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Abstract
Electron-neutral scattering cross sections are fundamental quantities in simulations of low
temperature plasmas used for many technological applications today. From these microscopic cross
sections, several macro-scale quantities (called ‘swarm’ parameters) can be calculated. However,
measurements as well as theoretical calculations of cross sections are challenging. Since the 1960s,
researchers have attempted to solve the inverse swarm problem of obtaining cross sections from
swarm data; but the solutions are not necessarily unique. To address these issues, we examine the
use of deep learning models which are trained using the previous determinations of elastic
momentum transfer, ionization and excitation cross sections for different gases available on the
LXCat website and their corresponding swarm parameters calculated using the BOLSIG+ solver
for the numerical solution of the Boltzmann equation for electrons in weakly ionized gases. We
implement artificial neural network (ANN), convolutional neural network (CNN) and densely
connected convolutional network (DenseNet) for this investigation. To the best of our knowledge,
there is no study exploring the use of CNN and DenseNet for the inverse swarm problem. We test
the validity of predictions by all these trained networks for a broad range of gas species and we
deduce that DenseNet effectively extracts both long and short term features from the swarm data
and hence, it predicts cross sections with significantly higher accuracy compared to ANN. Further,
we apply Monte Carlo dropout as Bayesian approximation to estimate the probability distribution
of the cross sections to determine all plausible solutions of this inverse problem.

1. Introduction

Plasma science has an admirable track record as an enabling technology that underpin our modern society
and has the potential to make wide-ranging contributions to address many societal challenges [1, 2].
Technologies based on low-temperature plasmas (LTPs) are ubiquitous in today’s society. These include
mature technologies such as fluorescent lamps and gas lasers, for example, as well as other more ‘modern’
technologies in use but still being developed, such as plasma reactors for processing of semiconductors, for
fabrication of microelectronics to name a few [3]. Today, there are extensive research activities and rapidly
emerging applications of LTPs in medicine and in agriculture [4, 5]. LTPs are generated most simply by
applying a sufficiently high voltage across a gas gap separated by two electrodes [6]. The properties of the
plasmas so generated vary considerably with the experimental parameters—gas pressure and composition,
geometrical configuration, means of applying an electromagnetic field (e.g. application of a DC, AC and/or
rf, pulsed or steady-state voltage across the electrodes, injection of microwave) and the specificities of the
external circuit. For purposes of discussion here, we will consider only an applied electric field. LTPs consist
of electrons and ions flowing through a neutral background gas in response to the applied electric field, and,
for many applications, the number density of the neutral molecules exceeds that of the charged particles by
many orders of magnitude. Our knowledge of the electron and ion interactions with atomic and molecular
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Figure 1. Forward problem of mapping from a set of cross sections to a set of corresponding swarm data is kind of well-posed and
can be solved numerically by solving Boltzmann’s equation. On the other hand, the inverse problem is ill-posed and this inverse
mapping function does not exist.

species within the plasma, and evaluation of cross-sections and reaction rates for such collisions has played
an important role in the exploitation of plasmas in several applications [3].

Being much lighter than ions, electrons are more easily accelerated in the electric field that sustains the
plasma, and hence the electrons are the vector through which electrical energy is transferred to the neutrals
through collisions. For a wide range of conditions in LTPs, electrons collide predominately with background
neutral gas molecules in their ground state. In these conditions, the electron energy distribution function is
generally non-Maxwellian and the electron ‘temperature’ is much higher than the temperature of the ions or
that of the neutrals. Because of the huge range of realizable conditions, optimization of a LTP plasma for a
particular application necessarily requires a combination of experiment and modeling. The data required for
modeling LTPs depend on the level of description but are in all cases are extensive [7, 8]. In fluid models,
where the electrons and the ions are treated as separate fluids because of their widely disparate temperatures
are coupled to Maxwell’s equations for the EM. In their simplest form, fluid models require electron and ion
mobilities, diffusion coefficients, and electron ionization/attachment rate coefficients. The product of the
mobility and neutral density, µN; the product of the diffusion coefficient and neutral density, DN; and rate
coefficients are dependent on E/N, the ratio of the electric field strength to the neutral density in the limit of
a constant (in time and space) electric field. These transport and rate coefficients as functions of E/N are
commonly called ‘swarm’ parameters in analogy with a drifting spreading swarm of bees where the average
kinetic energy is much higher than the directed or drift energy. On the other hand, the more detailed kinetic
models (such as particle-in-cell simulations with Monte Carlo collisions) require electron-neutral and
ion-neutral cross sections vs. energy for each possible outcome of the collision, whether it be elastic,
excitation, or ionization. Of course, there are many different possible excitation channels and a cross section
for each as a function of energy is required in general. The future developments in the LTP areas will be based
upon our ability in the manipulation of the plasma properties which requires a thorough understanding of
plasma chemistry, and availability of accurate cross section data and swarm parameters [9, 10]. Swarm
parameters can be measured fairly easily and with very high accuracy (0.5% for the drift velocity, for
example), and since the works of Ramsauer, Mayer, Townsend and Bailey in the early 1920s researchers have
aimed to extract information about microscopic cross sections from measurements of macroscopic swarm
parameters. Cross sections, on the other hand, are much more difficult to measure and highly accurate
quantum mechanical calculations for simple atomic target species are just now becoming available. However,
despite their significance, many plasma processes are not well understood because of the lack of availability
of the required cross sections and its absence is a major impediment for experimentalists as well as
computational investigators.

The complete sets of cross sections include a momentum transfer cross section (MTCS) for elastic
scattering, and cross sections for excitation and ionization processes for a given target species. A partial set
includes a subset of the important scattering processes for that species. Complete sets of cross sections are
needed as input to a Boltzmann equation solver to determine the electron or ion energy distribution
function. Therefore, complete sets of cross section data play an important role in designing new experiments
as well as simulations. A typical inverse swarm problem consists of deriving cross sections from swarm data as
shown in figure 1. The advantage of swarm-derived cross sections lies in the fact that it contain all processes
either explicitly, as individual cross sections, or implicitly within other cross sections [11]. Obtaining cross
sections from swarm parameters was pioneered by Townsend and Ramsauer in the 1920s. The method used
in those early analyses involved inverting the integral relating the drift velocity and MTCS using a simplified
expression of the electron energy distribution. This approach was significantly improved in the 1960s by
Phelps along with other collaborators, employing iterative methods to solve the Boltzmann’s equation to
obtain an accurate energy distribution of the electrons [12–15]. This allowed accurate computation of the
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momentum transfer and lower energy inelastic cross sections from the available swarm data. The iterative
process of inverting the swarm data to obtain cross sections involves solving the Boltzmann’s equation,
calculating the electron energy distribution and altering the model cross sections till a satisfactory match is
found between the original and computed swarm parameters, making it a computationally expensive
problem to solve. To address this issue, [16, 17] used numerical optimization algorithms to help speed up the
process of obtaining cross sections from swarm data. But, the inverse swarm problem is ill-posed, especially
when there is a lack of available swarm data. Therefore, these optimization algorithms would often get stuck
in a local minima due to the non-uniqueness of the inverse swarm mapping.

Neural networks have been successfully used to learn the non-linear mappings between two sets of data,
and once the network has been trained, it can give the outputs in roughlyO(1). Also, it is relatively easier to
avoid local minima during optimization using neural networks. Hoping to utilize these advantages, W L
Morgan investigated the feasibility to use neural networks to solve the inverse swarm problem [18] and
concluded that neural network were indeed useful to determine the cross sections from electron swarm data
but could not achieve high accuracy levels due to the lack of quality cross section data available, along with
various limitations of the commercially available neural net simulator of those times. Artificial neural
networks (ANNs) have been also used to successfully predict the proton impact single ionization double
differential cross sections of atoms and molecules [19].

Since Morgan’s findings in 1991, there has been an increase in the amount of available cross sections and
swarm data (LXCat [20]). Recently, study carried out by Stokes et al [21] verified Morgan’s claims and their
work [22] demonstrated their automatic solution using ANN had an accuracy comparable to that of a
human expert in determining cross sections of the biomolecule tetrahydrofuran (THF) using experimentally
measured swarm data. The obtained THF cross sections can be considered as self-consistent because it
accurately reproduced many of the swarm measurements that were used to derive the cross sections [22].
In [21], they also showed that use of large amount of synthetic training data generated using the real cross
sections available from LXCat indeed gave good results when used to predict elastic momentum transfer and
ionization cross sections of helium and argon. However, the same needs to be verified for a number of
different gas species to safely conclude the feasibility of this machine learning (ML) approach to solve the
inverse swarm problem. Moreover, their study was limited only to the use of ANN, which had minor
improvements over the architecture proposed by Morgan to increase the parameter efficiency and training
speed of the model. Additionally in the last decade, there has been drastic increase in computing power along
with vast improvements of ML algorithms, allowing creation of large and powerful neural networks. There
are numerous applications in computer vision and image processing where other neural network types, such
as convolutional neural network (CNN), outperform ANN’s predictions because of its ability to extract
spatial information. In this problem too, the swarm data which is to be used as an input to the neural
network is in the form of continuous series and thus, it becomes imperative to study performance of the
CNN architectures in solving the inverse swarm problem. Additionally, since this inverse problem in itself is
ill-posed in nature, it is more reasonable to find the entire distribution from which the plausible solutions
can be sampled.

Existing literature suggests that one of the major challenges which modelers often face is associated with
the inconsistency between the available cross sections and swarm measurements. This arises because many
times researchers need to acquire cross section data from disparate sources due to unavailability of self
consistent data. This also leads to guessing cross sections values using intuition and experience. Therefore, it
is important to explore and establish ML based alternative approaches to obtain high quality cross section
data, for the most important collision processes, that is consistent with swarm measurements. One of the
major advantages of this data driven approach is that it provides an effective way to evaluate the accuracy and
self-consistency of cross sections. Thus, in this study, we explore the suitability of deep neural networks to
identify the inverse relationship for a wide range of gas species and assess the efficacy of different neural
network architectures in predicting scattering cross sections from simulated swarm data. Furthermore, we
perform uncertainty quantification (UQ) to estimate the distribution of all the plausible solutions of the
inverse problem. To this end, study exploring the use of CNN and densely connected convolutional network
(DenseNet) for this inverse swarm problem has not yet been reported. In section 2, we describe our complete
data-driven methodology starting from data preparation to the implementation of two new neural networks
(CNN and DenseNet based) for the solution of this inverse swarm problem. In section 3, we present a
detailed comparison of the performance of three neural networks (ANN, CNN and DenseNet) in
determining the cross sections of seven gas species. Reliability of the predictions has been also evaluated by
using an UQ method in section 3.1. Finally, we conclude the paper with a summary of our results and brief
discussion on how accuracy of this data driven approach can be further improved.
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Figure 2. Complete workflow used in this study for solving the inverse swarm problem.

2. Methodology

Our data driven methodology for determining a set of cross sections consistent with swarm parameters
involves several steps such as data collection and profiling, feature engineering, building the suitable ML
models followed by training and evaluation. Figure 2 describes the complete workflow used in this study for
solving the inverse swarm problem. Firstly, complete sets of cross sections for different gas species are
obtained from the LXCat [20] database, however since this data is limited, we generate abundant synthetic
cross sections data. Secondly, using the cross section data, we compute the corresponding swarm coefficients
using the freeware Boltzmann equation solver BOLSIG+ [23]. Thirdly, we perform a feature selection
followed by data normalization. Finally, different neural network models are designed and are trained using
the combination of cross section and swarm data. The predicted results are compared to the cross sections
obtained from LXCat. We then also estimate the complete distribution of the plausible cross sections by
quantifying the uncertainty in the solution using Monte Carlo Dropout [24]. In the following subsections we
provide a detailed description of each of the above mentioned steps.

2.1. Dataset
Efficient training of the neural network to identify an inverse non-linear relationship between swarm data
and cross sections requires abundant training data. Morgan generated these training cross sections using a
power-law model of the form, σ(ϵ) = ϵ0/ϵ

p, where ϵ and p are randomly chosen from (10−17, 10−14) and
(0, 1) respectively [18]. This parameterized method allows to generate an infinite number of training
examples and thus can be considered ideal for ML problems. However, this parameterized equation
represents only a small subset of physically plausible cross sections. To expose our deep learning models to
more realistic data, we use cross sections data for gas species compiled on the LXCat website, shown in
figure 3. The cross sections include the energy-dependent MTCS for elastic scattering, and total (angle
integrated) cross sections for excitation and ionization processes for a given target species. In general, the
probability of a collision of a particular type occurring depends on the relative velocity of the collision
partners and the scattering angle. However, it has been shown that the additional detail regarding angular
scattering has very little effect on the calculated swarm parameters. Note that there are many different
excitation processes with different energy thresholds, and predicting all (or even the most important) of
them is a challenging task. In this work, and for the sake of demonstrating the features of different ML
algorithms, we consider only one excitation cross section; that is, the training data consider only the lowest
excitation process from the compilations available on LXCat. The Boltzmann equation is solved using only
these three input cross sections, and the swarm parameters so calculated are not to be compared with those
tabulated from experiments on the LXCat website, which are generally well predicted when a complete set of
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Figure 3. Complete cross section data of various gas species obtained from LXCat. These consists of Ar, Kr, SF6, Xe, CO2, D2, H2,
He, Ne, O2 and N2 sourced from [25]; Si(CH3)4, CF4 and CHF3 sourced from [26]; C, Be, F, C(2p(2)_1S), C(2p(2)_1D),
Be(2 s_2p_1P), N, C(2p3s_1Po) and C(2p3s_3Po) sourced from [27]; H(1S), H(2P), H(2S), H(3D), H(3P), H(3S), H(4D),
H(4F), H(4P) and H(4S) are sourced from [28]; CH4, H2O, HCl, SiH4, C2H2, and C2H4 are sourced from [29]; O, N-elec, CO
and H are sourced from [30]; C3H6 is sourced from [31]; Cu is sourced from [32]; O2(0.98) is sourced from [33].

cross sections is used. This procedure considerably simplifies the computational requirements and is
expected to correctly demonstrate the capabilities of each of the ML algorithms studied here.

2.1.1. Extrapolation of inelastic cross sections
In this work, we aim to predict elastic momentum transfer, ionization and excitation cross section for the
energies in range (10−1 eV, 102 eV), (100 eV, 104 eV), (10−1 eV, 103 eV) respectively, and as evident from
figure 3, inelastic cross sections of many gas species in LXCat databases are not available for the entire energy
domain under consideration. Thus, we use an analytical expression to extrapolate these cross sections to
higher energies. For the ionization cross sections, we use the parameterization (equation (1)) proposed by
Rost and Pattard [34]:

σ(E) =
kEα

(E+ EM/α)α+1
(1)

where E is the excess energy of the system measured from the ionization threshold, EM corresponds to the
energy where the cross section attains a maximum value, k and α are the parameters which are computed to
obtain the best fit.

Various approximation from quantum mechanics could be used to extrapolate excitation cross sections
to higher energies. However, we have chosen to simply use a power-law relationship, equation (2), to
extrapolate the data:

lnσ(E) = k lnE+C. (2)

2.1.2. Synthetic data generation for training
Deep neural networks require large training datasets for effective performance. The cross section data
obtained from LXCat however, are very limited (complete cross sections of only 46 different gas species) and
clearly insufficient to properly train the model. Therefore, we generate synthetic training examples by
interpolating the actual cross sections. Firstly, all the 46 gas species for which complete sets of data exist on
LXCat are manually classified into three different groups based on the visual inspection of their elastic
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Figure 4. Gas species separated into three different classes based on the characteristics of their elastic MTCS Group 1 consists of
Ar [25], Kr [25], SF6 [25], Xe [25], CO2 [25], Si(CH3)4 [26], CF4 [26], CH4 [29], H2O [29], HCl [29], SiH4 [29] and Cu [32],
Group 2 consists of D2 [25], H2 [25], He [25], C [27], Be [27], C2H2 [29], Ne [25], O2 [25], N2 [25], F [27], C(2p(2)_1D) [27],
C(2p(2)_1S) [27], C2H4 [29], O [30], N-elec [30], CO [30], C3H6 [31] and O2(0.98) [33], and Group 3 consists of CHF3 [26],
Be(2 s_2p_1P) [27], N [27], C(2p3s_1Po) [27], C(2p3s_3Po) [27], H(1S) [28], H(2P) [28], H(2S) [28], H(3D) [28], H(3P) [28],
H(3S) [28], H(4D) [28], H(4F) [28], H(4P) [28], H(4S) [28] and H [30].

MTCS’s characteristics as shown in figure 4. Group-1, Group-2 and Group-3 consists of 12, 18 and 16
different species respectively. To avoid generation of nonphysical cross sections, a new artificial cross section
is calculated by taking a weighted geometric average [21] of two actual cross sections belonging to the same
group using equation (equation (3)):

σnew(ϵ) = σ1−r
1 (ϵ+ ϵ1 − ϵ1−r

1 ϵr2) σ
r
2(ϵ+ ϵ2 − ϵ1−r

1 ϵr2) (3)

where σ1(ϵ) and σ2(ϵ) are the cross sections of gas species belonging to the same group, ϵ1, ϵ2 and ϵ1−r
1 ϵr2 are

the threshold energies of σ1(ϵ), σ2(ϵ) and σnew(ϵ) respectively, and 0≤ r≤ 1 is a uniformly distributed
random variable. This formula generates a physically-plausible cross section and retains the correlation
between the magnitude of a cross section and its threshold energy [21].

Out of the 46 gas species available, we set apart one gas species so that we can later on use our deep
learning model to predict its cross sections and compare that with the actual cross section from LXCat to
determine the accuracy of our model. Then for our training data, we use equation (3) to generate a total of
10 000 different cross sections (figure 5) including the actual complete cross section of 45 different gas
species. Thus, only the cross sections of the gas species for which the model is to be tested is excluded, while
all the other gas species contribute equally in generating these synthetic training cross sections. Through a
simple visual comparison between figures 3 and 5, one can verify that the general trends of synthetically
generated cross sections are indeed similar to those of the actual cross sections. Subsequently, these cross
sections are sampled at 100 discrete log-spaced energy values, between the energy range considered for
prediction. So, we have a total of 106 energy–cross section pairs in our training dataset.

2.1.3. Swarm data calculation and feature selection
Finally, we complete the input–output training pairs by computing the swarm coefficients corresponding to
the cross sections present in our training dataset. Swarm data are computed using the BOLSIG+ [23] solver
for the numerical solution of the Boltzmann’s equation [35], with the cross sections data as input. Swarm
data are calculated at temperature T= 300 K for 100 equally log-spaced reduced electric fields in the range
10−3 Td to 103 Td (1 Td= 10−21 Vm2). Note that BOLSIG+ can extrapolate cross sections to higher
energies if needed for very high E/N.

Mean energy, mobility, diffusion, energy mobility, energy diffusion, total collision frequency, momentum
frequency, total ionization frequency, Townsend ionization coefficient, power, elastic power loss, inelastic
power loss, growth power, maximum energy and drift velocity are 15 different quantities which are included
in the output of the BOLSIG+ solver. However, unlike BOLSIG+, in most Boltzmann solvers, the max
energy is input. Using all of these quantities as input to the neural network is not feasible as it would increase
both the training time of the model and its memory requirements. It might even reduce the overall
effectiveness of the model and hence, we use feature selection to reduce the input data by removing
redundant variables. We compute the Pearson correlation coefficient between all these possible inputs as
depicted in figure 6. Pearson correlation coefficient shown in figure 6 is average of all the gas species except
for helium (assuming He is the test species on which the model will be tested). Features with high correlation
value (>0.85 or<−0.85) are more linearly dependent and hence have almost the same information content,
thus we keep one and drop rest of these highly correlated variables.
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Figure 5. Synthetically generated cross sections data.

Using this feature selection method, we are left with mean energy, mobility, diffusion, Townsend
ionization, elastic power loss and inelastic power loss. However, mean energy, elastic power loss and inelastic
power loss are the swarm coefficients whose data is not readily available on LXCat because these are generally
not experimentally measured and thus we drop them from our feature set because in the long-term, we
would like to apply our methodology to analysis of experimental swarm data. However, as a future study, it
will be interesting to see how the results will get affected if we include these three parameters in the data.

2.2. MLmethods andmodel training
2.2.1. Data normalization
Cross sections along with swarm data scale across many orders of magnitude. Directly using this data to train
the neural network will severely impede neural network’s ability to learn meaningful trends in the data. Also,
large input values would result in large weight values of the neural networks, making them highly unstable.
Small input values having zero mean and standard deviation of one are generally considered as ideal for
neural networks, and thus we log transform everything (equation (4)) and then subsequently normalize it to
[−1, 1] range (equation (5)):

y= log(x) (4)

z= 2

(
y− ymin

ymax − ymin

)
− 1. (5)

If the data value is zero, then it is replaced by sufficiently small positive quantity (δ= 10−50) before applying
the log transformation.

2.2.2. Neural network architecture
Input to our network consists of different swarm parameters—mobility (µN), diffusion coefficient (ND) and
Townsend ionization coefficient (α/N)—measured at 100 distinct reduced electric fields E1/N, E2/N,…,
where N (or n0) is the number density of the background neutrals. We use neural network itself to estimate
the cross sections as function of energy. Thus, energy ϵ is also added to the input to the neural network and
output is the single value of cross section corresponding to that energy, σ(ϵ)
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Figure 6. Pearson correlation coefficient of different swarm parameters obtained from BOLSIG+.

x=



ϵ
Nµ(E1/N)
Nµ(E2/N)

...
ND(E1/N)
ND(E2/N)

...
α/N(E1/N)
α/N(E2/N)

...



, y= σ(ϵ). (6)

Neural networks are composed of several artificial neurons. The structure of these neurons and its
connections play an important role in inferring the function which maps the input to the output. Hence, we
test different neural networks to study these performance changes. ANN is the most basic form of neural
network and its use to solve the inverse swarm problem has been proposed in [18]. Minor improvements
were made to this architecture by [21], which made the network simpler and faster to train. This ANN
architecture has three hidden layers, each having 128 neurons, with swish as non-linear activation function,
where swish(x) = x/(1+ exp(−x)). We consider this as our benchmark architecture.

For our other model, we implement a 1D CNN [36] because of its ability to extract spatial information
from the input data, which is in the form of continuous series. Various CNN architectures were trained to
determine optimal hyper-parameters and figure 7(a) shows the one for which the best results were obtained.
Features from the different swarm coefficients are extracted by three successive blocks, each consisting of
batch normalization (BN) layer, convolutional layer with 64 filters and kernel size of 5× 1, and a swish
activation layer. This is followed by an average pooling layer, which is then flattened and passed to two fully
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(a) Convolutional Neural Network

(b) DenseNet

Figure 7.Neural network layouts used in this study. Various CNN and DenseNet architectures with different hyperparameters like
number of convolutional filters, kernel size, number of hidden layers and the choice of activation function were implemented, and
the layout having best performance has been finally chosen.

connected layers along with the energy input. FC layers have 256 and 64 neurons with swish activation
function. Finally, it is connected to the linearly activated single output neuron.

DenseNet is extension of CNN, which provides substantial performance improvement with comparison
to previous CNN architectures [37] and hence, we try 1D-DenseNet architecture as our third model.
DenseNet improves the information flow between the layers by introducing direct connections from any
layer to all subsequent layers. This also leads to feature reuse throughout the network and hence, it requires
fewer parameters than a CNN architecture to achieve similar performance (Parameter efficiency). The
concatenation of feature maps of all preceding layers, x0,x1, . . . ,xl−1 are provided as input to the lth layer:

xl =Hl([x0,x1, . . . ,xl−1]). (7)

The composite block Hl consists of three successive layers: BN, followed by swish activation and a
convolution layer.

We trained and tested different DenseNet layouts having 3–6 such composite blocks, where the number
of convolution filters in each block were kept constant (32 filters) and zero padding was applied to each end
of the input so as to keep the feature map’s size fixed. Highest accuracy levels were achieved for DenseNet
having five composite layers Hl (figure 7(b)). We use longer convolution kernel to begin with, and gradually
decrease its size in the subsequent layers. Concatenation of all these different length features allows the
network to learn short-term as well as long-term trends from the swarm data but on the downside, these
accumulated features substantially increases the model size. Hence, we use a 1× 1 convolution followed by
average pooling, to reduce the dimension of feature map and avoid overfitting before passing it, along with
energy input, to two fully connected layers having size 128 and 64, with swish activation.
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The output layer in each of the architectures is a single neuron corresponding to the cross section being
predicted. Hence, we need to train three separate models to predict elastic momentum transfer, ionization
and excitation cross sections, for each architecture discussed above. This also allows the network to have
feature maps pertinent to each cross section type. This separate training can be eliminated if the output layer
is increased to three neurons, one for each cross section type. However, this would severely inhibit the
network’s capability as it would force the network to work with same feature maps even for different types of
cross section. Thus, we avoid simultaneous prediction of different cross section types.

Purely from the ML perspective, neural networks are trained to improve their predictions by heavily
penalizing large errors. Although this seems logical, Stokes et al [21] found that using L2 loss actually
provided worse results than L1 loss for the inverse swarm problem due to the inherent uncertainty in the
solution of this inverse problem and consistently trying to fit these uncertain cross sections impeded the
model’s overall performance. Hence, we also choose mean absolute error (L1-norm) as it is less sensitive to
large errors, but make a slight modification to improve model’s performance. As discussed earlier,
zero-valued cross sections are replaced with a small threshold value δ= 10−50 before performing data
normalization. This is just an approximate value of δ and clearly it would be wrong to penalize the network if
the predicted value lies in the range [0, δ]. Thus, we use a custom L1 loss function

L(y, ŷ) =
1

N

N∑
i=1

|max(yi,∆)− ŷi| (8)

where N is the number of training examples, yi is the model’s prediction, ŷi is the target value and∆ is log
normalized value of δ calculated using equations (4) and (5). This loss function clips the predicted output if
it is less than∆, allowing the network’s final prediction to be less than δ without any penalty. This slight
modification significantly improves the prediction results of ionization and excitation cross sections.

The training dataset is divided into batches containing 103 samples and all the models are trained by
minimizing equation (8) using Adam optimizer [38] with learning rate of 10−4 and exponential decay rates
of the first moment (β1) and second moment (β2) as 0.9 and 0.999 respectively. The models were
implemented using Keras (2.3.0) [39] with Tensorflow (2.2.0) backend [40] having GPU support.

2.2.3. Determining training duration
During the iterative training of our neural networks, its error on the training set continuously decreases.
However, the same does not apply on its generalization error (errors on unseen data), which actually begins
to increase after a point in training (overfitting) and hence, ideally we must stop training our network when
the generalization error is the least. Since it is not possible to calculate the generalization error explicitly, we
try to roughly determine it using k-fold cross-validation as dividing our data simply into training and
validation dataset is not feasible due to the insufficient availability of the actual cross sections. Each of the
three groups of gas species divided earlier (figure 4) are subdivided in two separate parts (randomly) to form
a total of six parts. Of these six parts, one part is kept as validation data and the remaining five parts will be
present in training data set. The synthetic cross sections, which are generated using equation (3) from two
cross sections σ1 and σ2 will be split as per the following criteria—if both σ1 and σ2 belong to the newly
formed training dataset, then this artificial cross section too will be added to the training dataset whereas if
both σ1 and σ2 belong to the newly formed validation dataset, then it will be added to the validation dataset.
Then, we train the networks on this newly formed training dataset and monitor the changes in validation
error at each epoch. This process is repeated six times, with each of the six parts used exactly once in the
validation data. This ensures that no data is wasted and our models get the opportunity to train on multiple
train-validate splits. All the six validation errors are averaged at each epoch and this averaged validation error
can be considered as a close substitute for the generalization error. Thus, we determine the optimal number
of epochs when this averaged validation error reaches a minimum value. Later while testing our models, we
will train them again on all the 106 examples (no division into training-validation dataset) for this optimal
number of epochs.

3. Results

All the architectures—ANN, CNN and DenseNet—were trained to separately predict elastic momentum
transfer, ionization and excitation cross sections using a total of 106 examples which were generated using the
process described earlier. These trained models were used to predict the unseen cross sections of
nitrogen (N2), argon (Ar), helium (He), fluorine (F), methane (CH4), oxygen (O2) and sulphur
hexafluoride (SF6). Here, we would like to explicitly state that even though only one cross section type was
predicted at a time, no assumption was made whatsoever regarding the values of other cross section types
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(a) Nitrogen(N2)[Actual [25], Others [32,41]] (b) Argon(Ar)[Actual [25], Others [27,29–31,42,43]]

(c) Helium(He)[Actual [25], Others [30,42,43]] (d) Fluorine(F)[Actual [27], Others [27]]

(e) Methane(CH4)[Actual [29], Others [30,43,44]] (f) Oxygen(O2)[Actual [25], Others [33,41]]

(g) Sulfur hexafluoride(SF6)[Actual [25], Others [45]]

Figure 8. Prediction of elastic MTCS of various gas species. Actual CS represents the cross section which was used to generate the
swarm data required as the input to the trained models. It is to be noted that in some cases ‘Other CS data available on LXCat’
(shown in gray color) consists of both elastic momentum transfer and total elastic scattering cross sections. The gray lines simply
provides some estimation of the inherent variations in determination of cross sections already available in the literature.

while predicting a particular cross section—i.e. while estimating the elastic MTCS of a gas species, we do not
provide any details about the values of its ionization or excitation cross sections. We test the trained models
for such a wide range of gas species, having different physical and chemical properties, to ensure robust
performance.

Figures 8–10 shows the comparison between different architecture’s estimate of elastic momentum
transfer, ionization and excitation cross sections respectively, with the cross sections available on LXCat.
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(a) Nitrogen(N2)[Actual [25], Others [30,32,33,41,43,44,

46]]
(b) Argon(Ar)[Actual [25], Others [27,29–32,42,43,46]]

(c) Helium(He)[Actual [25], Others [30,32,33,42,46]] (d) Fluorine(F)[Actual [27], Others [27]]

(e) Methane(CH4)[Actual [29], Others [43]] (f) Oxygen(O2)[Actual [25], Others [30,33,41,44,46]]

(g) Sulfur hexafluoride(SF6)[Actual [25], Others [25,32,

43,45,46]]

Figure 9. Prediction of ionization cross sections of various gas species. Actual CS represents the cross section which was used to
generate the swarm data required as the input to the trained models. It is to be noted that in some cases ‘Other CS data available
on LXCat’ (shown in gray color) consists of both individual ionization processes as well as sums of all ionization processes. The
gray lines simply provides some estimation of the inherent variations in determination of cross sections already available in the
literature.

There are multiple databases on LXCat which contain the cross section sets of the same gas species, but still
have slight variations among them. So to access the accuracy of our model, we select cross sections from only
one database for a given gas species. For gas species N2, Ar, He, O2 and SF6, cross sections (Actual CS
depicted in the figures 8–10 with black line) are sourced from the Biagi database [25], while those of F and
CH4 are taken from BSR [27] and Hayashi [29] database respectively. These cross sections were used to
generate the simulated swarm data of these gas species using BOLSIG+, which were then used as the input to
our trained model to predict the cross sections. Cross sections, sourced from other databases available on the
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(a) Nitrogen(N2)[Actual [25], Others [25,30,32,33,41,43,

46,47]]
(b) Argon(Ar)[Actual [25], Others [25,27,29–33,42,43,46]]

(c) Helium(He)[Actual [25], Others [25, 30, 32, 33, 42, 43,

46]]
(d) Fluorine(F)[Actual [27], Others [27]]

(e) Methane(CH4)[Actual [29], Others [29,30,43]] (f) Oxygen(O2)[Actual [25], Others [25,30,33,43,46]]

(g) Sulfur hexafluoride(SF6)[Actual [25], Others [25,32,

43,45,46]]

Figure 10. Prediction of excitation cross sections of various gas species. Actual CS represents the cross section which was used to
generate the swarm data required as the input to the trained models.

LXCat, are plotted on the same graph (labeled as Other CS data available on LXCat) just to give an estimate
of the inherent variations in the values of cross sections available in the literature from past research works.
Figure 11 shows the similar comparison for the total cross sections, which is calculated by summing elastic
momentum transfer, ionization and excitation cross sections. The predicted cross sections are again used to
calculate the corresponding swarm coefficients using the BOLSIG+ solver and its comparison with the
swarm coefficients calculated using the actual cross sections is shown in figure 12.
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(a) Nitrogen (N2) (b) Argon (Ar)

(c) Helium (He) (d) Fluorine (F)

(e) Methane (CH4) (f) Oxygen (O2)

(g) Sulfur hexafluoride (SF6)

Figure 11. Predicted total cross sections of various gas species.

As evident from figures 8 and 9, prediction of both elastic momentum transfer and ionization cross
sections, from all the three neural network architectures, agrees reasonably well over the entire energy range
with the experimentally measured cross sections obtained from LXCat. Further, to quantitatively compare the
performance of different architectures, we use three different metrics: mean absolute error (log-normalized
scale), coefficient of determination (R2) and mean absolute relative percentage difference (MARPD):
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(a) Nitrogen (N2)[Actual [25] (b) Argon (Ar)[Actual [25]

(c) Helium (He)[Actual [25] (d) Fluorine (F)[Actual [27]

(e) Methane (CH4)[Actual [29] (f) Oxygen (O2)[Actual [25]

(g) Sulfur hexafluoride (SF6)[Actual [25]

Figure 12. Comparison of swarm parameters reconstructed using—actual cross sections available on LXCat vs. DenseNet’s
predicted cross sections.

MARPD=
1

N

N∑
i=1

∣∣∣∣100× yi − ŷi
|yi|+ |ŷi|

∣∣∣∣ (9)

where N is the number of data points, yi is predicted value and ŷi is the true value. Mean absolute error on
log-normalized scale depicts the error as seen by the model (test loss). Coefficient of determination (R2)
quantifies the degree of correlation between the actual and the predicted values. Its value lies between
(−∞, 1], with 1 representing complete dependency between the quantities being compared. MARPD
provides a standardized error value, which is not only comparable but also more interpretable even to those
unfamiliar with the measurement scale of electron cross sections. These three metrics collectively provide a
better understanding of network’s performance compared to what a single metric alone provides.

From the performance metrics (shown in table 1), we can safely conclude that the DenseNet architecture
performs significantly better compared to CNN, which in turn yield better results than ANN architecture for
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Table 1. Performance metrics of all architectures implemented in this study.

ANNa CNN DenseNet

Species Cross section MAE R2 MARPD MAE R2 MARPD MAE R2 MARPD

N2 Elastic 0.0285 0.578 7.17% 0.0224 0.615 5.65% 0.0186 0.637 4.67%
Ionization 0.0164 0.991 5.65% 0.0083 0.991 3.04% 0.0080 0.996 2.99%
Total 0.0302 0.468 7.57% 0.0239 0.504 5.99% 0.0205 0.567 5.16%

Ar Elastic 0.0661 0.724 15.95% 0.0584 0.662 14.23% 0.0315 0.931 7.90%
Ionization 0.0407 0.867 14.99% 0.0165 0.968 5.52% 0.0079 0.994 2.93%
Total 0.0597 0.722 14.46% 0.0551 0.659 13.46% 0.0274 0.935 6.88%

He Elastic 0.0067 0.986 1.70% 0.0048 0.997 1.21% 0.0032 0.999 0.81%
Ionization 0.0125 0.970 4.67% 0.0081 0.989 2.62% 0.0085 0.975 3.17%
Total 0.0062 0.985 1.58% 0.0043 0.997 1.09% 0.0045 0.998 1.15%

F Elastic 0.0205 0.803 5.18% 0.0143 0.931 3.62% 0.0104 0.986 2.65%
Ionization 8.8971 −964 70.51% 0.1307 −10.7 35.65% 0.0411 0.836 12.97%
Total 0.0189 0.814 4.78% 0.0148 0.929 3.74% 0.0102 0.987 2.56%

CH4 Elastic 0.0293 0.872 7.39% 0.0198 0.978 5.01% 0.0165 0.980 4.17%
Ionization 0.0332 0.902 11.29% 0.0139 0.995 4.87% 0.0180 0.953 6.56%
Total 0.0519 0.833 12.85% 0.0276 0.978 6.95% 0.0183 0.978 4.64%

O2 Elastic 0.0129 0.889 3.28% 0.0104 0.948 2.61% 0.0079 0.946 2.01%
Ionization 0.0630 0.719 20.04% 0.4706 0.991 7.46% 0.0252 0.980 8.11%
Total 0.0165 −0.281 4.16% 0.0137 0.619 3.47% 0.0112 0.773 2.84%

SF6 Elastic 0.0178 0.973 4.50% 0.0169 0.980 4.27% 0.0125 0.986 3.17%
Ionization 0.0385 0.951 13.85% 0.0173 0.967 6.05% 0.0156 0.975 5.78%
Total 0.0154 0.980 3.90% 0.0169 0.982 4.82% 0.0122 0.987 3.08%

a ANN architecture adopted from [21].

predicting the elastic momentum cross sections over the entire energy domain considered, of all the gas
species considered in our study. A common trend across all the gas species in prediction of elastic MTCS is
that all the three architectures predict the cross section with significantly higher accuracy for the range
30–100 eV. To further comment on the accuracy of the architectures, we analyzed the prediction trends of
individual gas species in detail. Nitrogen’s elastic MTCS has a characteristic peak between 2 and 2.5 eV, which
is not present in any of the other gas species used in the training data and thus, both ANN and CNN fail to
predict this peak. This is due to a quantummechanical effect specific to N2 in this energy range and it may be
difficult to teach the network about the same. DenseNet, on the other hand, does notably better in predicting
the presence of this peak, yet, its estimate of the energy at which it occurs is off by ~0.5 eV. Likewise, argon
has Ramsauer–Townsend minimum whose value is significantly lower than all other gas species considered
in the training data (another quantum mechanical effect). Still, DenseNet is able to predict the presence of
Ramsauer–Townsend minimum at the correct energy value, only erring slightly in determining its
magnitude, whereas both CNN and ANN fail to even determine the presence of this minimum. Such trends
are observed in prediction of elastic MTCS of all other gas species too, wherein DenseNet is able to determine
the characteristic local maximum/minimum values and its locations with remarkably higher accuracy
compared to ANN or CNN architecture. The size of the convolution kernel basically determines the receptive
field of the network. Our use of convolution kernels of varying sizes allowed the DenseNet architecture to
have small as well as large receptive field and this gives the network the capability to train on both small and
long range correlations, which can be equally important in making predictions about the cross sections. We
believe this allowed the DenseNet architecture to better understand the trends of swarm data which in turn
lead to this enhanced performance. Also, layers in the DenseNet architecture receive additional supervision
from the loss function through shorter connections, alleviating the vanishing gradient problem and
improving the flow of information and gradients throughout the network. This deep supervision provided
by the DenseNet could also be one of the reasons for this improved accuracy of the predicted cross sections.

For predicting the ionization cross sections, both DenseNet and CNN gives equally good results
compared to ANN over the entire energy domain, according to the performance metrics. Moreover, even
though no prior information about the threshold energy of ionization cross sections was provided to any
neural network, both CNN and DenseNet were able to predict the threshold energy of all gas species, with an
accuracy up to one decimal place. Specifically for the case of fluorine, all the three models somewhat struggle
to determine the ionization cross section with accuracy as compared to other predictions. This is purely due
to the fact that the ionization cross section of fluorine is unusually lower than the ionization cross sections of
the other gas species in the training data and thus can be considered as an outlier.
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Table 2. Performance metrics of reproduced swarm coefficients by predictions of all architectures implemented in this study.

ANNa CNN DenseNet

Species Swarm coefficient R2 MARPD R2 MARPD R2 MARPD

N2 Mobility 0.592 16.61% 0.970 6.38% 0.915 6.41%
Diffusion 0.868 19.15% 0.955 5.71% 0.989 6.18%
Townsend ionization 0.998 6.47% 0.998 6.37% 0.999 5.05%

Ar Mobility 0.877 10.02% 0.901 10.99% 0.944 3.44%
Diffusion 0.673 8.54% 0.726 8.34% 0.901 4.77%
Townsend ionization 0.967 20.93% 0.989 19.41% 0.999 14.97%

He Mobility 0.999 0.78% 0.999 0.74% 0.999 0.72%
Diffusion 0.990 1.85% 0.998 1.35% 0.997 1.49%
Townsend ionization 0.988 14.48% 0.985 13.12% 0.996 2.51%

F Mobility 0.906 6.54% 0.996 3.88% 0.999 6.043%
Diffusion −0.75 17.96% 0.356 12.03% 0.987 7.78%
Townsend ionization 0.098 32.24% 0.658 26.67% 0.982 17.58%

CH4 Mobility 0.712 12.08% 0.716 8.01% 0.966 7.26%
Diffusion 0.001 21.83% 0.662 9.97% 0.933 7.41%
Townsend ionization 0.989 12.43% 0.999 6.25% 0.995 9.29%

O2 Mobility 0.907 8.38% 0.967 8.26% 0.984 4.39%
Diffusion 0.877 7.24% 0.862 9.58% 0.948 4.92%
Townsend ionization 0.967 12.88% 0.998 12.78% 0.995 3.13%

SF6 Mobility 0.923 5.47% 0.972 3.09% 0.990 1.71%
Diffusion 0.978 5.69% 0.990 3.79% 0.998 2.60%
Townsend ionization 0.996 6.02% 0.999 5.17% 0.998 0.98%

a ANN architecture adopted from [21].

As discussed earlier, it is important for the predicted cross sections to not only be accurate but must also
be self-consistent. Swarm data provide a useful way to check the self-consistency of the cross sections. Thus,
we reproduced the swarm data using the predicted cross sections and found them to be consistent with the
swarm data that was calculated using the actual cross sections, as shown in table 2.

Prediction of excitation cross sections by all the architectures differ substantially from the actual cross
sections. A possible reason for the same is that the swarm data themselves provide less information about the
excitation cross sections compared to elastic momentum transfer and ionization cross sections. This
assumption is backed up by a comparison of the two sets of swarm parameters, as depicted in figure 12. The
first being calculated from predicted elastic momentum transfer, ionization and excitation cross sections,
while the second set of swarm parameters is calculated using the actual elastic momentum transfer,
ionization and excitation cross sections. Another point to be noted here is that only the lowest threshold
processes is used in the training and for many cases, this is far less than the sum of all the excitation cross
sections. Although the predicted excitation cross sections differed substantially from the actual cross section,
the same is not replicated in the comparison of swarm parameters, whose metrics (table 2) are almost
consistent with those predicted of elastic momentum transfer and ionization cross sections’ predictions.
Thus, we can attribute lack of information content about excitation cross sections in swarm coefficients as
one of the possible reasons behind the inaccuracy of predicted excitation cross sections. However, this
requires a more detailed investigation in future.

3.1. Uncertainty quantification
Solutions obtained using deep learning methods have some inherent uncertainty. Quantifying this
uncertainty would assist us in determining the reliability of the predictions. Moreover, the mapping of
swarm coefficients to cross sections is non-unique—there exist multiple cross sections which map to the
same swarm coefficient and the probability distribution of the cross sections generated by the UQ allows us
to sample all these plausible solutions.

Bayesian neural networks (BNNs) [48] predicts the complete probability distribution of the output
variable and hence are most suited to determine the model uncertainty. Yet, BNNs are not frequently used
due to its high computational cost. Thus, Monte Carlo Dropout [24] is generally used as an approximate
Bayesian inference and we apply this to quantify the uncertainty in our inverse solution. It is implemented by
first replicating the DenseNet architecture outlined previously. Subsequently, a dropout of 20% is introduced
in the dense layers. These neurons are disabled randomly during both the training and the testing phase.
Therefore, every time an input value is passed to the model, different values are predicted which are sampled
from some probabilistic distribution. We deduce this distribution by sampling a total of 104 estimated cross
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(a) Nitrogen (N2) (b) Argon (Ar)

(c) Helium (He) (d) Fluorine (F)

(e) Methane (CH4) (f) Oxygen (O2)

(g) Sulfur hexafluoride (SF6)

Figure 13. Uncertainty in prediction of elastic cross sections of various gas species.

sections, and the results are shown in figures 13–15, which depict the confidence intervals in which the cross
section value might lie. We observe a general trend for all gas species except helium, that the model has a
higher uncertainty in determining elastic MTCS at low energies (0.1–0.8 eV) compared to that at high energy
values. Conversely, the model has higher uncertainty in predicting the ionization cross section at higher
energies (>4000 eV). Additionally, we find that the model is absolutely certain about the predicted
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(a) Nitrogen (N2) (b) Argon (Ar)

(c) Helium (He) (d) Fluorine (F)

(e) Methane (CH4) (f) Oxygen (O2)

(g) Sulfur hexafluoride (SF6)

Figure 14. Uncertainty in prediction of ionization cross sections of various gas species.

ionization threshold energy but is less certain in determining the peak value of the ionization cross section,
even though it gives almost accurate results for both of these quantities. Further, the uncertainty in
predicting the excitation cross sections is more compared to both elastic momentum transfer and ionization
cross section and as suggested earlier, the lack of information content about the excitation cross sections in
swarm data, could be one of the possible reasons for this higher uncertainty of excitation cross sections.
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(a) Nitrogen (N2) (b) Argon (Ar)

(c) Helium (He) (d) Fluorine (F)

(e) Methane (CH4) (f) Oxygen (O2)

(g) Sulfur hexafluoride (SF6)

Figure 15. Uncertainty in prediction of excitation cross sections of various gas species. ‘Actual’ curves shown here correspond to
only a part (only the lowest energy process) of real excitation.
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4. Conclusion

We have presented a data-driven approach, to obtain cross sections from the corresponding swarm data
using different deep learning models which are trained upon the synthetic data generated from cross sections
available on the LXCat. We have demonstrated the feasibility and the robustness of this deep learning based
approach, by testing the trained networks to predict the elastic momentum transfer, ionization and
excitation cross sections of various gas species, having diverse physical and chemical properties, and found
the predicted cross sections to be consistent with the cross sections for elastic momentum transfer and
ionization. Also, the swarm coefficients calculated using the predicted cross sections agrees reasonably well
with those calculated using the cross sections sets for each species from LXCat (considering only the lowest
energy excitation process). We have quantitatively analyzed the performance of three different neural
network architectures (ANN, CNN and DenseNet) in finding the solution to the inverse swarm problem and
found that the DenseNet, due to its ability to effectively extract both long and short term trends from the
swarm data, significantly outperformed ANN used in previous works, as indicated by the ensemble of
metrics used to access the accuracy of the architecture. In summary, we have tested our models on a wide
range of gas species, used more performance metrics for statistical analysis and determined cross sections
over a greater energy range compared to previous works based on ANNs. Finally, the UQ of the model
provides us a good estimate of the probability distribution of the cross sections from which all the physically
plausible solutions of this inverse swarm problem can be sampled. Based on our results, we can conclusively
say that CNN based models, particularly DenseNet, are better compared to ANN models in accurate
determination of cross sections from swarm data. Interestingly, unlike ANNs, DenseNet could also predict
characteristic peaks in specific energy ranges present in some gas species such as nitrogen and argon; these
peaks are due to quantum mechanical effects and require domain expertise for such analysis. These
significant improvements in prediction accuracy and pattern recognition while using DenseNet will provide
the required confidence to the LTP community to accept such data driven approaches. However, additional
work is needed before using actual swarm measurements (experimental) as input to such models. Many real
gas species have multiple excitation cross sections and they all have an effect on the corresponding swarm
coefficients but our proposed model is trained upon the swarm data which is computed using only a single
excitation cross sections. Future works should address this issue.

The performance of deep learning models is highly dependent upon the training data fed to it. In this
work, we have generated synthetic training data by interpolating the actual cross sections which have been
categorized based on the characteristics of elastic MTCS. This approach is sufficient to provide the model
with a large amount of data to train upon but clearly limits new trends in the synthetic data. Thus, we believe
the performance of these neural networks would further improve if we actually use a sophisticated synthetic
data generation scheme which can provide artificial cross sections which are physically-plausible, yet have
unique trends of their own. One such possible approach is to use generative adversarial networks (GANs),
which is a ML framework used to extract complex features from a dataset and based on it, generate
completely new data with random noise as input. Work on improving the quality of synthetic data with the
use of GANs is currently underway. Also, as discussed earlier, swarm data provides a useful way to assess the
self-consistency of the cross section set and we think that the neural networks’ performance can be further
improved if a custom loss function is used, which somehow also takes into consideration the errors on the
swarm data calculated from the predicted cross sections. This feedback would force the neural networks to
focus on maintaining the self-consistency of the predictions along with improving its accuracy and the future
works could address this potential improvement.
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