
IJICIS. Vo116 No. 3 July 2016

International Journal of Intelligent Computing and
Information Sciences

OPPONENT MODELS PREPROCESSING IN REAL-TIME
STRATEGY GAMES

M. A. Mourad, M. M. Aref and M. H. Abd-Elaziz

Computer Science and Basic Sciences Department, Faculty of Computer and Information Sciences, AM Shams University,
Cairo, Egypt.

Mourad.Aly@cis.asu.edu.eg, Mostafa.Aref@cis.asu.edu.eg, MHAziz@cis.asu.edu.eg

Abstract: Creating a human-like computer player in real-time strategy games requires huge number of
opponent models, these models must be preprocessed to either focus on accuracy or performance
according to our needs. In order to preprocess these models accurately, we need to detect their type.
Opponent models' type can be complex or simple. Complex opponent models are low variance models
whose differences in features' values are low, so in order to accurately separate between these models,
we need to preprocess them by increasing their dimensions. Simple opponent models are high variance
models whose differences in features' values are high, so in order to separate between these models in a
reasonable time, we need to preprocess them to decrease their dimensions, if possible, without accuracy
or data loss.

Keywords: Opponent modeling, adaboost, rough sets, clustering, real-time strategy games, its

1. Introduction

Opponent modeling in real-time strategy (RTS) games has a significant interest to the AI community.
Robust opponent models could improve automated agents, for example by augmenting the strategy
representations used in some architectures or guiding the Monte-Carlo simulations of an opponent.
They could be incorporated into intelligent systems and they could be assistants to help human players
reason about the state of the game and predict an opponent's future actions. They could also be used in
the analysis of game play, to automatically identify common strategic elements or discover novel
strategies as they emerge. Achieving victory in RTS games depends on selecting a suitable plan (set of
actions), selecting a suitable plan depends on building an imagination (building a model) of the
opponent to know how to deal with. This imagination is the opponent model, the stronger the opponent
modeling process is, the more accurate the selected suitable plan is and consequently the higher
probability achieving the victory is. Our methodology includes two steps, the first step is to detect the
opponent models' type and the second step is to generate another data set based on the type detected.
The generated data set is a preprocessed version of the opponent models which is used, later on, in the
classification process for training and testing. The output of the classification process is the opponent's
strategy. By "strategy" we mean a player's choice of units and structures to build, which dictates the
tone of the game. Our models are learned from collections of replay files [1].

37

Mourad al al ponent Models Preprocessing In Real-Time Strategy Games

This paper is organized as follows. Section 2 covers the background of RTS games and opponent
modeling, section 3 proposes our approach, section 4 presents a Star Craft 2 case study and section 5
concludes our approach.

1.1 Background

1.1.1 Real-time strategy games

Real-time strategy (RTS) games are strategic war games where two or more players operate on a virtual
battlefield, controlling resources, buildings, units and technologies to achieve victory by destroying
others. In an RTS game, players control many units and structures by issuing orders from an overhead
perspective in real-time in order to gather resources, build an infrastructure and an army, and destroy
the opposing player's forces. The real-time aspect comes from the fact that players do not take turns, but
instead may perform as many actions as they are physically able to make, while the game simulation
runs at a constant frame rate (24 frames per second in Star Craft) to approximate a continuous flow of
time. Some notable RTS games include Dune II, Total Annihilation, Warcraft, Command & Conquer,
Age of Empires, and Star Craft series.

Generally, each match in an RTS game involves two players starting with a few units and/or structures
in different locations on a two-dimensional terrain (map). Nearby resources can be gathered in order to
produce additional units and structures and purchase upgrades, thus gaining access to more advanced in-
game technology (units, structures, and upgrades). Additional resources and strategically important
points are spread around the map, forcing players to spread out their units and buildings in order to
attack or defend these positions. Visibility is usually limited to a small area around player-owned units,
limiting information and forcing players to conduct reconnaissance in order to respond effectively to
their opponents. In most RTS games, a match ends when one player (or team) destroys all buildings
belonging to the opponent player (or team), although often a player will forfeit earlier when they see
they cannot win [2].

1.1.2 Opponent modeling

An important factor that influences the choice of strategy is the strategy of the opponent. If one knows
what types of units the opponent has, then typically one would choose to build units that are strong
versus those from the opponent. A method of representing information of the enemy is known as
opponent modeling.

Opponent modeling problems can often be seen as a classification problem, where data that is collected
during the game is classified as one of the available opponent models. Therefore it is possible to apply
standard machine-learning techniques. However, a limiting condition is the fact that these calculations
have to be performed in real-time, while many other computations, like the rendering of the game
graphics, have to be performed simultaneously. This limits the amount of available computing
resources. As long as the opponent model is robust, classification process and the selected plan, in
consequence, will be accurate [3].

2. Approach

Feature selection process is the construction of the opponent model schema. In this paper features are
selected from the RTS game itself. Gathered data set might be in a binary format that is not useful to
work with, it might need to be decoded and filtered. Decoded data set might be distributed into spaces
where each space represents a player type or race.

38

Classify

IJICIS, Vol.16 No. 3 July 2016

Distributed data set is then labelled by an expert or clustering algorithms, then they are divided into
training data set and testing data set.Training data type of each race is determined using the following
equations. Equation "(1)" is used to get means of every class, equation "(2)" is used to get the euclidean
distance between all means of all classes, then finally type is determined by selecting the minimum
euclidean distance and compare it with a specific threshold. If the minimum euclidean distance is less
than the threshold, then the training data type of this race is complex, otherwise it is simple. The
determined type is data-dependent and game-dependent as well. Each race in each game has it's own
data set, and each data set will have a certain type.

(1)

where i is the feature number, j is the sample number and n is the number of samples ❑

d(u1.112 = liEr= u 	— i 	(2)
where i is the feature number and n is the number of features
min(dl,d2) < threshold 	complex opponent models
min(dI ,d2) > threshold 	simple opponent models

Complex opponent models are low variance models whose differences in their features' values are low,
so in order to accurately separate between these models, we need to preprocess them to increase their
dimensions by using AdaBoost. Simple opponent models are high variance models whose differences
their features' values are high, so in order to separate between these models in a reasonable time, we
need to preprocess them to decrease their dimensions, if possible, without accuracy or data loss by using
Rough Sets. Preprocessing is done by AdaBoost to increase training data set dimensionality or by
Rough Sets to decrease their dimensionality if possible. Finally, testing data set is classified with the
preprocessed data either coming from AdaBoost or Rough Sets as shown in figure 1.

I Select Features I —I Gather Data Set I- I Decode Data Set I

I Distribute Data Set I

te'

r."---

 C 'framing]

0-ae,51.-Segti -........ r LabeLabelled

	

Data 	Set

.,........ Data Set i

. Feature %Motor MI
Feature Vector MI

Feature Vector M2

	

4 	 Feature Vector M3
I Detect

Type

Complex'?

\Simple?

AdaBoost I

I
Rough Sets

1

Decoded]
Data Set I

Feature Vector ?
Feature Vector ?
Feature Vector ?
Feature Vector

I Label Data Set I

Preprocessed
Data Set

Preprocessed
Data Set

Figure 1. Opponent models preprocessing

39

Mourad et al ponent Models Preprocessing In Real-Time Strategy Games

3. Case study - Star craft 2

Star Craft is a canonical RTS game, like chess is to board games, with a huge player base and numerous
professional competitions. The game has three different but very well balanced teams, or "races",
allowing for varied strategies and tactics without any dominant strategy, and requires both strategic and
tactical decision-making roughly equally. These features give Star Craft an advantage over other RTS
games which are used for AI research, such as Wargus2 and ORTS. There are a large number of Star
Craft replays (game logs) available on the internet which can be used for data mining, and there are
many players of all skill levels to test against [2].

Select features
Features selected are Star Craft 2 units, buildings and upgrades. Figure 2, and 3 show our selected
features.

Protoss
Probe
Zealot
Sentry
Stalker
High Templar
Dark Templar
Archon
Phoenix
Oracle
Void Ray
Tempest
Carrier
Observer
Warp Prism
Immortal
Colossus
Mothership Core
Mothership

Terran 	 Zerg
SCV 	 Larva
Marine 	 Drone
Reaper 	 Overlord
Marauder 	 Zergling
Ghost 	 Banding
Hellion 	 Roach
Widow Mine 	 Queen
Siege Tank 	 Hydralisk
Hellbat 	 Mutalisk
Thor 	 Corruptor
Medivac 	 Infestor
Viking 	 Swarmhost
Raven 	 Ultralisk
Banshee 	 Viper
Battle Cruiser 	 Brood Lord

Overseer
Nydus Worm

Figure 2. Unit features

Protoss 	 Terran 	 Zerg
Nexus 	 Command Center 	 Hatchery
Pylon 	 Orbital Command 	 Extractor
Assimilator 	 Planetary Fortress 	 Spawning Pool
Gateway 	 Supply Depot 	 Evolution Chamber
Wrap Gate 	 Refinery 	 Spore Crawler
Cybernetics Core 	 Barracks 	 Spine Crawler
Forge 	 Engineer Bay 	 Roach Warren
Photon Cannon 	 Missile Turret 	 Banding Nest
Twilight Council 	 Bunker 	 Liar
Stargate 	 Sensor Tower 	 Spire
Robotics Facility 	 Factory 	 Hydralisk Den
Templar Archives 	 Armory 	 Infestation Pit
Dark Shrine 	 Starport 	 Nydus Network
Robotics Bay 	 Fusion Core 	 Hive
Fleet Beacon 	 Ghost Academy 	 Ultralisk Cavern

Reactor 	 Greater Spire
Figure 3. Building features

40

IJICIS. Vol.16 No. 3 July 2016

Gather data set

Data set is extracted from Star Craft 2 replays files. Example of these packages are matches of season 2
of global Star Craft 2 league (GSL), world championship series (WCS) America and Europe Matches.
GSL includes 328 replay files, WCS America includes 136 replay files and WCS Europe includes 242
replay files. Total number of replay files is 706, each replay file has 2 players so the total number of
feature vectors of this season is 1412.

Decode the gathered data set

Start Craft 2 replay files aren't human readable. In order to fetch features from replay files, they must be
decoded. There are many ways to decode the replay files, one of them is s2protocol, an open source
replay files parser written in python by blizzard entertainment (owner of Star Craft) which translates
replay files into useful data. The output of s2protocol might not be suitable for direct use, output might
need to be processed in order to be used. Features are grouped by races, each Star Craft 2 race has it's
own features (it's own units and buildings).

A Star Craft 2 replay contains many events, we're interested in UnitlnitEvent, UnitDoneEvent and
UnitBornEvent. UnitInitEvent and UnitDoneEvent specify the start and finish of a building
construction, UnitDoneEvent is used because if the building isn't finished for any reasons we can't
include it in our features. UnitBornEvent specify the born of a unit. Each event is a dictionary, with the
field _event containing the prefix NNet.Replay.Tracker.S followed by the relevant event name. Not all
game events are directly represented, and have to be determined by the parsing program, while some
events are in two parts and their id, called m_unitTagIndex, needs to be kept track of to calculate the
full game event. Timing information can be extracted for Hidden Markov Model to be integrated with
our system [4].

S2protocol decodes replay files into python objects, we have converted these python objects to java-
script object notation (JSON) objects in order to map it to models in our system, a sample of our JSON
objects is shown in figure 4. We also have removed any unnecessary data from the python objects to
enhance the performance.

{"_bits": 304,
"_event": "NNet.Replay.Tracker.SUnitBornEvent",
"_eventid": 1,
"_gameloop": 11983,
"m_controlPlayerld": 2,
"m_unitTaglndex": 436,
"m_unitTagRecycle": 2,
"m_unitTypeName": "VoidRay",
"m_upkeepPlayerld": 2,
"m_x": 23,
"m_y": 145}

{"_bits": 288,
"_event": "NNet.ReplaysTrackerSUnitInitEvent",
" eventid": 6,
"gameloop": 12016,
"m_controlPlayerld": 2,
"m_unitTagIndex": 433,
"m_unitTagRecycle": 2,
"m_unitTypeName": "Pylon",
"m_upkeepPlayerld": 2,
"m_x": 31,
"m_y": 125}

{"_bits": 120,
"event": "NNet.Replay.Tracker.SUnitDoneEvent",
"_eventid": 7,
"_gameloop": 12416,
"m_unitTagIndex": 433,
"m_unitTagRecycle": 2}

Figure 4. Sample of our JSON events of interest
41

Mourad ei al ponent Models Preprocessing In Real-Time Strategy Games

Convert the decoded data set into opponent models

Each reply file event is converted into 2 opponent models, opponent model for player 1 and opponent
model for player 2. Table 1 shows an opponent model example.

Distribute opponent models

Opponent models are distributed into 3 separated spaces. Space for protoss race, space for terran race
and space for zerg race. Our data set includes 545 protoss opponent models, 309 terran opponent
models and 546 zerg opponent models as shown in table 2.

Label opponent models

Opponent models of each race are labeled with K-Means algorithm with k = 5 clusters per each race.
Labels are shown in table 3. Fast and accurate k-means, and fast expectation-maximization algorithms
can be also applied [5][6

Divide opponent models

Opponent models data set is divided into training data set and testing data set.
Detect opponent model type

Training data set type, whether they are simple (easily separable) or complex (interleaved), is
determined using equation "(1)" and "(2)" as stated in section 3. Table 4 shows a sample of protoss
mean feature vector and table 5 shows euclidean distances between all means of protoss and zerg races.
Linear perceptron and projection of positive points on subspaces can be applied [7][8].

Table I. Protoss feature vector

Feature \ Race Protoss Feature \ Racc Protoss

Probe 55 MothershipCore

Zealot 21 Mothership 0

Sentry 0 Nexus 5

Stalker 62 Pylon 22

HighTcmplar 9 Assimilator 6

DarkTemplar 0 Gateway 4

Archon 0 WarpGate 0

Phoenix 5 Cybernetic sCorc I

Oracle I Forge I

VoidRay 0 PhotonCannon 4

Tempest 0 Twi I ightCouncil I

Carrier 0 Stargate I

Observer 6 RoboticsFacility 2

WarpPrism 0 TemplarArchives 0

Immortal 11 DarkS hrinc 0

Colossus 6 RoboticsBay I

42

IJICIS. Vol 16 No. 3 Juty 2016

Table 2. Distributed opponent models

Protoss
R = 0

Terran
R = 1

Zerg
R = 2

545 309 546

Table 3. Distributed labeled opponent models

Label \ Race Protoss
R = 0

Terran
R = I

Zerg
R = 2

Model 0 R 44 113 155

Model 1 R 201 57 87

Model 2 R 39 20 29

Model 3 R 141 36 64

Model 4 R 120 83 211

Preprocessing using AdaBoost

AdaBoost is used for complex opponent models to increase their dimensionality in order to increase
their variance for better accuracy. Protoss and terran are preprossed with AdaBoost to increase their
dimensionality. AdaBoost implemented in OpenCV can only learn data set with 2 labels, so in order to
learn data set with more than 2 labels, MultiBoost must be used [9].

Preprocessing using Rough Sets

Rough Sets are used for simple opponent models to decrease their dimensionality, if possible, in order
to separate between them in a reasonable time for better performance. Zerg is processed with Rough
Sets to decrease their dimensionality without data loss. Rough Sets implementation in c++ can be found
in rosetta c++ library. Preprocessed data, either from AdaBoost or Rough Sets are the input of the
classification process [10].

4. 	Conclusion

In this paper, we have proposed a methodology to preprocess opponent models so that their
classification process can be executed accurately and in a reasonable time. Our approach isn't game-
specific, it doesn't depend on any type of RTS games. Different RTS games will have different data
sets, these data sets will have different races, and these races might be all simple (easily separable) or all
complex (interleaved) or have a combination of both simple and complex opponent models. Our
approach preprocesses opponent models according to their detected type so that the classification
process can use the preprocessed opponent models for training and testing.

43

Mourad ci al ponent Models Preprocessing In Real-Time Strategy Games

Table 4. Protoss mean feature vector

Feature \ Race Protoss Feature\Race Protoss

Probe 72.358971 MothershipCore 1.435897

Zealot 32.717949 Mothership 0

Sentry 8.230769 Nexus 3.871795

Stalker 68.128204 Pylon 24.153847

HighTemplar 4.461538 Assimilator 6.256410

DarkTemplar 1.923077 Gateway 9.205129

Archon 1.435897 WarpGate 0

Phoenix 8.666667 CybemeticsCorc 0.974359

Oracle 0.307692 Forge 1.051282

VoidRay 2.256410 PhotonCannon 6.743590

Tempest 0.358974 TwilightCouncil 0.948718

Carrier 0 Stargate 1.025641

Observer 3.282051 RoboticsFacility 1.205128

WarpPrism 0.743590 Temp larArchi ves 0

Immortal 1.897436 DarkShrine 0.256410

Colossus 5.128205 RoboticsBay 0.769231

Table 5. Protoss (column 1) and Zerg (column 2) mean euclidean distances

36 285

70 183

131 611

82 328

38 264

102 364

55 390

64 625

57 159

93 737

With threshold 100, protoss and terran are complex, while zerg is simple.

44

IJICIS, Vo1.16 No. 3 July 2016

References

1. Ethan Dereszynski, Jesse Hostetler, Alan Fern, Tom Dietterich Thao-Trang Hoang and Mark
Udarbe, "Learning Probabilistic Behavior Models in Real-time Strategy Games", 2011.

2. Glen Robertson and Ian Watson, "A Review of Real-Time Strategy Game Al", 2014.
3. Magnus Sellereite Fjell and Stian Veum Mollersen, "Opponent modeling and strategic reasoning in

real-time strategy games", 2012.
4. Christian Jonassen, "Gamification and its applications to systematic improvement in performing

complex tasks", 2014.
5. Michael Schinder, Alex Wong and Adam Meyerson, "Fast and accurate k-means for Large

datasets", 2011.
6. Zhiwen Yu and Hausan Wong, "A fast expectation maximization algorithm based on grid and

PCA", 2006.
7. Frank Rosenblatt, "The perceptron algorithm", 1957.
8. Yogananda A P, M Narasimha Murthy and Lakshmi Gopal, "A fast linear separability test by

projection of positive points on subspaces", 2007.
9. Djalel Benbouzid, Robert Busa-Fekete, Norman Casagrande, Francois David Collin and Balazs

Kegl, "MultiBoost: A Multi-purpose Boosting Package", 2012.
10. Walid Moudani, Ahmad Shahin, Fadi Chakik and Felix Mora-Camino, "Dynamic rough sets

features reduction", 2011.

45

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

