/η= 40, rs = 0,
λ=−1, ζ= 6.

with the polynomial:

f poly2(x) = x3(x(15− 6x)− 10)+ 1, (13)

with f poly2(0) = 1 and f poly2(1) = 0. At x= 0 and x= 1, equation (13) has continuous derivatives up to
second order, which ensures a continuous, smooth transition to outside of the compact set. Similar
polynomials with continuous derivatives up to even higher order can be easily constructed [27], but their use
does not result in any practical benefit [18]. The main advantage of polynomial cutoff functions as
introduced in [27] lies in their expedient evaluation compared to expressions based on hyperbolic tangent or
cosine, reducing the overhead due to the cutoff function. However, the computation of costly exponentials is
still needed for all radial components. Hence, a grouping strategy was proposed in [27] which avoids
multiple evaluations of the same exponential term, resulting in considerable speedups.

2.3. Polynomial symmetry functions with compact support
On the one hand, the summation over the arguments of Gang still involves a substantial number of
exponential functions that have to be explicitly evaluated even when a grouping strategy is used. On the
other hand, the present choice of f ang implies that, in order to specifically sample angles which are not
centred close to either 0 or π, a combination of several values of λ and ζ is necessary, since introducing an
angular shift ϑ= 0 would inevitably violate the boundary condition ∂f ang/∂ϑ= 0 at the bounds of the
angular domain. In the following, we will attempt to overcome this issue by constructing a simple set of SFs
based on polynomials with compact support which can be used to indiscriminately describe both angular
and radial dependencies.

In order to do so, we generalise equation (12) to a generic form, expressed in terms of the boundaries
xmin,xmax of the underlying domain. In particular, for our polynomial SFs f PSF, we also allow for arguments
x< 0:

f PSF(x,x0,∆x) =


f poly2

(
x−x0
∆x

)
for x0 ⩽ x⩽ x0 +∆x

f poly2
(
x0−x
∆x

)
for x0 −∆x⩽ x< x0

0 elsewhere,

(14)

where x0 =
1
2 (xmax + xmin) and∆x= 1

2 (xmax − xmin). The resulting function is symmetric with respect to x0
and has continuous derivatives — up to an order determined by the construction of f poly2 — on all R3. It is
possible to further influence the decay of the radial function by appropriately modifying its argument such
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Figure 4. Radial PSF (left), radial PAS (middle) and angular (right) SFs with compact support proposed here. Left: radial function
with point-symmetry around 0.5rmax. Note that no cutoff function is needed, which enables a precise choice of maxima and
shifts.Middle: asymmetric radial function with longer tail, with a shape comparable to the product of a Gaussian and a cutoff
function in figure 2. Right: angular polynomial SF. Note that the angular domain can be freely chosen and does not need to have
maxima at 0 or π.

Figure 5. Radial (upper rows) and angular (lower rows) symmetry functions of the PAS type. The reference atom i is positioned at
the origin. For radial functions, the plot shows the dependency of f radB on the position of neighbour j. For angular functions, it is
assumed that one neighbouring atom j has a fixed position at x= 0, y= 1, with the plot showing the dependency of f angB on the
position of the second neighbour k. Note that with PSF and PAS it becomes possible to cover specific angular ranges associated,
e.g. to double bonds (60◦ angle, lower middle) or tetrahedra (109.1◦, lower right). Parameters were chosen as follows; distances
are in arbitrary units: (a)∆r= 12, rs = 0; (b)∆r= 6, rs = 4; (c)∆r= 4, rs = 8; (d)∆r= 12, rs = 0,∆ϑ= 90◦, ϑ0 = 0◦; (e)
∆r= 10, rs = 0,∆ϑ= 40◦, ϑ0 = 120◦; (f)∆r= 8, rs = 0,∆ϑ= 20◦, ϑ0 = 109.1◦.

that the SF decays more rapidly around its maximum while also approaching 0 more slowly, thus breaking
the point symmetry around f PSF = 0.5. We therefore define the asymmetric PAS as:

f PAS(x,x0,∆x) =


f poly2

(
2(x−x0)

∆x −
(
x−x0
∆x

)2)
for x0 ⩽ x⩽ x0 +∆x

f poly2
(
2(x0−x)

∆x −
(
x0−x
∆x

)2)
for x0 −∆x⩽ x< x0

0 elsewhere,

(15)

which offers the same benefits as f PSF for arguments∈ [0, 1]. By construction, f PAS resembles the shape of the
product of a local, narrow Gaussian function with a cutoff function and can therefore be used to adapt
existing BPSF-setups to polynomial form. The functional forms of f PAS and f PSF are depicted in figure 4.
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Figure 6. Systems studied here. From left to right: water, Cu2S, DMABN, liquid ethyl benzene and anisole.

The corresponding radial SFs can now be constructed as:

Grad/P
i =

∑
j ̸=i

fP(rij, rs,∆r), (16)

with fP either f PSF or f PAS. Their narrow angular counterparts read:

Gang.n/P
i =

∑
j̸=i,k>j

fP(rij, rs,∆r)fP(rik, rs,∆r)fP(rjk, rs,∆r)f PSF(ϑijk,ϑ0,∆ϑ), (17)

while the wide angular functions become:

Gang.w/P
i =

∑
j̸=i,k>j

fP(rij, rs,∆r)fP(rik, rs,∆r)f PSF(ϑijk,ϑ0,∆ϑ), (18)

where the radial component fP can again be described by both f PAF or f PSF. Both types of angular SF can be
centred anywhere within [0,π], provided that ∂f PSF/∂δ|ϑ=0= 0 and ∂f PSF/∂δ|ϑ=π= 0. This enables
chemically intuitive choices of angular maxima, i.e. 60◦ for a double bond or 109, 4◦ for a carbon-carbon
single bond. Figure 5 shows the dependency of PAS-type SFs on the position of atomic neighbour(s).

Equations (14) and (15) do not involve any exponentials, and the most expensive arithmetic operation,
an inverse cosine, has a modest computational footprint.

3. Computational methods

3.1. Training of the HDNNP
All HDNNPs were trained using the n2p2 package [26, 27, 31]. HDNNPs for the prediction of enthalpies of
formation in the QM9 [30] database were obtained using the protocol of [21] with five-fold cross validation,
but without dataset normalisation. For the remaining setups, 10 training runs per system are carried out with
an independent seed for the random number generator each. If the value Gi of a given SF never exceeds 10−3

over the whole test set, the function is discarded before training. The choice of G is detailed in the supporting
information (available online at stacks.iop.org/MLST/2/035026/mmedia). Results discussed in this text refer
to the best set of weights out of 10 independent runs (5 for the QM9 set), which are defined as the weights
that yield the lowest force root mean-square deviation (RMSD) with respect to a test set constituted by 10%
of training-set structures that were randomly removed before training. If several sets of weights yield force
RMSDs that are identical to a few %, the set that displays the lowest relative error in energy predictions is
used.

3.2. Training sets
The systems investigated here are depicted in figure 6. The training sets for water and copper sulphide
correspond to those published in [5, 26], respectively. Forces and energies for an isolated DMABN molecule,
liquid ethyl benzene and anisole (16 molecules in a periodic box) were obtained from high-temperature
Car-Parrinello MD runs performed with the CPMD code [32] using the SCAN exchange-correlation
functional [33]. The amino group of DMABN was rotated using a slowly growing harmonic restraint, giving
rise to a set of non-equilibrium conformers. Details on the computational setup can be found in the
supporting information.

3.3. Test sets
Test sets consists of 10% randomly chosen configurations that are removed from the training set before
training and which are then used to validate the predictive power of the NNP.
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Figure 7. Force predictions on water set of [26]. Ref denotes references forces and nnp the prediction by the HDNNP.
Left: logarithmic learning curve showing the decrease of the RMSD between predicted and reference forces as a function of
training steps (epochs). There are no appreciable differences between BPSF, PSF and PAS. A thin line denotes the target RMSD of
50meV Å−1. Right: distribution P(∆F) of relative force errors,∆F= (Fnnp − Fref)/Fref for BPSF, PSF and PAS.

3.4. Molecular dynamics using neural network potentials
All MD simulations using HDNNPs were carried out using the n2p2-interface [27, 31] to the LAMMPS code
[34, 35]. System setups are detailed in the supporting information.

4. Results and discussion

4.1. Water
We first assess the accuracy that can be attained with polynomial SFs by comparing the efficiency and
accuracy of both training and productive simulations using identically set up HDNNPs. Two setups of
polynomial SFs will be used: one, PSF, consisting entirely of symmetric functions of the form 14, and one
mixed setup, PAS, including both symmetric and asymmetric radial components. We will compare against a
reference setup using BPSFs, which has successfully been used in [26] to describe the PES of water and
several ice phases. PSF and PAS were constructed by plotting the BPSFs and using their peaks and the full
width at half maximum as rough indicators for the polynomial input. For sake of simplicity, the only
symmetric radial terms (PSF-type) in the PAS set were those with maximum width; all others were chosen to
be of the asymmetric type.

First, we compare the learning curves of both methods to assess the efficiency of the training procedure.
Here, we define the learning curve as the RMSD between trained energy and forces and their reference as a
function of the number of training steps (epochs). Curves for Behler–Parrinello type and polynomial SF
setups are plotted in figure 7 and are virtually indistinguishable, suggesting that both types of symmetry
functions can be trained with equal efficiency. RMSDs at the last training step are comparable between
different methods, with the largest remaining force deviation being observed for the PSF setup. Conversely,
the lowest force RMSD is observed for the PAS setup. BPSFs yield a training error intermediate between PAS
and PSF data.

The same conclusion holds when analysing the distribution of both force and energy errors within the
test set: Force RMSDs are 43.7meV Å−1 for BPSFs, 48.5meV Å−1 for PSF and 43.2meV Å−1 for PAS,
respectively. Energy RMSDs range from 1.17meV/atom for BPSFs to 0.95meV/atom for PAS. In practical
applications, these values could be considered identical. In figure 7, we histogram both the relative force error
for HDNNPs trained with Behler–Parrinello type and polynomial SFs. The resulting distributions for the test
set compare well between PSF, PAS and BPSF: All relative errors show a rapid decay, indicating an excellent
quality of the fit. PAS and BPSF show very similar relative error distributions, whereas the distribution of PSF
skews very lightly towards the right; however, we will show that this is of no practical relevance. Figure 8
shows predicted forces against their reference values; ideally, all values should lie on a diagonal. Use of PAS
and PSF improves the accuracy of the most extreme force values at either end of the graph, which lie closer to
the diagonal than for BPSF. This indicates that, although force RMSDs differ only little between the different
SF setups, qualitative improvements to conventional BPSFs are possible by use of a PSF or PAS set.

Figure 9 provides a practical comparison of the predictive power of the different HDNNPs. Both the
radial distribution function (left panel) as well as the mean square displacement as a function of time, from
which the diffusion coefficient can be derived, (right panel) are practically indistinguishable between BPSF,
PAS and PSF. These results further support that polynomial SFs are a viable alternative to the commonly used
Behler–Parrinello type functions. The excellent agreement between radial distribution functions and
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Figure 8. Predicted (nnp) vs. reference (ref) forces for water as obtained using BPSF, PSF and PAS. A deviation from the diagonal
indicates an error in the force prediction. PAS and PSF further improve the description of the forces largest in magnitude.
Absolute deviations from the diagonal are plotted in the top panel.

Figure 9. Properties of water obtained during a molecular dynamics run with HDNNPs trained using BPSF, PSF and PAS.
Left: oxygen–oxygen radial distribution function g(r) averaged over a 2 ns NVT trajectory. g(r) obtained using different SFs
practically show no difference. Right:mean-squared displacements and errors obtained over 2 ns of MD in the NVE ensemble.
Error margins for all lines overlap, suggesting equivalency between all SFs investigated here.

mean-squared displacements obtained fromMD suggest that the small differences in force RMSD over the
test set do not entail significant changes in the quality of the predictions made by the HDNNP. Notably, the
mean-squared displacements (MSD) for PSF and BPSF are virtually identical.

4.2. Copper sulphide
All SF setups used for water were based on the optimised, hand-selected set of [5]. Such a selection by hand
may not always be possible. In the following, we shall further validate the accuracy of PSF and PAS by
comparing their performance to the accuracy of a semi-automatically generated set of BPSFs for copper
sulphide. It has been show in [26] that a HDNNP with BPSFs can be successfully used to observe structural
phase transitions in this compound.

Figure 10 compares absolute and relative force errors obtained using BPSFs of [26] as well as our PSF and
PAS. Force RMSDs are 51.9meV Å−1 for BPSF, 56.7meV Å−1 for PSF and 52.3meV Å−1 for PAS, which
corresponds roughly to a 10% difference between PSF and BPSF. Again, the performance of BPSF and PAS is
on par, whereas use of PSF leads to slightly larger errors, which is also reflected in the relative error
distribution skewing lightly to the right. Overall, however, this effect is expected to remain negligible in
practical applications. Deviations from the diagonal in the graph comparing prediction and reference forces
(figure 10, right panel) do not exhibit visible differences, further indicating that the general performance of
all SF types investigated here remains comparable and that the differences in force RMSDs observed here are
not expected to influence the quality of the predictions in a significant manner. Energy RMSDs remain
similar for all methods, spanning a range from 0.99meV/atom for PAS to 1.06meV/atom for BPSF.
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Figure 10. Force predictions on the Cu2S test set corresponding to 10% of the structures of the training set of [26]. Ref denotes
references forces and nnp the prediction by the HDNNP. Left: predicted (nnp) vs. reference (ref) forces as obtained using BPSF,
PSF and PAS. Shown are the forces largest in magnitude. A deviation from the diagonal indicates an error in the force prediction.
PAS and PSF are better able to train the largest forces in the test set, which is reflected in a smaller deviation from the diagonal.
Right: distribution P(∆F) of relative force errors,∆F= (Fnnp − Fref)/Fref for BPSF, PSF and PAS.

4.3. Organic molecules: gas phase and liquids
In the following, we shall compare the performance of BPSFs generated according to [24] with our PSFs using
an isolated (gas-phase) DMABN molecule and liquid ethyl benzene. We note that optimal SF setups could
possibly be found for all SF types investigated here; however, since this is a time-intensive procedure, the
main purpose of this comparison is to compare the out-of-the-box performance of some generic sets of SFs.

To this end, we introduce a simple generation scheme for radial SF parameters given a minimal and
maximum width,∆min and∆max, and a maximum cutoff radius rc. For N0 SFs which are symmetric w.r.t. to
the origin, we choose the width∆i

0 parameters of the ith out of N0 PSF or PAS as:

∆0
0 = rc (19)

∆i
0 =∆max −

(i− 1)(∆max −∆min)

N0 − 2
; i⩾ 1 (20)

For a given number Ns of SFs which are centred at ris ̸= 0, we obtain shifts and widths∆i
s as:

∆i
s =

2rc
Ns + 1

(21)

ris =
(i− 1)∆i

s

2
. (22)

This partitioning is reminiscent to the one introduced by Gastegger et al in [21]. Angles were chosen to
reflect common structural features encountered in organic chemistry: linearity for triple bonds, 60◦ and
109.1◦ angles to describe double- and single carbon–carbon bonds, respectively. This resulted in the
following angular functions: A wider set centred on ϑ1

0 = 0◦, ϑ1
1 = 90◦ and ϑ1

3 = 180◦ with a width of
∆ϑ1,2,3 = 90◦ each; and an additional set centred on ϑ4

0 = 60◦, ϑ5
0 = 120◦ and ϑ6

0 = 109.1◦, corresponding
to a more specific sampling of environments typical of double- and single bonds, with a width of
∆ϑ4,5,6 = 60◦ each. For sake of comparison, the cutoff function distance for BPSFs and the maximum extent
of PAS and PSF were set to 15 a.u.

Structures in the DMABN-set cover regions of the PES thermally accessible at 1320 K, including a forced
rotation around the amino group along a non-equilibrium path. This results in many forces with large
magnitude which are well outside of the equilibrium regime in which simple harmonic potentials can also
yield good approximations. The DMABN set therefore serves as an assessment for the transferability of our
polynomial SFs to structures which are considerably off-equilibrium.

Force RMSDs on the test set amount to 63.2meV Å−1 for BPSF, 56.6meV Å−1 for PSF and 54.0meV
Å−1 for PAS. Note that this amounts to a difference exceeding 15% between worst (BPSF) and best (PAS) set.
However, the distribution of relative errors remain comparable between all SFs, as evidenced by the force
histogram in the right panel of figure 11. Energy RMSDs range from 0.64meV/atom for PSF to
0.72meV/atom for BPSF, with the overall error remaining low for all types of functions. The force
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Figure 11. Force prediction quality for an isolated DMABN molecule, including a rotation of its amino group along a
non-equilibrium path. Left: predicted (nnp) vs. reference (ref) forces as obtained using BPSF, PSF and PAS. A deviation from the
diagonal indicates an error in the force prediction. PAS forces remain closer to the diagonal than either BPSF and PSF. Right:
distribution P(∆F) of relative force errors,∆F= (Fnnp − Fref)/Fref for BPSF, PSF and PAS. Whereas the distribution for BPSF
and PAS are similar, PSF again skew slightly towards the right.

Figure 12. Force prediction for ethyl benzene in its liquid state. Left: predicted (nnp) vs. reference (ref) forces as obtained using
BPSF, PSF and PAS. A deviation from the diagonal indicates an error in the force prediction. PAS forces remain closer to the
diagonal than either BPSF and PSF. Right: distribution P(∆F) of relative force errors,∆F= (Fnnp − Fref)/Fref for BPSF, PSF and
PAS. Whereas the distribution for PSF and PAS are similar, BPSFs skew considerably to the right, indicating a substantial
difference in accuracy.

predictions obtained here imply that for a generic test set containing a significant amount of off-equilibrium
structures, generic PAS and PSF sets are able to outperform BPSFs.

We will now show that the same considerations also hold for an organic liquid in which van der Waals
interactions dominate. For a test set of liquid ethyl benzene, using the same SF setups as for DMABN, we find
force prediction RMSDs of 89.5meV Å−1 for BPSFs, 68.9meV Å−1 for PSF and 61.7meV Å−1 for PAS,
respectively. This corresponds to a difference in accuracy approaching 50% between BPSF and PAS. Whereas
these considerable differences are not evident from the diagonal force-to-force plot in the left panel of
figure 12, they become visible in the force histogram in the right panel: Histograms for PSF and PAS are very
similar, with the only significant difference being the peak around 0%, but BPSFs skew considerably to the
right, and much more so than what was observed for PSF in the case of water or Cu2S. Energy RMSDs are
about 0.05meV/atom for all SFs studied here, which is of excellent accuracy. For liquid anisole, all SF setups
result in about equally accurate predictions, as evidenced by figure 13: observed force prediction RMSDs
amount to 100.8meV Å−1 for BPSFs and a comparable 106.5meV Å−1 for PSF, with the lowest deviation
again being observed at 98.7meV Å−1 for PAS. All SFs yield energy RMSDs that can be considered identical,
within a small range from 0.08meV/atom for BPSF to 0.11meV/atom for PAS and PSF. Overall, the trends
obtained for force predictions in organic molecules indicate that our generic PAS and PSF setups on average
exhibit superior transferability between systems, while at the same time retaining lower force errors on the
test sets compared to generic BPSFs. Importantly, whereas BPSFs performed considerably worse than
polynomial functions for liquid ethyl benzene, neither PAS nor PSF showed a considerably inferior
performance with respect to BPSF in any of the other systems investigated here. Energy predictions are much
more robust with respect to the choice of system, they remain of comparable accuracy for all SFs investigated
here.
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Table 1.MAE (kcalmol−1) over training, test and validation set of the QM9 database as described in the main text. Note that the dataset
was not normalised.

MAE Training Test Validation

BPSF 1.51 11.21 10.72
PAS 1.63 2.13 2.24

Figure 13. Force prediction for liquid anisole. Left: predicted (nnp) vs. reference (ref) forces as obtained using BPSF, PSF and PAS.
A deviation from the diagonal indicates an error in the force prediction. PAS forces remain closer to the diagonal than either BPSF
and PSF. Right: distribution P(∆F) of relative force errors,∆F= (Fnnp − Fref)/Fref for BPSF, PSF and PAS. Whereas the
distribution for BPSF and PAS are similar, PSF skew slightly towards the right. However, this difference is much less pronounced
than the one observed for BPSF in figure 12.

4.4. QM9 database
In order to pinpoint possible improvements when solely energies are to be treated, we have constructed a set
of wACSF based on PAS and have used this set to predict enthalpies of formation in the QM9 database. In
order to render the training more challenging, and contrary to [21], enthalpies in the dataset were neither
normalised nor rescaled. PAS were set up according to the procedure outlined in section 4.3, employing a
maximum width of 8 Å and using a random choice of 10 000 structures for training (and testing) as outlined
in [21], the remainder being used as a validation set. Mean absolute errors (MAE) over predicted enthalpies
of formation for the remaining≈124 000 molecules of the database were averaged over 5 independent
partitionings into train, test and validation sets as in [21].

As shown in table 1, while performance on the training set is comparable between the best BPSF set
reported in [21] and PAS, the quality of the predictions on test and validation sets within a given selection of
10 000 test- and training structures considerably improves when PAS are used. For the random partitionings
into training and test data studied here, errors obtained from HDNNPs trained with PAS are about 5-fold
smaller than their BPSF counterparts. It should be noted that once BPSF are used to train a HDNNP on an
appropriately normalised and rescaled training set, their performance approaches that of PAS on a
non-normalised test set [21]. This indicates that the robustness of the predictions substantially increases
when PAS are used, as test and validation error are substantially lower even when the dataset is not subjected
to any normalisation.

4.5. Computational footprint
The choice of SFs has an influence on both, the computational footprint of training as well as the cost of
force predictions during production runs. For the former, if SFs can be calculated for all structures in the
training set and then stored, it is mainly the number of SFs that influences performance: more SFs imply
more weights to be optimised and as such result in higher execution times. Memory requirements will grow
as well as the number of SFs increases. Even if a (generic) set of two SFs might comprise the same number of
input functions, pruning of functions that never exceed a certain threshold (typically 10−3) can result in
different set sizes during training. In productive MD runs, SFs have to be recalculated for every new structure
and hence, performance will not only be determined by their sheer number, but also by the number and type
of floating point operations involved in their computation. In the following, we will analyse both
performance-related aspects.

Table 2 lists the cost of running 100 steps of MD for a periodic box containing 360 water molecules using
the HDNNPs investigated here both for a straightforward calculation of all SFs as well as using an optimised
algorithm tailored for distributed memory parallelisation on core processing units (CPUs) as reported in
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Table 2.MD simulation execution time of 360 water molecules (100 timesteps, 4 cores). SFGroups/Caching denotes the algorithmic
optimisations outlined in [27], values in parentheses denote speedups.

Optimisation BPSF PSF PAS

None 37.28 7.72 (× 4.83) 8.07 (× 4.62)
SFGroups/Caching 12.50 6.82 (× 1.83) 6.90 (× 1.81)
Speedup via Opt. × 2.98 × 1.13 × 1.17

Table 3. Number of symmetry functions effectively used during training of the systems investigated here after removing SFs with
amplitudes<10−3. BPSF-parameters were chosen according to [24].

System BPSF PSF PAS

Water 57 62 54
Cu2S 138 162 178
DMABN 893 852 841
Ethyl benzene 272 366 368
Anisole 1025 1057 1036

[27]. The former serves as a measure for the cost of the floating-point operations associated to every SF type;
this corresponds to the limit of all N out of N SFs being independent and differently parametrised. In
comparison with the former, the latter indicates the benefit of underlying algorithmic optimisations; this
however requires that a subset of the N SFs contain identical parameters and cutoff functions in order to
benefit from a grouping and caching strategy. The effective speedups obtained by using PSF or PAS for the
water setup reach almost a factor of 5 when no grouping or caching strategy is applied. This indicates that the
number of expensive floating point operations is significantly reduced when purely polynomial SFs are used.
Vice versa, SF grouping and caching has a much lower influence of execution times of PSF and PAS, where
those optimisations reduce the computational cost by about 15%. As would be expected by the larger
number of terms involved in the evaluation of PAS, their computation is slightly more expensive than the
evaluation of PSF. However, the difference is small enough to be negligible in practice.

In contrast, BPSFs—for which grouping and caching strategies were developed in the first place—benefit
from speedups of up to a factor of 3 when grouping and caching strategies are introduced. Note that, by
construction, PAS and PSF are not intended to require use of optimisation strategies, which is reflected in
comparably modest speedups upon introduction of grouping and caching. Still, even in those cases, PSF and
PAS are almost a factor of 2 faster than BPSF. In addition, it should be noted that PAS yield the lowest RMSD
on water with the smallest total number of SFs; they therefore do not only lower the computational cost, but
also the memory footprint with respect to BPSFs.

Table 3 compares the numbers of SFs effectively used during training after pruning all SFs that never
exceed a magnitude of 10−3. This provides a measure for computational cost and memory requirements.
Apart from ethyl benzene, in which significantly more SFs of BPSF-type were removed during pruning,
numbers are comparable between BPSF, PSF and PAS. It should be noted that all systems except water were
trained with automatically generated sets of SF parameters, which also accounts for the different extent of
functions with maximum amplitude of<10−3 in these setups. In this context, it is interesting to note that in
spite of the structural similarities between anisole and ethyl benzene, for BPSFs, there is a significant
difference in the number of pruned SFs. For PAS and PSF, no such difference can be observed; this can also
account for the larger errors in force RMSDs that are observed when ethyl benzene is trained with a set of
BPSFs. Within the hand-picked set of SFs for water, differences between PSF and PAS are notable, with the
latter allowing for a reduction of about 15% with respect to the former. BPSFs lie in between. This suggests
that, for hand-selected sets, PAS allow for an even smaller number of SFs to be used.

Overall, the performance of PSF and BPSFs was comparable for all systems studied here. Force RMSDs
for water and Cu2S were slightly higher for PSF; however, this was not reflected in the dynamic and structural
properties of water obtained by 2 ns of HDNNP-MD, where results using PSF and BPSFs showed excellent
agreement. On the other hand, for DMABN and liquid ethyl benzene, PSF considerably outperformed
BPSFs. For all systems, PAS were able to outperform either PSF or BPSF. In particular, when used in the
wACSF scheme [21], PAS greatly improve performance over BPSF for data sets that are not normalised,
indicating superior robustness. We therefore strongly recommend PAS for future HDNNP setups, since they
allow to speed up productive MD runs by a factor of 1.8 and further improve accuracy of the HDNNPs. In
particular, due to their floating point cost being lower by about a factor of almost 5, we particularly
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recommend use of PAS for implementations where caching and grouping strategies are not feasible. This can,
for instance, be the case when offloading computation of SFs to graphical processing units, where the
resolution of if-statements and loop breaks associated to optimisation schemes can considerably slow down
computation with respect to purely arithmetic operations. Not least, thanks to their small computational
footprint, PAS can also be used in programs that have not undergone extensive optimisation, and their
simple structure facilitates implementation and calculation of derivatives up to an arbitrary order defined by
the underlying polynomial.

5. Conclusion and outlook

Here, we have introduced a new family of SFs for Behler–Parrinello HDNNPs, based on polynomials with
compact support for both radial and angular environments, which supersedes use of a separate set of radial
cutoff functions. The centres and widths of our PSFs can be freely chosen. This is notably the case for angular
functions, which have so far been restricted to peak at 0◦ or 180◦. As long as symmetry of derivatives on 0◦

and 180◦ is maintained, angular functions can be centred on any point within [0◦,180◦] and their width δϑ
can be freely chosen. We have introduced two types of radial SFs, PSF and PAS, with the former being
point-symmetric on [rs, rs +∆], whereas the latter have a long-range tail reminiscent of the product of a
cutoff function and a Gaussian. Our PSFs considerably simplify the choice of radial SF parameters with
respect to common Gaussian functions, since the position of maxima and minima can be straightforwardly
predicted without having to take into account shifts and asymmetries introduced by a cutoff function.

The accuracy of a PSF- and PAS-based setup with respect to conventional BPSFs was assessed for various
phases of water, for solid Cu2S as well as for organic molecules in the gaseous and liquid phase. For water,
Cu2 and DMABN, PSF, PAS and BPSF all showed excellent accuracy. Structural and dynamic properties
obtained from 2 ns HDNNP-MD of liquid water revealed no relevant differences between the NNPs obtained
with any of the three SF types. In the case of off-equilibrium structures of a DMABN molecule in the gas
phase, PAS and PSF have outperformed BPSFs for force predictions by 15% and improved energy RMSDs by
50%. This situation was much more prominent for liquid ethyl benzene, where force RMSDs over the test set
were more than 50% higher for BPSF than for PSF or PAS. Force prediction errors were generally higher for
liquid anisole, however, they remained highly comparable between all types of SFs studied here. Generally,
PSF performed on par with BPSF, except for ethyl benzene where they performed considerably better. For all
systems studied here, PAS consistently yielded the best results. By using PAS in wACSFs, the predictive power
of a HDNNP trained on 10 000 non-normalised structures of the QM9 database was considerably improved,
with mean absolute errors for training, test and validation set being about five-fold lower than for
BPSF-based wACSFs.

We have demonstrated that HDNNP-MD of liquid water is about two times faster using PSF or PAS
compared to BPSF, constituting a considerable improvement of performance and hence, sampling. In terms
of the floating point operations associated to the evaluation of SFs, we found that use of PSF results in
speedups of a factor of about 5 with respect to BPSF, and speedups associated to the slightly more complex
PAS still exceed a factor of 4.5. The number of SFs used for the systems investigated here were comparable
between PSF, PAS and BPSF, although results for the hand-picked set for water indicate that setups with PAS
can potentially reduce the number of SFs used with respect to common BPSFs, therefore saving on memory
and on the cost of training by reducing the number of fitting parameters. Given the substantial reduction in
extensive floating point operations associated to the use of PSF and PAS, and given that accuracy of generic
sets of PAS is consistently better than that of BPSF, we advocate use of PAS as a method of choice for future
implementations. In particular, their simple structure not only simplifies their implementation and makes
their setup straightforward, but their small computational footprint can also facilitate their porting to
different system architectures without the need for extensive optimisation.

Overall, we have shown that by constructing SFs with compact support, substantial performance gains of
up to a factor of almost 5 can be obtained without impacting accuracy of the resulting HDNNPs. Polynomial
SFs are easy to implement and set up, since they allow for a flexible choice of radial and angular domain do
not require any cutoff functions. Our PSFs therefore lend themselves for all applications of HDNNPs, be it
for equilibrium or off-equilibrium structures of isolated molecules, liquids or solids.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/CompPhysVienna/n2p2 [31].
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exchange-correlation functionals for predicting optical excitation energies in some notorious cases J. Chem. Theory Comput.
14 3184–95

[29] Peach M J G, Benfield P, Helgaker T and Tozer D J 2008 Excitation energies in density functional theory: an evaluation and a
diagnostic test J. Chem. Phys. 128 044118

[30] Ramakrishnan R, Dral P O, Rupp M and von Lilienfeld O A 2014 Quantum chemistry structures and properties of 134 kilo
molecules Sci. Data 1 140022

16

https://orcid.org/0000-0002-6905-3130
https://orcid.org/0000-0002-6905-3130
https://orcid.org/0000-0002-4330-1394
https://orcid.org/0000-0002-4330-1394
https://orcid.org/0000-0001-9166-6235
https://orcid.org/0000-0001-9166-6235
https://doi.org/10.1021/acs.jpclett.9b03664
https://doi.org/10.1021/acs.jpclett.9b03664
https://doi.org/10.1021/acs.jcim.9b00266
https://doi.org/10.1021/acs.jcim.9b00266
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1063/1.4966192
https://doi.org/10.1063/1.4966192
https://doi.org/10.1073/pnas.1602375113
https://doi.org/10.1073/pnas.1602375113
https://doi.org/10.1073/pnas.1815117116
https://doi.org/10.1073/pnas.1815117116
https://doi.org/10.1038/npjcompumats.2015.11
https://doi.org/10.1038/npjcompumats.2015.11
https://doi.org/10.1002/adma.201902765
https://doi.org/10.1002/adma.201902765
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1063/1.469597
https://doi.org/10.1063/1.469597
https://doi.org/10.1039/c1cp21668f
https://doi.org/10.1039/c1cp21668f
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1002/qua.24890
https://doi.org/10.1002/qua.24890
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.4825111
https://doi.org/10.1063/1.4825111
https://doi.org/10.1063/1.5019667
https://doi.org/10.1063/1.5019667
https://doi.org/10.1021/jp401225b
https://doi.org/10.1021/jp401225b
https://doi.org/10.1524/zpch.2013.0384
https://doi.org/10.1524/zpch.2013.0384
https://doi.org/10.1063/1.5024611
https://doi.org/10.1063/1.5024611
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1021/acs.jctc.8b01092
https://doi.org/10.1021/acs.jctc.8b01092
https://doi.org/10.1021/acs.jctc.8b00770
https://doi.org/10.1021/acs.jctc.8b00770
https://doi.org/10.1021/acs.jctc.8b00069
https://doi.org/10.1021/acs.jctc.8b00069
https://doi.org/10.1063/1.2831900
https://doi.org/10.1063/1.2831900
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/sdata.2014.22


Mach. Learn.: Sci. Technol. 2 (2021) 035026 M P Bircher et al

[31] Singraber A et al 2018 N2p2: NeuralNetworkPotentialPackage CompPhysVienna (Available at: https://github.com/
CompPhysVienna/n2p2/) (https://doi.org/https://doi.org/10.5281/zenodo.1344446)

[32] CPMD consortium 2000 CPMD Jointly by IBM Corp. and by Max Planck Institute Stuttgart
[33] Sun J, Ruzsinszky A and Perdew J P 2015 Strongly constrained and appropriately normed semilocal density functional Phys. Rev.

Lett. 115 036402
[34] Plimpton S 1995 Fast parallel algorithms for short-range molecular dynamics J. Comput. Phys. 117 1–19
[35] Plimpton S, Thompson A, Moore S and Kohlmeyer A 2004 LAMMPS Molecular Dynamics Simulator

17

https://github.com/CompPhysVienna/n2p2/
https://github.com/CompPhysVienna/n2p2/
https://doi.org/https://doi.org/10.5281/zenodo.1344446
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039

	Improved description of atomic environments using low-cost polynomial functions with compact support
	1. Introduction
	2. Symmetry functions for high-dimensional neural network potentials
	2.1. Neural networks in a nutshell
	2.2. Behler–Parrinello symmetry functions
	2.3. Polynomial symmetry functions with compact support

	3. Computational methods
	3.1. Training of the HDNNP
	3.2. Training sets
	3.3. Test sets
	3.4. Molecular dynamics using neural network potentials

	4. Results and discussion
	4.1. Water
	4.2. Copper sulphide
	4.3. Organic molecules: gas phase and liquids
	4.4. QM9 database
	4.5. Computational footprint

	5. Conclusion and outlook
	Acknowledgments
	References


